Präsenzübungen zur Vorlesung

Lineare Algebra II

Blatt 13

Aufgabe 1

Betrachten Sie den \mathbb{R}^3 als euklidischen Vektorraum bzgl. des kanonischen Skalarprodukts und wenden Sie das Gram-Schmidtsche Verfahren auf die folgende Basis an:

$$B = \left(\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\-1 \end{pmatrix} \right)$$

Aufgabe 2

Geben Sie eine orthogonale Diagonalisierung der reellen symmetrischen Matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in M_3(\mathbb{R})$$

an, bestimmen Sie also eine orthogonale Matrix $S \in O(3)$ mit $S^TAS = D$, wobei D eine Diagonalmatrix ist. Geben Sie auch D explizit an.

Aufgabe 3

Führen Sie die Hauptachsentransformation für die durch die quadratische Form

$$q(x,y) = 36x^2 + 24xy + 29y^2 = 180$$

definierte Ellipse im \mathbb{R}^2 durch.

Hinweis. Die zugehörige symmetrische Matrix ist $A = \begin{pmatrix} 36 & 12 \\ 12 & 29 \end{pmatrix} \in M_3(\mathbb{R}).$

Aufgabe 4

Überprüfen Sie die folgende relle symmetrische Matrix auf Definitheit (positiv/negativ/indefinit).

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 2 & 0 \\ -2 & 0 & -4 \end{pmatrix} \in M_3(\mathbb{R}).$$