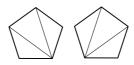
Präsenzübungen zur Vorlesung Diskrete Mathematik

Blatt 8

Aufgabe 1

Wieviel Möglichkeiten a_n gibt es, ein konvexes (n+2)-Eck durch sich nicht kreuzende Diagonalen (also Linien durchs Innere von Ecke zu Ecke) in Dreiecke zu zerlegen? Zwei Möglichkeiten für n=3 sind hier gezeigt:



Geben Sie eine rekursive Vorschrift für die Folge $(a_n)_{n\in\mathbb{N}}$ an und leiten Sie daraus eine allgemeine (nichtrekursive) Formel für die a_n ab.

Aufgabe 2

Bestimmen Sie eine allgemeine (nichtrekursive) Formel für den Ausdruck

$$\sum_{k=1}^{n} (-1)^k s_1(n,k) .$$

Aufgabe 3

Beweisen Sie für $n, k \in \mathbb{N}$ die folgende Identität für Stirlingzahlen zweiter Art.

$$s_2(n,k) = \sum_{r=0}^{n-1} {n-1 \choose r} s_2(r,k-1)$$

Hinweis. Gegeben eine Partition von $X := \{1, ..., n\}$ in k Teile, lösche man den Teil, der ein fixiertes Element $x_0 \in X$ enthält. Dies liefert eine Partition einer Teilmenge Y von X in k-1 Teile, wobei $0 \le |Y| \le n-1$.

Aufgabe 4

Bestimmen Sie allgemeine (nichtrekursive) Formeln der folgenden Stirlingzahlen zweiter Art.

- (a) $s_2(n,2)$.
- (b) $s_2(n, n-1)$.