Präsenzübungen zur Vorlesung

Analysis II

Blatt 8

Aufgabe 1

Seien V, W normierte \mathbb{R} -Vektorräume und sei $\mathcal{L}(V, W)$ der \mathbb{R} -Vektorraum der beschränkten (äquivalent: stetigen) linearen Abbildungen $f \colon V \to W$, versehen mit der zugehörigen Operatornorm $\|\cdot\|_{\mathcal{L}}$, gegeben durch

$$||f||_{\mathcal{L}} := \sup_{\|v\| \le 1} ||f(v)||.$$

Zeigen Sie, dass für alle $f \in \mathcal{L}(V, W)$ und alle $v \in V$ die Ungleichung

$$||f(v)|| \le ||f||_{\mathcal{L}} \cdot ||v||$$

gilt. Beweisen Sie auch die Identität

$$||f||_{\mathcal{L}} = \sup_{\|v\|=1} ||f(v)||.$$

Aufgabe 2 (Linearität der Ableitung)

Sei $U \subset \mathbb{R}^n$ offen und seien $f, g \colon U \to \mathbb{R}^m$ in $x_0 \in U$ (total) differenzierbar. Zeigen Sie, dass dann für $\alpha, \beta \in \mathbb{R}$ auch $\alpha f + \beta g \colon U \to \mathbb{R}^m$ in x_0 (total) differenzierbar ist mit

$$D(\alpha f + \beta g)(x_0) = \alpha Df(x_0) + \beta Dg(x_0).$$

Aufgabe 3

Beweisen Sie die Produktregel für partiell differenzierbare Funktionen $f,g\colon U\to \mathbb{R}$, wobei $U\subset \mathbb{R}^n$ offen:

$$\operatorname{grad}(f \cdot q) = q \cdot \operatorname{grad} f + f \cdot \operatorname{grad} q$$
.

Aufgabe 4

Zeigen Sie, dass die euklidische Norm $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto ||x||$, in $\mathbb{R}^n \setminus \{0\}$ stetig partiell differenzierbar ist mit

$$\frac{\partial f}{\partial x_i}(x) = \frac{x_i}{f(x)},\,$$

also grad $f(x) = \frac{x}{f(x)}$. Ist f auch partiell differenzierbar im Ursprung?

Aufgabe 5 (Laplace-Operator in Polarkoordinaten) Es sei $p: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}^2$ gegeben durch $p(r,\varphi) = (r\cos\varphi,r\sin\varphi)$. Sei weiter $U \subset \mathbb{R}^2$ offen und sei $u: U \to \mathbb{R}$ zweimal stetig partiell differenzierbar. Zeigen Sie, dass auf der offenen (!) Menge $p^{-1}(U)$ die Gleichung

$$(\Delta u) \circ p = \frac{\partial^2 (u \circ p)}{\partial r^2} + \frac{1}{r} \frac{\partial (u \circ p)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 (u \circ p)}{\partial \varphi^2}$$

gilt, wobei

$$\Delta := \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$$

der Laplace-Operator ist, also

$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \,.$$

Hinweis. Kettenregel und Vertauschungssatz für zweimal stetig partiell differenzierbare Abbildungen.