Übungen zur Vorlesung

Lineare Algebra I

Blatt 4

Aufgabe 1

Seien $M = \{v_1, \dots, v_n\} \subset \mathbb{Q}^n$ und $b \in \mathbb{Q}^n$ gegeben. Interpretieren und beweisen Sie: Aus $b \in \langle M \rangle_{\mathbb{R}}$ folgt $b \in \langle M \rangle_{\mathbb{Q}}$.

Hinweis. Hier ist $\langle M \rangle_{\mathbb{R}} \subset \mathbb{R}^n$ die \mathbb{R} -lineare Hülle von $M \subset \mathbb{R}^n$ gemeint. Übersetzen Sie die zu beweisende Aussage in die Sprache der linearen Gleichungssysteme.

(4 Punkte)

Aufgabe 2

- (a) Zeigen Sie, dass die Teilmenge $K := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$ bezüglich der von \mathbb{R} geerbten Verknüpfungen + und · ein Körper ist. Man sagt, dass K ein Teilkörper von \mathbb{R} ist.
- (b) Sei V ein K-Vektorraum mit K wie in Teil (a) und sei b_1, \ldots, b_n eine Basis von V über K. Zeigen Sie, dass sich V auch als \mathbb{Q} -Vektorraum auffassen läßt und bestimmen Sie eine Basis von V über \mathbb{Q} .

(4+2 Punkte)

Aufgabe 3

Zeigen Sie, dass paarweise verschiedene Vektoren v_1, \ldots, v_n eines K-Vektorraums V genau dann linear abhängig sind, wenn ein $i \in \{1, \ldots, n\}$ existiert mit

$$v_i \in \langle \{v_1, \dots, v_n\} \setminus \{v_i\} \rangle$$
.

(2 Punkte)

Aufgabe 4

Sei K ein Körper und sei I eine nicht-leere Menge. Zeigen Sie, dass der K-Vektorraum $K^{(\mathbb{N})}$ nicht endlich erzeugt ist und bestimmen Sie eine Basis des $K^{(\mathbb{N})}$.

(2+2 Punkte)

Abgabe bis Freitag, 11.05.2018, 10.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128