Übungen zur Vorlesung

Analysis I

Blatt 9

Aufgabe 1

Untersuchen Sie, ob die folgenden Limites existieren bzw. ob bestimmte Divergenz gegen $\pm \infty$ vorliegt:

- (a) $\lim_{\substack{x\to 0\\x\neq 0}}\frac{|x|}{x^2}$.
- (b) $\lim_{\substack{x \to -2 \\ x \neq -2}} \frac{x^7 + x + 2}{x + 2}$.
- (c) $\lim_{x\to\pm\infty}\frac{|x|}{x^2}$.
- (d) $\lim_{\substack{x\to 0\\x\neq 0}} \left(\frac{\exp(2x)-1}{2x^2} \frac{1}{x}\right)$.
- (e) $\lim_{x \to \infty} \sqrt{x^2 + x + 1} x$.
- (f) $\lim_{x\to 0} x f(x)$, wobei $f: \mathbb{R} \to \mathbb{R}$ eine beschränkte Funktion sei, also $|f(x)| \leq K$ für alle $x \in \mathbb{R}$, wobei $K \geq 0$ eine Konstante ist.

Hinweis. Teil (d): Satz über die Abschätzung des Restglieds mit N=2.

$$(1+1+1+2+2+1)$$
 Punkte)

Aufgabe 2

Betrachten Sie die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$, wobei $f_n\colon\mathbb{R}\to\mathbb{R}$ gegeben sei durch

$$f_n(x) := \frac{3nx}{1 + 2|nx|}.$$

Zeigen Sie, dass sämtliche f_n stetig sind, der punktweise Limes $f \colon \mathbb{R} \to \mathbb{R}$, gegeben durch

$$f(x) := \lim_{n \to \infty} f_n(x) \,,$$

zwar wohldefiniert (die obigen Limites existieren) aber nicht stetig ist.

Hinweis. Unterscheiden Sie für die Stetigkeit der f_n die Fälle x=0 und $x\neq 0$.

(4 Punkte)

Aufgabe 3

Entscheiden Sie, ob die folgenden Teilmengen von \mathbb{R} abgeschlossen, offen, beschränkt bzw. kompakt sind.

(a)
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n} \right]$$
.

(b) Die Menge der reellen Zahlen $x \in [0,1]$, die eine Dezimaldarstellung ohne die Ziffer 5 haben.

Hinweis. Teil (b): Beachten Sie die Uneindeutigkeiten der Dezimaldarstellung, z.B. gehört $0, 4\overline{9} = 0, 5$ zu der betrachteten Menge.

(2+2 Punkte)

Abgabe bis Freitag, 23.06.2017, 12.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128