Übungen zur Vorlesung

Lineare Algebra II

Blatt 1

Aufgabe 1

Sei

$$A = \begin{pmatrix} 11 & -18 & 9 \\ 6 & -10 & 6 \\ 0 & 0 & 2 \end{pmatrix} \in M_3(\mathbb{Q}).$$

Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie ein $S \in GL_3(\mathbb{Q})$, sodass $S^{-1}AS = D$ eine Diagonalmatrix ist. Wie sieht D explizit aus?

(4 Punkte)

Aufgabe 2

Es sei

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{Q}).$$

- (a) Bestimmen Sie ein $S \in GL_2(\mathbb{R})$, sodass $S^{-1}AS = D$ eine Diagonalmatrix ist.
- (b) Bestimmen Sie eine explizite Formel für A^n , wobei $n \in \mathbb{N}$.

Hinweis. Teil (b): Zeigen Sie zunächst, dass gilt $A^n = SD^nS^{-1}$.

(2+1 Punkte)

Aufgabe 3

Sei V ein n-dimensionaler K-Vektorraum und sei $f \in \text{End}(V)$ idempotent, d.h. es gilt $f^2 = f$. Zeigen Sie, dass gilt:

- (a) f kann nur die Eigenwerte 0 oder 1 haben.
- (b) f ist diagonalisierbar.

Hinweis. Teil (b): Beweisen Sie mit Hilfe der Dimensionsformel für lineare Abbildungen, dass V immer die (direkte) Summe der zwei möglichen Eigenräume ist, d.h.

$$V = \operatorname{Kern}(f) \oplus \operatorname{Kern}(f - id_V).$$

Es ist dabei natürlich möglich, dass ein Summand der Nullraum ist und f nur einen Eigenwert hat (z.B. hat f = 0 nur den Eigenwert 0 bzw. hat $f = id_V$ nur den Eigenwert 1). Zeigen Sie dazu, dass gilt $Bild(f) \subset Kern(f - id_V)$.

(1+2 Punkte)

Aufgabe 4

Sei $n \in \mathbb{N}$ und sei

$$\mathbb{R}[X]_{\leq n} := \{ f \in \mathbb{R}[X] \mid \operatorname{Grad}(f) \leq n \}$$

der (n+1)-dimensionale \mathbb{R} -Vektorraum der Polynome über \mathbb{R} vom Grad höchstens n mit geordneter Basis $(1,X,X^2,\ldots,X^n)$. Sei weiter $D\colon \mathbb{R}[X]_{\leq n}\to \mathbb{R}[X]_{\leq n}$ die lineare Fortsetzung der Zuordnungen $1\mapsto 0$ und

$$X^i \longrightarrow iX^{i-1}$$

für $1 \le i \le n$. Wir betrachten den Endomorphismus

$$\varphi := D^2 + D + id$$

von $\mathbb{R}[X]_{\leq n}$.

- (a) Bestimmen Sie die Koordinatenmatrix der linearen Abbildung φ bezüglich der geordneten Basis $(1, X, X^2, \dots, X^n)$ von $\mathbb{R}[X]_{\leq n}$.
- (b) Zeigen Sie, dass φ ein Isomorphismus ist.
- (c) Berechnen Sie das charakteristische Polynom χ_{φ} von φ .
- (d) Entscheiden Sie, für welche n der Endomorphismus φ diagonalisierbar ist.

Hinweis. Wie üblich ist $D^2 = D \circ D$ und $id: \mathbb{R}[X]_{\leq n} \to \mathbb{R}[X]_{\leq n}$ ist die identische Abbildung. Offenbar ist D die formale Derivation! Z.B. gilt $D(X^2 + X + 1) = 2X + 1$. Teil (b): Ist φ surjektiv? Verwenden Sie Ihr Ergebnis aus Teil (a).

(2+1+1+2 Punkte)