Präsenzübungen zur Vorlesung

Lineare Algebra II

Blatt 12

Wie in der Vorlesung sei stets $char(K) \neq 2$.

Aufgabe 1

Sei (V,q) ein quadratischer Raum. Zeigen Sie, das SO(V,q) eine Untergruppe von O(V,q) ist.

Aufgabe 2

Sei (V, q) ein n-dimensionaler quadratischer Raum und sei $s \in \text{End}(V)$ ein Endomorphismus von V. Sei weiter B eine Orthonormalbasis von (V, q). Zeigen Sie, dass s genau dann eine Isometrie von (V, q) ist, wenn die Koordinatenmatrix von s bezüglich B eine orthogonale Matrix ist.

Aufgabe 3

Sei (V,q) ein n-dimensionaler quadratischer Raum über \mathbb{R} . Zeigen Sie, dass q genau dann positiv definit ist, wenn gilt

$$q \simeq [1, \dots, 1]$$

(bzw.

$$q \simeq [a_1, \ldots, a_n]$$

mit reellen Zahlen $a_1, \ldots, a_n > 0$).

Aufgabe 4

Sei $A \in M_n(\mathbb{R})$ eine symmetrische Matrix. Es gebe eine Orthonormalbasis von \mathbb{R}^n bezüglich des kanonischen Skalarprodukts, die aus lauter Eigenvektoren von A besteht (tatsächlich ist das immer der Fall!). Seien $\alpha_1, \ldots, \alpha_n$ die Eigenwerte von A. Zeigen Sie, dass die von A vermittelte quadratische Form q_A genau dann positiv (semi-)definit ist, wenn sämtliche Eigenwerte positiv (nicht-negativ) sind (analog für negativ (semi-)definit). Zeigen Sie weiter, dass q_A genau dann indefinit ist, wenn es positive und negative Eigenwerte gibt.

Aufgabe 5

Zeigen Sie, dass auf dem \mathbb{R} -Vektorraum V=C([0,1]) der stetigen reellwertigen Funktionen $f\colon [0,1]\to \mathbb{R}$ auf dem kompakten Intervall [0,1] durch

$$q(f) := \int_0^1 f^2(x) dx$$

eine positiv definite quadratische Form gegeben ist. Wie lautet die Fortsetzung von q zu einer symmetrischen Bilinearform auf V explizit?