Übungen zur Vorlesung

Lineare Algebra I

Blatt 14 (Ohne Wertung)

Aufgabe 1

Sei K ein Körper. Sei $D \colon K[X] \to K[X]$ die formale Derivation, gegeben durch

$$\sum_{i=0}^{n} a_i X^i \longrightarrow \sum_{i=1}^{n} a_i i X^{i-1}.$$

Betrachten Sie ferner die Abbildung $M_X \colon K[X] \to K[X]$, gegeben durch $f \mapsto X \cdot f$.

- (a) Zeigen Sie, dass D und M_X lineare Abbildungen sind.
- (b) Bestimmen Sie sämtliche Eigenwerte der Kompositionen $M_X \circ D$ und $D \circ M_X$.
- (c) Zeigen Sie, dass K[X] sowohl eine Basis aus Eigenvektoren von $M_X \circ D$ als auch von $D \circ M_X$ besitzt.

Aufgabe 2

Sei K ein Körper und sei $A \in M_n(K)$. Betrachten Sie den Einsetzungshomomorphismus $K[X] \to M_n(K)$, gegeben durch $X \mapsto A$, und bestimmen Sie eine Basis des Bildes

$$K[A] := \{a_0 \mathbb{1}_n + a_1 A + a_2 A^2 + \dots + a_n A^n \mid n \ge 0, a_i \in K\}$$

in den folgenden Fällen.

(a)
$$n = 2$$
 und $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

(b)
$$n = 2 \text{ und } A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

(c)
$$n = 3$$
 und $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Hinweis. Bestimmen Sie zunächst die sukzessiven Potenzen von A.

Aufgabe 3

Sei V ein n-dimensionaler K-Vektorraum und sei $f \in \text{End}(V)$ idempotent, d.h. es gilt $f^2 = f$. Zeigen Sie, dass f nur die Eigenwerte 0 oder 1 haben kann.