Übungen zur Vorlesung

Mathematik für Naturwissenschaften II

Blatt 7

Aufgabe 1

Betrachten Sie die DGL $\ddot{x} = g(x)$. G sei eine Stammfunktion der stetigen Funktion g.

(a) Sei x(t) eine Lösung der Differentialgleichung. Zeigen Sie, dass x die Differentialgleichung mit getrennten Variablen

$$\frac{\dot{x}^2}{2} = G(x) + c$$

mit $c = \frac{(\dot{x}(t_0))^2}{2} - G(x(t_0))$ erfüllt, wobei $t_0 \in \mathbb{R}$.

(b) Lösen Sie mit Teil (a) das AWP

$$\ddot{x} = -\gamma \frac{1}{x^2}$$
, $x(0) = x_0 > 0$, $\dot{x}(0) = v_0 = \sqrt{\frac{2\gamma}{x_0}} > 0$,

wobei γ eine positive Konstante ist.

Hinweis. Teil (a): Folgt durch Differentiation (Folgerung 9 aus Analysis I).

(3+3 Punkte)

Aufgabe 2

Es seien V,W Vektorräume über dem Körper K. Weiter sei $f\colon V\to W$ eine lineare Abbildung. Setze für $w\in W$

$$f^{-1}(\{w\}) := \{v \in V \mid f(v) = w\}.$$

Insbesondere ist also $f^{-1}(\{0\}) = \operatorname{Ker}(f)$ ein Untervektorraum von V. Zeigen Sie, dass für $b \in W$ mit $f^{-1}(\{b\}) \neq \emptyset$ gilt

$$f^{-1}(\{b\}) = v_p + \text{Ker}(f)$$
,

wobei $v_p \in f^{-1}(\{b\})$ eine beliebige (partikuläre) Lösung von f(v) = b ist. Man erhält also alle Lösungen von f(v) = b, indem man sämtliche Lösungen von f(v) = 0 zu v_p addiert.

(4 Punkte)

Aufgabe 3

Zeigen Sie, dass für eine beliebige quadratische Matrix $A \in M(n \times n, K)$ und eine invertierbare Matrix $U \in GL(n, K)$ für alle $n \in \mathbb{N}$ gilt

$$(UAU^{-1})^n = UA^nU^{-1}$$
.

(2 Punkte)

Aufgabe 4

Bestimmen Sie sämtliche Eigenvektoren der Spiegelung des \mathbb{R}^2 an der y-Achse. Was sind die zugehörigen Eigenwerte? Gibt es eine Basis des \mathbb{R}^2 , bestehend aus Eigenvektoren? Diskutieren Sie diese Fragen auch für eine Drehung des \mathbb{R}^2 gegen den Uhrzeigersinn um den Ursprung mit Drehwinkel $\theta \neq 0, \pi$.

(2+2 Punkte)

Abgabe bis Freitag, 03.06.2016, 12.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128