Übungen zur Vorlesung

Analysis I

Klausurübungen

Aufgabe 1

Definieren Sie die Begriffe Grenzwert einer Folge, Häufungspunkt einer Folge und Cauchy-Folge. Beweisen Sie, dass jede konvergente Folge eine Cauchy-Folge ist. Beweisen Sie außerdem, dass jede reelle Cauchy-Folge genau einen Häufungspunkt hat.

Aufgabe 2

Bestimmen Sie (sofern existent) den Grenzwert $\lim_{n\to\infty} a_n$ (mit Begründung!):

(a)
$$a_n = \frac{-n^2 - n - 1}{4n^2 + 9}$$
.

(b)
$$a_n = \frac{\ln(n)}{n}$$
.

(c)
$$a_n = \sqrt{n^2 + 1}$$
.

(d)
$$a_n = \frac{n^2 - 2^n}{n^3 + 2^n}$$
.

(e)
$$a_n = (\frac{n}{n+1})^{n+1}$$
.

Aufgabe 3

Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz.

(a)
$$\sum_{n=1}^{\infty} (1+1/n)^{n^3}$$
.

(b)
$$\sum_{n=1}^{\infty} (1 - 1/n)^{n^2}$$
.

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2+1}{n^3}$$
.

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n^3}$$
.

(e)
$$\sum_{n=1}^{\infty} \frac{\sinh(n)}{(2e)^n}$$
, wobei e die Eulersche Zahl bezeichnet.

Aufgabe 4

Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{|x^3|}$, stetig ist. In welchen Punkten ist f differenzierbar? Ist f sogar stetig differenzierbar? Ist f zweimal differenzierbar?

Aufgabe 5

Zeigen Sie, dass die Funktion tan: $(-\pi/2, +\pi/2) \to \mathbb{R}$ streng monoton wachsend ist mit Bild \mathbb{R} . Bestimmen Sie (sofern existent) auch die Ableitung der Umkehrfunktion arctan: $\mathbb{R} \to (-\pi/2, +\pi/2)$.

Aufgabe 6

Entscheiden Sie, ob die Funktion $f(x) = \ln(x + \sqrt{1 - x^2})$ auf dem Definitionsbereich D = [0, 1] gleichmäßig stetig ist (mit Begründung!).