
SUBSTITUTION TILINGS WITH STATISTICAL CIRCULAR SYMMETRY

DIRK FRETTLÖH

Abstract. Two new series of substitution tilings are introduced in which the tiles appear in
infinitely many orientations. It is shown that several properties of the well-known pinwheel
tiling do also hold for these new examples, and, in fact, for all primitive substitution tilings
showing tiles in infinitely many orientations.

Dedicated to my teacher Ludwig Danzer on the occasion of his 80th birthday

1. Introduction

In this article, we introduce two new series of nonperiodic substitution tilings in the plane,
where the tiles appear in infinitely many different orientations. There seems to be a growing
interest in such objects, cf. [ORS], [Sa2], [MPS], [BFG], [Y]. The standard example is
certainly the pinwheel tiling of Conway and Radin [Ra1], and most work about tilings with
tiles in infinitely many orientations is dedicated to this special example. It stimulated several
re-formulations of concepts which play a role in the theory of nonperiodic tilings. For instance,
it suggests to define the dynamical system of such a tiling T as the closure (in an appropriate
topology) of the orbit of T under the action of the Euclidean group E(2) of R2, rather than
the translation group R2 alone.

Further examples of tilings showing tiles in infinitely many orientations are rarely found in
the literature. Sadun gave a generalization of the pinwheel tiling [Sa1], yielding a countable
number of different substitution tilings with this property. Apart from this, there are only
few examples known to the author. One is folklore, but nevertheless not widely known. It is
shown in Figure 1. Two more were found by Harriss [FH]. The tilings introduced in Sections
4 and 5 of the present article show that the occurrence of infinitely many orientations in
substitution tilings is not necessarily a rare effect. These tilings include examples of finite
local complexity as well as infinite local complexity (with respect to Euclidean motions),
with an arbitrary number of prototiles, and with or without primitive substitution matrices.
Some of the occurring substitution factors are Pisot-Vijayaraghavan numbers (including the
smallest one), others are not.

Section 2 states some basic definitions and facts about substitution tilings. In Section 3, we
define statistical circular symmetry of a substitution tiling and prove a technical result which
turns out to be useful in the sequel. Section 6 is dedicated to prove that many properties of
the pinwheel tiling generalise to the whole class of substitution tilings with tiles in infinitely
many orientations. In particular, these properties are uniform distribution of orientations,
uniform patch frequencies (with respect to to the topology used in [ORS] as well as the
local rubber topology in [BL]), circular symmetry of the autocorrelation, and therefore of the
diffraction spectrum [MPS].
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2. Substitution Tilings

In the following, Br(x) denotes the closed ball of radius r around x. Br denotes the closed
ball of radius r with centre 0. A rotation through an angle θ about the origin is denoted
by Rθ. Throughout the text, we will identify the Euclidean plane with the complex plane,
choosing freely the point of view which fits better to the question at hand.

A tiling of Rd is a covering of Rd with compact sets — the tiles — which is also a packing
of Rd. A tiling T is nonperiodic if T + t = T implies t = 0. For convenience, we define
T ∩Br = {T ∈ T |T ∩Br 6= ∅}.
Tile substitutions are a simple and powerful tool to generate interesting nonperiodic tilings.
The basic idea is to give a finite set of building blocks — the prototiles — together with a
rule how to enlarge each prototile and then dissect it into copies of the original prototiles,
compare Figures 1, 4, 5. Although the concept applies to arbitrary dimensions, we restrict
ourselves in the following to tilings in the plane R2, in order to keep the notation simple.

Formally, a substitution σ in R2 is defined for a collection of prototiles T1, . . . , Tm by σ(Ti) =
{ϕijk(Tj) |ϕijk ∈ Φij, j = 1 . . . m}, where Φij (1 ≤ i, j ≤ m) are sets (possibly empty) of affine

maps from R2 to R2. Usually, the maps are of the form x 7→ Rαx + t for some α ∈ [0, 2π[,
t ∈ R2. It is a matter of taste whether one allows also reflections or not. For convenience, we
will switch between the two concepts. The particular choice will always be obvious from the
context. Two tiles T, T ′ ∈ T are of the same type, if they are congruent to the same prototile
Ti. (Sometimes one has to consider tiles which are congruent but of different types. Then,
each tile will get a label, assigning its type to it. But here, we don’t need to consider such
cases.)

Definition 2.1. A substitution σ is called self-similar, if there is some λ > 1 such that for
all prototiles Ti:

λTi =
⋃

T∈σ(Ti)

T

Then, λ is called the substitution factor.

Synonyms of substitution factor are inflation factor or length expansion. In the following
we consider self-similar substitutions only. The substitution σ extends in a natural way to
all collections of copies of prototiles: Note that any such collection in the plane — and in
particular, each tiling — can be represented as {Rα1

Ti1
+t1, Rα2

Ti2
+t2, . . .}, where the Rαi

are

rotations, ti ∈ R2. The image of this set under σ is defined as {Rα1
σR−1

α1
T1+λt1, Rα2

σR−1
α2
T2+

λt2, . . .}, where λ is the substitution factor. In particular, if the set represents a tiling, this
defines the action of σ on a tiling.

For such a tiling T = {Rα1
(Ti1

) + t1, Rα2
(Ti2

) + t2, . . .}, we assign an angle α(T ) to each tile
T = RαTi + t in T by

(1) α(T ) = α.

The following definition helps us to avoid certain pathological cases. A patch is a finite subset
of a tiling T , that is, a finite set of tiles in T .

Definition 2.2. Let σ be a substitution with prototiles T1, . . . , Tm as defined above. A tiling
T is called substitution tiling (with respect to to the substitution σ), if each patch in T is
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congruent to some patch in σn(Ti) for appropriate n, i.
The set of all substitution tilings with respect to σ is called the tiling space Xσ.

A useful object is the matrix Sσ := (|Φij|)1≤i,j≤m. A substitution σ is called primitive, if Sσ is
primitive. Recall: A nonnegative matrix M is called primitive if there is some k ≥ 1 such that
Mk contains positive entries only. By Perron’s theorem ([Per], see also [Sen]), each primitive
nonnegative matrix has a unique eigenvalue, the Perron-Frobenius eigenvalue, which is real,
positive, and larger than all other eigenvalues in modulus. The following proposition collects
some well known results about the relation between tilings in Xσ and the substitution matrix
Sσ, compare for instance [F], or [PyF] for symbolic substitutions.

Proposition 2.3. Let σ be a primitive substitution in R2 with substitution factor λ and
prototiles T1, . . . , Tm. Then the Perron-Frobenius-eigenvalue of a Sσ is λ2.
The normalized right eigenvector v = (v1, . . . , vm)T to the eigenvalue λ2 contains the relative
frequencies freqc(Ti) of the prototiles in any T ∈ Xσ, that is:

vi = freqc(Ti) := lim
r→∞

#{T ∈ T ∩Br |T ∼= Ti}
#{T ∈ T ∩Br}

.

Here, T ∼= Ti means T is congruent to the prototile Ti. The result holds also if we distinguish
types of tiles not with respect to congruence to some prototile, but with respect to transla-
tions. However, this makes sense only when tilings with tiles in finitely many orientations are
considered. Then, ∼= is to be read as ’translate of’.

3. Statistical circular symmetry

The following definition helps to simplify terminology.

Definition 3.1. A substitution tiling T is called pinwheel-like, if there are infinitely many
different values α(T ) for T ∈ T , with α(T ) defined as in (1).

For a primitive substitution tiling, this is equivalent to requiring that all copies of each certain
prototile occur in infinitely many orientations in T .

It is known that the pinwheel tiling fulfils an even stronger condition, namely, the orientations
α(T ) of the tiles are uniformly distributed in [0, 2π[, see [Ra1], [MPS]. Recall that a sequence
(αj)j≥1 is called uniformly distributed in [0, 2π[, if, for all 0 ≤ x < y < 2π,

lim
n→∞

1

n

n∑

j=1

1[x,y](αj) =
x− y

2π
.

Following [MPS], we will call this property statistical circular symmetry. However, it requires
some care to define this properly. Since the sum above is not absolutely convergent, the order
of the elements in the sequence matters. Therefore, one needs to specify how to arrange the
tiles Ti ∈ T in a sequence (Ti)i≥0.

Definition 3.2. Let Tσ = {T1, T2, . . .} be a primitive substitution tiling, such that the se-
quence (Tj)j≥1 satisfies the following: for all n ≥ 1, there is some ℓ ≥ n such that the

patch {T1 . . . , Tℓ} is congruent to σk(Ti) for some k, i. The tiling Tσ has statistical circular
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Figure 1. A simple substitution rule which generates tilings of statistical
circular symmetry.

symmetry, if, for all 0 ≤ x < y < 2π, one has:

lim
r→∞

1

n

n∑

j=1

1[x,y](α(Tj)) =
x− y

2π
.

In plain words, the definition ensures that there are infinitely many n such that T1, . . . , Tn

are exactly the tiles contained in some supertile σk(Ti). Although this definition seems rather
technical, it ensures that tiles (resp. the associated angles) are ordered in a natural way. With
respect to the limit, for instance, it is equivalent to ordering tiles according to their distance
from the origin in an increasing order. This fact follows from standard properties of primitive
substitution tilings.

Since the pinwheel tilings are not only pinwheel-like, but also of statistical circular symmetry,
one may argue that the term ’pinwheel-like’ is not well chosen. However, Theorem 6.1 below
shows the equivalence of pinwheel-likeness and statistical circular symmetry for primitive
substitution tilings, so the term pinwheel-like becomes obsolete.

The substitution rule shown in Figure 1 defines a family of pinwheel-like tilings. This ex-
ample is somehow folklore. It was communicated to the author by L. Danzer [Dan1]. The
substitution factor is 3, there is only one prototile T — an isosceles triangle with edge lengths
1, 2 and 2 — and the substitution uses only direct congruences, not reflections. The prototile
T is mirror-symmetric along its vertical axis. Therefore, we equip it with a mark in order
to illustrate the absence of reflections in the substitution rule. The substituted triangle σ(T )
contains four copies of T in the same orientation as T , and two copies of T which are rotated
by θ = − arccos(1/4). It is known that arccos(1/n) /∈ πQ for all n ≥ 3. By Proposition 3.4
below, the tilings in this example are pinwheel-like.

During the last years it, turned out that it is fruitful to consider tiling spaces or hulls of
tilings rather than particular single tilings. The hull of a tiling T in Rd is the closure of the
set {T + x |x ∈ Rd} in the local topology, which is given by the following metric [Sol]. Let

d̃(T ,T ′) = inf
ε>0

{ε | (T + s) ∩B1/ε = (RθT ′ + t) ∩B1/ε, ‖s‖, ‖t‖ ≤ ε, |θ| ≤ ε},
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and

(2) d(T ,T ′) = min{ 1√
2
, d̃(T ,T ′)}.

In plain words, two tilings are close, if they agree on a large ball (of radius 1/ε) around the
origin, after a small rotation Rθ through θ, and after a small translation t. In the case of
tilings where all tiles occur only in finitely many orientations, the rotation part Rθ is usually
omitted. Then, one distinguishes tiles not up to congruence, but up to translations; the
number of prototiles stays finite. We should mention that, in the case of tilings with finite
local complexity (see Section 7), this topology is the same as the local rubber topology [BL]
and the local topology [Sch]. For brevity, we don’t go into details here.

The hull of a tiling in R2, together with the action of the Euclidean group E(2) = R2 ⋊O(2),
is a dynamical system

(
XT , E(2)

)
. In this article we consider primitive substitution tilings

only. Note that primitivity ensures that all types of prototiles occur in some σk(Ti), for all i
and k large enough. This property is a key for the following theorem, which is a variant of
Gottschalk’s theorem, see for instance [Rob], compare also [Y].

Theorem 3.3. If σ is a primitive substitution, the hull XT of each substitution tiling T in
Xσ is Xσ itself. Equivalently, the dynamical system

(
XT , E(2)

)
is minimal.

Consequently, in the case of primitive substitutions, the dynamical system
(
Xσ, E(2)

)
has a

unique meaning.

The following result is needed for the proofs of Theorems 6.1, 6.2, 6.3. One direction (’if’) is
well-known, the other direction seems to be new and is necessary for the proofs of Theorem
6.1 and theorem 6.3.

Proposition 3.4. Let σ be a primitive substitution in R2 with prototiles T1, . . . , Tm. Each
substitution tiling Tσ is pinwheel-like, if and only if there are n, i such that σn(Ti) contains
tiles T, T ′ of the same type, where θ = α(T ) − α(T ′) /∈ πQ.

Proof. Without loss of generality, let α(T ) = θ and α(T ′) = 0. Here, T and T ′ are no
mirror images of each other. If there are prototiles which are mirror symmetric, we break the
symmetry with some markings to avoid ambiguities.

Since σ is primitive, there is some k such that a tile of type Ti is contained in σk(T ) as well
as in σk(T ′). These two tiles are also rotated against each other by θ. Thus, σn+k+n(Ti)
contains two copies of T which are rotated against each other by 2θ. It follows inductively
that there are copies of T rotated against each other by nθ for all n ≥ 0. Since θ /∈ πQ, the
values nθ mod π are pairwise different. Thus the tiles of type T occur in infinitely many
orientations. Since σ is primitive, the same is true for all prototiles Tj .

For the other direction, let Tσ be pinwheel-like. We proceed by showing that if there are
infinitely many different angles θ = α(T ) − α(T ′) as above, at least one of them is irrational.
Consider the finitely many angles α1, . . . , αn occurring in the rotational parts of maps in the
definition of σ. Then, all angles α(T ) occurring in T are linear combinations

( n∑

i=1

λiαi

)
mod 2π (λi ∈ Z),
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T +1j
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−m
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T

Figure 2. The Pythagoras substitution. The edge labels give the edge lengths
in terms of powers of λ. For instance, −m is to be read as λ−m. In particular,
0 means λ0 = 1.

in other words, they are elements of the finitely generated Z-module 〈α1, . . . , αn〉. If all αi are
rational angles, we are done, since then there are only finitely many such linear combinations
mod π, thus only finitely many angles α(T ). If some αi are irrational, it is slightly more
complicated:

In order to get rid of the common factor π, let βi = αi

2π . Consider the Z-module M =
〈β1, . . . , βn〉Z. Since it is finitely generated and torsion-free (the only element of finite order
is 0), there is a basis γ1, . . . , γk of M , compare [Rot, Theorem 10.19]. Let m be the smallest
positive integer in M . (If there is no such number, then all differences βi − βj (j 6= i) are

irrational, and we are done.) It has a unique representation m =
∑k

i=1 λiγi. All other integers
ℓ in M are integer multiples of m. (Otherwise there is a positive integer λℓ+ µm < m). Let
q = gcd(λ1, . . . , λk). Then 1

q is the smallest positive rational number in M , and all others are

of the form p
q , p ∈ Z. In particular, there are only finitely many rational numbers mod 1 in

M , hence only finitely many rational angles θ = α(T ) − α(T ′) ∈ πQ.

But by the definition of pinwheel-likeness there are infinitely many such θ. Thus at least one
of them is irrational: There are two tiles rotated against each other by an angle θ /∈ πQ. By
definition of a substitution tiling, there is a super-tile σn(T ) containing these two tiles, and
the claim follows. �

4. The Pythia substitutions

First, consider the following family of substitutions (the Pythagoras substitutions), where the
corresponding tilings are not pinwheel-like. Let m ≥ 3 and M be the (m ×m)-matrix with
entries Mi+1,i = 1 for 1 ≤ i ≤ m − 1; M1,m = 1; Mj+1,m = 1 for some 1 ≤ j ≤ m − 1,
and Mi,j = 0 else. In other words, let M be the companion matrix of the polynomial

p := xm −xj −1. For simplicity, we require gcd(m, j) = 1. Then, the primitivity of M can be
shown easily by the methods in [Sen]. (If gcd(m, j− 1) = q > 1, the substitution is no longer
primitive, but all tilings occurring are already contained in the primitive case.) Let η be the
Perron eigenvalue of M . By the remark after Definition 2.2, λ :=

√
η is the substitution factor

of any self-similar substitution with substitution matrix M .

Let a := λ−m, and T1 be the orthogonal triangle with vertices (0, 0), (−a, 0), (−a,
√

1 − a2),
so its hypotenuse is of length 1, see Figure 2. This is the first prototile. The other prototiles
are Ti+1 := λiT1 for 1 ≤ i ≤ m − 1. The substitution is defined by σm,j(Ti) = Ti+1 for
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T +1j

T +1j T1 T1

T +1j

T +1j

σ
2j
m,j(T1):

σ
j
m,j(Tj+1)

T1

θ
Tm−−1

Figure 3. The construction of the Pythia substitution ̺m,j out of the
Pythagoras substitution σm,j. Left: the 2j-th iterate of T1 under σm,j. Cen-
tre: The same, with two tiles flipped. This patch defines the first iterate of T1

under ̺m,j. Right: The first iterate of Tm−j+1, used in the proof of Theorem
6.2.

1 ≤ i ≤ m− 1, and σm,j(Tm) = {ϕ(T1), ψ(Tj+1)}. As indicated in Figure 2, the substitution
acts on Tm by dissecting λTm along the altitude on the hypotenuse into tiles of type T1,
Tj+1. The edge labels in the figure indicate the edge lengths in terms of powers of λ. E.g.,
m − 1 is to be read as λm−1. Since λ2m = λ2j + 1, it follows 1 = (λj−m)2 + (λ−m)2 and
λm = λj−m+j + λ−m. The former shows that the triangles are indeed orthogonal triangles,
and inspired the name. The latter means that the altitude on the hypotenuse indeed dissects
λTm into T1 and Tj+1. So the Pythagoras substitution σm,j is well-defined.

In order to obtain a pinwheel-like substitution, consider (σm,j)
2m(T1) (see Figure 3, left). One

diagonal of the grey rectangle, consisting of two tiles Tj+1, is the altitude on the hypotenuse
of the large triangle. The new substitution ̺m,j arises by choosing the other diagonal of the

rectangle, Figure 3 (centre). This defines the substitution ̺m,j(T1) of T1. The concrete maps

used by ̺m,j(T1) can be obtained from the figure and the corresponding maps in σm,j . The
substitution for the other prototiles is defined by

(3) ̺m,j(Ti) := (σm,j)
i−1

(
̺m,j(T1)

)
, 2 ≤ i ≤ m.

Since σm,j is well-defined, ̺m,j is, too. Since the substitution factor of the Pythagoras substi-
tution σm,j is λ, and the Pythia substitution arises from 2m iterations of σm,j , the substitution
factor of the Pythia substitution ̺m,j is λ2m. The particular Pythia substitution ̺3,1 is shown
in Figure 4. The proof that all Pythia substitutions ̺m,j generate pinwheel-like tilings is given
in Theorem 6.2.

5. The tipi substitutions

Let ηm,j be the root of xm − x2j − 2xj − 1, 3 ≤ m, 1 ≤ j < m/2, a = am,j = (ηm,j)
j , θ :=

arccos(1/2a). As above, m is always the number of prototiles of the tiling under consideration.
The first prototile, T0, is an isosceles triangle with edges of length 1, a, a. To be explicit, let T0

be the triangle with vertices 0, 1, 1
2 + i

√
a2 − 1

4 . The other prototiles are defined recursively

by Ti := ηm,jTi−1 (1 ≤ i ≤ m− 1). The substitution rule is σ(Ti) := Ti+1 for 0 ≤ i ≤ m− 2,

and σ(Tm−1) := {ϕ0(T0), ϕ1(Tj), ϕ2(Tj), ϕ3(T2j)}; see Figure 4 for the case j = 1, m = 3.
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T3

T3

T3

T2

T2

T2

T2

T2

T2

T2

T3

T1

T1

T1 T1

T3

T3

T3

T3
T3

T3

T3

T2

T2

T2

T2

T2

T2 T2
T2

T2

Figure 4. The substitution rule for the Pythia substitution ̺3,1 (left), and

the second iterate of T1 (right). The two grey shaded tiles are both of type
T1, rotated against each other by an angle θ /∈ πQ.

Figure 5. The tipi substitution for the case m = 3, j = 1. The shape of
the tiles resembles a tipi, a conical tent used by Sioux and other tribes in the
Great Plains, thus the name.

The Euclidean motions ϕi can be read off from the figure. Explicitly, they read

ϕ0(z) = z + a2, ϕ1(z) = e2πiθz + a2, ϕ2(z) = e2πiθz, ϕ3(z) = z +
1

2
+ i

√
a2 − 1

4
.

Note that one reflection is involved, expressed by the complex conjugation in ϕ2.

6. Properties of the Tilings

The uniform distribution of orientations was shown for the particular case of the pinwheel
tiling in [Ra2], see also [MPS]. The present proof is just a generalisation to the arbitrary
case. It uses Perron’s theorem [Per], Weyl’s criterion and Proposition 3.4.
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Theorem 6.1. Let Tσ be a pinwheel-like substitution tiling, where σ is a primitive substitution
in R2 with prototiles T1, . . . , Tm. Then Tσ is of statistical circular symmetry. Consequently,
Xσ is of statistical circular symmetry, too.

Proof. Weyl’s criterion states that {αj}j∈Z = {eiϕj}j∈Z is uniformly distributed in [0, 2π[, iff

lim
n→∞

1

n

n∑

j=1

(αj)
t = 0

for all 0 6= t ∈ Z. So, for t ∈ Z, consider the matrix

M(t) =

(S
kℓ∑

j=1

eiϕjt

)

kℓ

(1 ≤ k, ℓ ≤ m),

where S denotes the substitution matrix and, for k, ℓ given, ϕj denotes the orientation of the
j-th tile of type k in σ(Tℓ). Thus,

(
M(1)

)
kℓ

contains the sum of the orientations of the tiles

of type k in σ(Tℓ). Inductively, it follows that
(
M(1)r

)
kℓ

contains the sum of the orientations
of the tiles of type k in σr(Tℓ). We proceed to prove

lim
r→∞

(M(t)r)kℓ

(Sr)kℓ
= 0,

from which uniform distribution follows. Without loss of generality, let one occurring orienta-
tion be 0. (The substitution rule can always be modified in order to achieve that, by adding
an appropriate general rotation.) Let r ≥ 1. Assume

|
(
M(t)r

)
kℓ
| = |

(Sr)kℓ∑

j=1

eiϕjt| = Skℓ,

for some t > 0. Then, ϕjt ∈ πZ for all ϕj considered (that is, for all ϕj associated with some
Tk in σr(Tℓ)). But, by Proposition 3.4, not all occurring angles ϕj are elements of πQ. Thus,
for all r, t ≥ 1, there is (k, ℓ) such that

|
(Sr)

kℓ∑

j=1

eiϕjt| < (Sr)kℓ.

Let λ be the substitution factor of the substitution (so, λ2 is the Perron-Frobenius eigenvalue

of S), and let η be the Perron-Frobenius eigenvector of A(r) :=
(
|(M(t)r)kℓ|

)
kℓ

. By Perron’s

theorem, 0 < limr→∞
(Sr)kℓ

(λ2)r = ckℓ, with a constant 0 < ckℓ <∞. (More precisely, each vector

(ck1, . . . , ckm)T is a right eigenvector of S for the Perron-Frobenius eigenvalue λ2 of S, and
each vector (c1ℓ, . . . , cmℓ) is a left eigenvector for λ2, and all vectors are positive.) Analogously,

0 < limr→∞
(A(r))kℓ

ηr = akℓ < ∞. Since A(r) ≤ Sr and A(r) 6= Sr, it follows η < λ2, again by

Perron’s theorem. Thus,
∣∣∣∣
(M(t)r)kℓ

(Sr)kℓ

∣∣∣∣ ≤
(A(r))kℓ

(Sr)kℓ
=

(A(r))kℓ

ηr

ηr

(Sr)kℓ
≤ c

( η

λ2

)r
→ 0 (r → ∞).

The claim for the hull Xσ follows immediately, since each element of Xσ shows already sta-
tistical circular symmetry. �
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Theorem 6.2. Let m ≥ 3, and 1 < j < m. All tilings defined by the Pythia substitution ̺m,j

are of statistical circular symmetry.

Proof. Utilising Proposition 3.4, we need to show that there are two tiles of the same type Ti

in some (̺m,j)
k(Tj) which are rotated against each other by an angle θ /∈ πQ.

Consider the Pythia substitution with respect to chirality of the tiles. Let us call the tiles
in Figure 2 (without the two rightmost ones) right-handed, denoted by Ti as usual; and let
us call their mirror images — obtained by reflection in the horizontal axis — left-handed,
denoted T i. The following properties follow from the construction of the Pythia substitution
̺m,j .

1. For each Ti, ̺m,j(Ti) contains a translate of Ti, rotated by 0 mod π
2 .

2. ̺m,j(T1) contains a translate of T j+1, rotated by 0 mod π
2 .

3. ̺m,j(Tm−j+1) contains a translate of T1, rotated by θ mod π
2 .

4. ̺m,j(Tm−j+1) contains a translate of T j+1, rotated by −θ mod π
2 .

The first three statements are immediate consequences of the construction, see Figure 3. For
the fourth one, recall that the m-th iterate of T1 under the Pythagoras substitution (σm,j)

m

contains a translate of T 1, rotated by −θ mod π
2 , see Figure 2. Consequently, (σm,j)

m(Tj+1)

contains a translate of T j+1, rotated by −θ mod π
2 . By definition, ̺m,j(Tm−j+1) contains a

translate of (σm,j)
j+m−j(Tj+1) = (σm,j)

m(Tj+1) (compare Figure 3 and (3)), thus it contains

a translate of T j+1, rotated by −θ mod π
2 .

Altogether, by 3. and 2., (̺m,j)
2(Tm−j+1) contains a translate of T j+1, rotated by θ mod π

2 .

By 4. and 1., (̺m,j)
2(Tm−j+1) contains a translate of T j+1, rotated by −θ mod π

2 . By

Proposition 3.4, it remains to show that θ − (−θ) = 2θ /∈ πQ.

We proceed by showing that θ /∈ πQ. Consider the tile T1 embedded in C, with vertices
0, −λ−m, −λ−m + iλj−m, see Figure 2. Then θ /∈ πQ iff −λ−m + iλj−m is not a complex
root of unity, or equivalently, λ−m 6= cos(kπ

n ) for all k, n ∈ Z. Recall that λ2 is a root of

xm − xj − 1, so λ is a root of p := x2m − x2j − 1. It is well known that a polynomial in Z[x]
which is reducible in Q(x) is already reducible in Z[x]. Thus, no non-integer coefficients can
occur in the factorisation of p, wherefore the prime polynomial of λ is of the form xℓ±· · ·±1.
Thus, λ is an algebraic integer, as well as a unit. Consequently, λ−1 is an algebraic integer
as well, as is λ−m.

Assume that λ−m = cos(kπ
n ) for some k, n ∈ Z, where gcd(k, n) = 1. Since λ−m /∈ {−1, 0, 1},

we can exclude k = 0, n = 1 and n = 2. Let ξn = e2πi k
n be a primitive n-th root of unity.

Then, λ−m = 1
2 (ξn + ξn).

On the other hand, it is known that the ring of integers in Q(ξn + ξn) equals Z[ξn + ξn] [W,

Prop. 2.16], and all integers in Q(ξn+ξn) are of the form
∑φ(n)/2−1

k=0 βk(ξn+ξn)k, where βk ∈ Z,

and φ denotes Euler’s totient function. But the unique representation of λ−m is 1
2(ξn + ξn),

so λ−m is not an algebraic integer, which is a contradiction. Therefore, λ−m 6= cos(kπ
n ) for all

k, n ∈ Z, which proves the claim. �

Note that the relevant angle for the tipi substitution is ϕ with cos(ϕ) = 1
2(ηm,k)

−j , and

(ηm,k)
m = (ηm,k)

j + 1. So the above argument fails in this case: it may be that ηm,k =
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2 cos(kπ
n ). We don’t see a similarly simple argument for all tipi tilings being of statistical

circular symmetry. Nevertheless, each particular case can be easily checked whether it is. All
cases checked so far are of statistical circular symmetry.

Two important properties of nonperiodic tilings are repetitivity and uniform patch frequency.
A tiling is called repetitive, if all r-patches occur uniformly dense in T [Dan1]. That is, T is
repetitive, if for all r > 0 exists R > 0, such that each for all s, t ∈ Rd, a translate of T ∩Br(s)
is contained in T ∩BR(t). One can prove that tilings with statistical circular symmetry are
not repetitive. But the next theorem shows that they possess a slightly weaker property. Let
us call a tiling T w-repetitive (for wiggle-repetitive), if for all r > 0, ε > 0 exists R > 0, such
that for all s, t ∈ Rd, a translate of Rα(T ∩Br(s)) is contained in T ∩BR(t) for some |α| < 1.

Theorem 6.3. Every primitive substitution tiling Tσ of statistical circular symmetry is w-
repetitive.

Proof. Let ε > 0, and let P be some patch in T . By Definition 2.2 there is k ≥ 1 such that a
copy of P is contained in some supertile σk(Ti). By primitivity, there is M > k such that a
copy of P is contained in all supertiles σm(T ), m ≥M .

Let Tj be some prototile. By the proof of Proposition 3.4, there is θ /∈ πQ such that holds:

For all N ≥ 0 there is ℓ ≥ 0 such that each supertile σℓ(T ) contains a translate of RnθTj for
all 0 ≤ n ≤ N .

Every angle β ∈ [0, 2π[ can be approximated by nθ mod π (with suitable large n ≥ 0) such
that |nθ − β| < ε.

Let us combine these observations. There is a particular supertile σℓ(Ti) containing translates
of RnθTj for all 0 ≤ n ≤ N . Thus, there is s > 0 such that all supertiles σℓ+s(T ) contain

translates of RnθTj for all 0 ≤ n ≤ N . Then, all supertiles σℓ+s+m(T ) contain copies of P ,
in angles 0, θ, . . . ,Nθ. The orientation of P can be approximated up to ε by increasing m.
Thus, there are ℓ, s,m such that each supertile σℓ+s+m(T ) contains a copy P ′ of P , with
P ′ = RαP − t, t ∈ R2, |α| < ε. For this particular choice ℓ, s,m, there is R′ > 0 such that
each supertile σℓ+s+m(T ) fits into a ball with radius R′. Thus each ball of radius R = 3R′

contains an entire supertile, which proves the claim. �

A van Hove sequence is a sequence of sets Fn ⊂ Rd, such that limn→∞
vol ∂+δFn

vol Fn
= 0 for all

δ > 0, where ∂+δFn := {x ∈ Rd | d(x, ∂F ) < δ}. Essentially, in a van Hove sequence the
surface/bulk ratio tends to zero. A simple example of a van Hove sequence is a sequence of
concentric balls Bn of radius n, centred at 0; or, more general, an sequence of balls Bn(xn)
of radius n with arbitrary centres. A tiling T has uniform patch frequency (UPF), if for all
van Hove sequences (Fn)n, and for all patches P ⊂ T ,

freq(P ) := lim
r→∞

1

volFn
#{P ′ ⊂ T ∩ Fn(x) |P ′ = P + t for some t ∈ Rd}

exists, and is independent of the choice of (Fn)n. A tiling with statistical circular symmetry
has UPF, according to the definition above, since the frequency freq(P ) — counting translates
of P — of each patch is 0. But this tells nothing. Any tiling, appropriately disordered, shows
UPF in this sense. A weaker notion is ’frequency with respect to congruence’ rather than
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translation, as already mentioned in Proposition 2.3:

(4) freqc(P ) := lim
r→∞

1

volFn
#{P ′ ⊂ T ∩ Fn(x) |P ′ ∼= P}.

As in Proposition 2.3, P ′ ∼= P means P ′ = RαP + t for some t ∈ Rd, α ∈ R. Again, this tells
us nothing about whether a tiling is of statistical circular symmetry or not. An alternative
definition, tailored to tilings with statistical circular symmetry, and to the metric in equation
(2), is the following:

A tiling T has uniform wiggled patch frequency (UWPF), if for each van Hove sequence (Fn)n,
for each ε > 0, and for all patches P ⊂ T ,

freqw(P, ε) := lim
r→∞

1

volFn
#{P ′ ⊂ T ∩ Fn(x) |P ′ = RαP + t for some t ∈ Rd, |α| ≤ ε}

exists, and is independent of (Fn)n and of ε. For tilings with tiles in finitely many orientations,
freq = freqw for small ε.

It is likely that one can prove UWPF for tilings with statistical circular symmetry. However,
a careful proof is beyond the scope of this paper.

7. Remarks

The circular symmetry of Xσ implies the circular symmetry of the autocorrelation (com-
pare for instance [MPS], [BFG]) of its elements, and therefore the circular symmetry of its
diffraction spectrum. This has been known for the pinwheel tilings. The results in this article
imply the circular symmetry of the diffraction of all primitive substitution tilings with tiles
in infinitely many orientations.

The relevance of Theorem 6.3 relies on the connection to dynamical systems of a tiling space.
In the case of finitely many orientations (that is, the number of α(T ) as in (1) is finite), the
dynamical system (Xσ,R

2) is minimal. In the case of statistical circular symmetry, we know
already that (Xσ, E(2)) is minimal, see Theorem 3.3 and remarks there. Probably Theorem
6.3 can be utilized to show that (Xσ,R

2) is minimal, too.

In this context, unique ergodicity plays an even more important role: In the case of finitely
many orientations, (Xσ,R

2) is uniquely ergodic if and only if the tilings in Xσ have uniform
patch frequency [LMS]. This result plays a central role for further investigations of such
systems. Here the concept of UWPF is suggested, since it may be the appropriate one to
generalize this result to tilings with statistical circular symmetry.

A tiling is of finite local complexity (FLC), if for each r > 0, the number of congruence classes
of T ∩Br(x) (x ∈ Rd) is finite [Sol2]. The Pythia and the tipi substitution tilings introduced
here show both cases: FLC and non-FLC. This can be shown by the methods in [Dan3],
[FrR]. Note that, in the case of finitely many orientations, FLC is frequently defined by ’for
each r > 0, the number of translation classes of T ∩Br(x) (x ∈ Rd) is finite’. In the present
context we deviate from this convention for obvious reasons.

The substitution factor of a self-similar substitution determines already many properties of the
corresponding tilings. For instance, if the substitution factor is a PV number, then the tiling
is FLC under a certain (mild) condition [FrR]. PV number stands for Pisot-Vijayaraghavan
number, an algebraic integer whose algebraic conjugates are all smaller than one in modulus.
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The substitution factors of the tilings in this article cover various cases. In particular, they
are of arbitrary algebraic degree m ≥ 2. For m ≥ 3, this can be seen by the irreducibility of
xm−x−1 [Sel]. For m = 2, one needs to alter the setting slightly: The case m = 4, j = 2 does
not obey the requirement gcd(m, j) = 1. Therefore, the Pythagoras substitution for these
values is not longer primitive: there are four prototiles T1, T2, T3, T4, but in each Pythagoras
tiling to σ4,2, only two of them occur, either T1, T3, or T2, T4. The substitution (σ4,2)

2 does the

job: It uses only two prototiles T1, T3. The substitution factor is the golden mean τ =
√

5+1
2 .

The corresponding Pythia tiling (see ’golden pinwheel tilings’ in [FH]) has substitution factor
τ + 1, which is a quadratic PV number. Other PV numbers occurring as substitution factors
for Pythagoras tilings are the dominant roots of x3 −x− 1 (which is the smallest PV number
among all algebraic integers [Sie]), of x3−x2−1 and of x4−x3−1. Thus, PV numbers which
are substitution factors of the Pythia tilings include powers of those. PV numbers occurring
as substitution factors for tipi tilings include the ones mentioned for the Pythagoras tilings,
as well as the dominant root of x3 − 2x2 + x− 1 (in the case m = 5, j = 2).
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