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Introduction

Biological evolution proceeds by the joint action of several elementary processes, the
most important ones being mutation, selection, recombination, migration, and genetic
drift. Their interaction is extremely complex and, as such, inaccessible to a mathematical
treatment. For the latter, one therefore has to narrow the focus to isolated combinations
of evolutionary objects and processes.

This thesis is concerned with population genetics, i.e., the study of the genetic struc-
ture of populations. We will consider two classes of models, which, together, comprise
three of the most important evolutionary factors. The first one focuses on mutation
and selection acting on a population of haploid, asexually reproducing individuals. The
second class takes a somewhat complementary point of view by modeling an aspect of re-
combination known as unequal crossover. This is one possible cause for gene duplication,
e.g., in rDNA sequences, and thus for the generation of redundancy on which mutation
can act to produce evolutionary innovation. In both cases, environmental and develop-
mental influences are neglected, and the individuals are taken to be fully described by
their genotypes, possibly only with respect to a single character or trait.

From a mathematical perspective, the aim of this thesis is not primarily the advance-
ment of a mathematical field but rather the fruitful application of those well-developed
theories that are needed to tackle the biological problems in question. Among these are
real, complex, and functional analysis, probability theory, as well as the theory of dif-
ferential equations. The latter comes into play through the general assumption of an
effectively infinite population size, that is, the exclusion of random genetic drift as an ad-
ditional evolutionary factor. This allows for a deterministic formulation of the dynamics
in terms of differential equations rather than by (stochastic) branching processes—which
are a natural description if one deals with finite populations, and are only considered
for conceptual purposes here. Furthermore, this thesis exclusively deals with the equilib-
rium behavior of the above models, which is described by eigenvalue equations of linear,
respectively quadratic operators.

The outline is as follows. Chapters I and II are concerned with mutation–selection mod-
els. In this framework, selection is understood as the enhanced reproduction of fitter
individuals at the cost of the less fit, where fitness is solely determined by the genotypes.
Mutation is a random change of type, which may be modeled either as taking place dur-
ing reproduction or as an independent process, going on in parallel. For a review and a
guide to the vast body of literature on the subject, see [Bür00, Baa00].

Certain models for coupled mutation and selection, in which genotypes are taken to be
sequences of fixed length and time proceeds in discrete steps, are formally equivalent to
a model of statistical physics, the two-dimensional Ising model [Leu86, Leu87]. However,
due to the complexity of the formalism employed to solve these, this relationship has
led to few new results, e.g., [Tar92, Fra97]. Quite recently, the corresponding models
with parallel mutation and selection in continuous time were observed to be analogous
to the one-dimensional quantum version of the Ising model [Baa97, Baa98, Her01]. For
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INTRODUCTION

the latter, rigorous solutions exist, which were applied to obtain expressions for the
equilibrium values of the main quantities of biological importance, namely the population
mean and variance of fitness and of the number of mutations in a sequence. The basis
is a simple maximum principle for the mean fitness, which corresponds to the minimum
principle of the free energy in statistical physics.

We have been able to generalize these results to models in which the genotypes are
taken from any large but finite set, and to more general mutation and fitness schemes.
The latter include quite diverse examples, ranging from a simple linear or quadratic de-
pendence of fitness on the genotype over smoothly varying genotype–fitness mappings,
such as those studied in [Cha90], to ones with sharp jumps, as in [Kon88, Eig89]. Fur-
thermore, all derivations remain within classical probability theory and analysis, without
reference to physics.

As an application, criteria could be given that determine whether a model exhibits
discontinuous changes in its equilibrium behavior when the mutation rate is varied. Such
phenomena have become known as error thresholds [Eig71]. The characterization of
models exhibiting such thresholds has been a long-standing problem, see, e.g., [Swe82,
Wie97]. For a more biologically interested audience, these results have been published in
[Her02], including an appendix describing the connection to physics. In Chapter I, they
are put together in a rigorous and condensed form for a mathematical readership.

Afterwards, Chapter II turns to another important class of mutation–selection mod-
els, the so-called continuum-of-alleles (COA) models, in which genotypes are taken from
a continuous set. These pay respect to the assumption that at a gene locus effectively
infinitely many alleles can be generated and every mutation results in a new allele, cf.
[Kim65]. The first part of the chapter relates the COA model to models with discrete
genotypes in describing an approximation procedure. Mathematically, this is a gener-
alization of standard methods of approximation theory to special cases of non-compact
operators. This treatment is necessary for the justification of numerical analysis, which is
inevitably discrete in nature, and it allows the transfer of results. In a second part, first
steps are taken towards a simple maximum principle for the mean fitness by generalizing
our findings for the models with discrete genotypes.

Finally, Chapter III is devoted to unequal crossover models recently introduced in
[Shp02] as modifications of previous models [Oht83, Wal87]. One considers the size
evolution of sequences that contain repeated units when the alignment of two recombining
sequences is possibly imperfect. This leads to a redistribution of the building blocks
among the participating sequences. For some of the conjectures in [Shp02], we are able
to give rigorous proofs, mainly concerning the convergence of the distribution of an infinite
population towards the known equilibria.

Throughout this thesis, the following notation will be used. Vectors and matrices are
denoted by bold symbols, e.g., p and M. Their components are referred to as, e.g., pi

and Mij, respectively. At some points, references to sections, equations, propositions,
etc. are necessary across chapter boundaries. In these cases, the roman chapter number
is prepended, e.g., Section I.3.4 and (I.30).
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I

Mutation–selection models

This chapter and the following are concerned with models for mutation and selection, in
which effects of other evolutionary forces are neglected. These models are introduced in
Section 1 on a general basis. Afterwards, for the rest of this chapter, we restrict ourselves
to the case that individuals are characterized by genotypes from a large but finite set.
Section 2 introduces the specific model under consideration and connects it to a multitype
branching process, both forward and backward in time. The latter direction gives rise to
the definition of the distribution of ancestors, which will play an important role in the
sequel. In Section 3, the main results, which allow for a simple characterization of the
equilibrium population, are formulated, proved, and discussed. As an application, Section
4 treats threshold phenomena that may occur when the mutation rates are varied, such
as the well-known error threshold. Chapter II is then devoted to so-called continuum-
of-alleles (COA) models, in which the genotypes are characterized by the elements of
a continuous set, such as R or the interval [0, 1]. As a general reference for mutation–
selection models, Bürger’s book [Bür00] is recommended.

1 The general model

We consider the evolution of an effectively infinite population of haploid1 individuals
subject to mutation and selection. Disregarding environmental effects, we take individuals
to be fully described by their genotypes, which are labeled by the elements of some set
Γ endowed with a positive σ-finite measure ν (usually the Haar measure). This set may
either be finite, Γ = {1, . . . , M}, with ν being the counting measure, or an interval
Γ ⊂ R equipped with the Lebesgue measure. The set Γ may be taken either as the
whole genome, or as the genomic basis of a specific trait or function (i.e., an observable
phenotypical property). We will describe the population at time t by a probability density
on Γ , i.e., an integrable function p(t) ∈ L1(Γ, ν) with p(t) ≥ 0 and

∫
Γ

p(x, t) dν(x) = 1.2

Throughout this and the following chapter, we will use the formalism for overlapping
generations, which works in continuous time, and only comment on extensions to the
analogous model for subsequent generations in discrete time. The standard equation
that describes the evolution of the density p(t) is, cf. [Kim65] and [Bür00, (IV.1.3)],

ṗ(x, t) =
(
r(x)− r̄(t)

)
p(x, t) +

∫

Γ

(
u(x, y) p(y, t)− u(y, x) p(x, t)

)
dν(y) . (1)

1Diploid individuals without dominance may be described by the same formalism since the reproduc-
tion rate of an allele combination is additive with respect to both alleles, compare [Bür00, Sec. III.2.1].

2For a treatment of the general case of arbitrary locally compact spaces Γ and the description in
terms of probability measures, see [Bür00, Sec. IV].
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I. MUTATION–SELECTION MODELS

Here, r(x) is the Malthusian fitness, or (effective) reproduction rate, of type x ∈ Γ ,
which is connected to the respective birth and death rates as r(x) = b(x) − d(x), and
r̄(t) =

∫
Γ

r(x) p(x, t) dν(x) designates the mean fitness. The mutation rates and the
distributions of mutant types are given by u, where u(x, y) corresponds to a mutation
from type y to x, and the dot denotes the time derivative ∂/∂t.

In this model, mutation and selection are assumed to be independent processes, going
on in parallel. However, mutation may also be viewed as occuring during reproduction.
In this case, we have u(x, y) = v(x, y) b(y), where v(x, y) gives the respective mutation
probability during a reproduction event and the distribution of mutants. Since, formally,
this leads to the same type of model, it will not be discussed separately.

2 The model with discrete genotypes

2.1 Deterministic description

Let us, for the rest of this chapter, turn exclusively to the model with discrete genotypes,
for which Γ = {1, . . . , M}. Here, we identify the population density p(t) with a vector
p(t) = (pi(t))1≤i≤M , which reflects the canonical coordinatization. The evolution equation
(1) becomes the following system of ordinary differential equations, cf. [Cro70, Hof85],

ṗi(t) =
(
Ri − R̄(t)

)
pi(t) +

∑
j

(
mij pj(t)−mji pi(t)

)
. (2)

For reasons that will become clear in Section 2.6, we use capital letters for the reproduc-
tion rates Ri here. Further, we write mij for the mutation rate from type j to i.3

For some of the main results of this chapter, further assumptions on the mutation
scheme are required. To this end, we collect genotypes into classes Xk of equal fitness,
0 ≤ k ≤ N , and assume mutations only to occur between neighboring classes. Let Rk

denote the fitness of class k and U±
k the mutation rate from class Xk to Xk±1 (i.e., the total

rate for each genotype in Xk to mutate to some genotype in Xk±1), with the convention
U−

0 = U+
N = 0. Thus, we obtain a variant of the so-called single-step mutation model,

ṗk(t) =
(
Rk − R̄(t)− U+

k − U−
k

)
pk(t) + U+

k−1 pk−1(t) + U−
k+1 pk+1(t) . (3)

(Here, the convention p−1(t) = pN+1(t) = 0 is used.) We can, for example, think of X0

as the (mutation-free) wildtype class with maximum fitness and fitness only depending
on the number of mutations carried by an individual. If, further, mutation is modeled
as a continuous process (or if multiple mutations during reproduction can be ignored),
Equation (2) reduces to (3), with an appropriate choice of mutation classes. Depending
on the realization one has in mind, the Uk then describe the total mutation rate affecting
the whole genome or just the trait or function under consideration.

In most of our examples, we will use the Hamming graph as our genotype space. Here,
genotypes are represented as binary sequences s = s1s2 . . . sN ∈ {+,−}N , hence M = 2N .

3Generally throughout this thesis, I use this index convention, which is the transposed of what is
common for Markov processes but more natural in the context of differential equations.

2



2. THE MODEL WITH DISCRETE GENOTYPES

+ −
(1 + κ)µ

(1− κ)µ

Figure 1: Rates for mutations and back mutations at each site or locus of a biallelic sequence.

The two possible values at each site, + and −, may be understood either in a molecular
context as nucleotides (purines and pyrimidines) or, on a coarser level, as wildtype and
mutant alleles of a biallelic multilocus model. We will assume equal mutation rates at
all sites, but allow for different rates, (1 + κ)µ and (1− κ)µ, for mutations from + to −
and for back mutations, respectively, according to the scheme depicted in Figure 1. Here,
µ ≥ 0 describes the overall mutation rate and κ ∈ [−1, 1] is an asymmetry parameter.

Clearly, the biallelic model reduces to a single-step mutation model (with the same
N) if the fitness landscape4 is invariant under permutation of sites. To this end, we
distinguish a reference genotype s+ = + + . . . +, in most cases the wildtype, and assume
that the fitness Rs of sequence s depends only on the Hamming distance k = dH(s, s+)
to s+ (i.e., the number of mutations, or ‘−’ signs in the sequence). The resulting total
mutation rates between the Hamming classes Xk and Xk±1 read

U+
k = (1 + κ) µ (N − k) and U−

k = (1− κ) µ k (4)

if mutation is assumed to be an independent process at all sites. We usually have the
situation in mind in which fitness decreases with k and will therefore speak of U+

k and
U−

k as the deleterious and advantageous mutation rates. However, monotonic fitness is
never assumed, unless this is stated explicitly.

In much of the following, we will treat the general model (2), which builds on single
genotypes, and the single-step mutation model (3), in which the units are genotype
classes, with the help of a common formalism. To this end, note that both models can be
recast into the following general form using matrices of dimension M , respectively N +1:

ṗ(t) =
(
H − R̄(t)1

)
p(t) . (5)

Here, 1 is the identity. The matrix H = R + M is composed of a diagonal matrix R
that holds the Malthusian fitness values, and the mutation matrix M = (Mij) with either
off-diagonal entries reading mij, or with U±

k on the secondary diagonals. The diagonal
elements in each case are Mii = −∑

j 6=i Mji, hence the column sums vanish, i.e., M is a
Markov generator. Where the more restrictive form of the single-step model is needed,
this will be stated explicitly. Unless we talk about unidirectional mutation (U−

k ≡ 0 for
the single-step mutation model), we will always assume that M is irreducible (i.e., each
entry is non-zero for a suitable power of M ).

Let now T (t) := exp(tH), with matrix elements Tij(t). Then, the solution of (5) is
given by (see, e.g., [Bür00, Sec. III.1])

p(t) =
T (t)p(0)∑

i,j Tij(t)pj(0)
, (6)

4We use the notion of a fitness landscape [Kau87] as synonymous with fitness function for the mapping
from genotypes to individual fitness values.
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I. MUTATION–SELECTION MODELS

as can easily be established by using
∑

i,j Hijpj(t) =
∑

i Ripi(t) = R̄(t) and differenti-

ating.5 Due to the irreducibility, the population vector converges to a unique, globally
stable equilibrium distribution p := limt→∞ p(t) with pi > 0 for all i, which describes
mutation–selection balance (cf., e.g., [Bür00, Sec. IV.2]). By the Perron–Frobenius theo-
rem (compare [Sch74, Sec. I.6] or [Gan86, Sec. 13.2]), p is the (right) eigenvector corre-
sponding to the largest eigenvalue, λmax, of H . (Strictly speaking, if there are negative
fitness values, we have to add a suitable constant C to all fitness values to make H posi-
tive, i.e., all its entries non-negative. Then, λmax is given by the spectral radius of H +C,
which is its largest eigenvalue, minus C.) For unidirectional mutation, the equilibrium
distribution p is in general not unique, see the discussion in Section 3.2.

2.2 The corresponding branching process

Our approach will heavily rely on genealogical relationships, which contain more detailed
information than the time evolution of the relative frequencies (6) alone. On the next
pages, we therefore reconsider the mutation–selection model as a branching process.6

We consider the process of mutation, reproduction and death as a (continuous-time)
multitype branching process, as described previously for the discrete-time variant of the
so-called quasispecies model, i.e., the analogous model with mutation coupled to repro-
duction [Dem85, Hof88, Ch. 11.5]. Let us start with a finite population of individuals,
each described by an element i of a finite set Γ , that reproduce (at rates Bi), die (at rates
Di), or change type (at rates Mij) independently of each other, without any restriction
on population size. Let Yi(t) be the random variable denoting the number of individuals
of type i at time t, and ni(t) the corresponding realization; collect the components into
vectors Y , n ∈ N0

Γ , and let ei be the i-th unit vector. The transition probabilities
for the joint distribution, Pr

(
Y (t) = n(t) | Y (0) = n(0)

)
, which we will abbreviate as

Pr
(
n(t) | n(0)

)
by abuse of notation, are governed by the differential equation7

d

dt
Pr

(
n(t) | n(0)

)
=− (∑

i

(Bi + Di +
∑

j 6=i

Mji) ni(t)
)
Pr

(
n(t) | n(0)

)

+
∑

i

Bi

(
ni(t)− 1

)
Pr

(
n(t)− ei | n(0)

)

+
∑

i

Di

(
ni(t) + 1

)
Pr

(
n(t) + ei | n(0)

)

+
∑
i,j
i6=j

Mij

(
nj(t) + 1

)
Pr

(
n(t)− ei + ej | n(0)

)
.

(7)

5Alternatively, one may apply Thompson’s trick [Tho74] and consider q(t) = exp(
∫ t

0
R̄(τ) dτ)p(t), for

which the linear equation q̇(t) = Hq(t) and thus q(t) = T (t)p(0) holds.
6Whereas these considerations are crucial for a deeper understanding of the results of this chapter

and make clear the terminology used, they are a detour from a technical point of view. The impatient
reader may therefore directly proceed to Section 2.3, which contains a summary of the main quantities
and notation introduced.

7Note that differentiability of the transition probabilities is guaranteed in a finite-state, continuous-
time Markov chain, provided the transition rates are finite, cf. [Kar75, Ch. 4] and [Kar81, Ch. 14].
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2. THE MODEL WITH DISCRETE GENOTYPES

t t + τ t t + τ

Figure 2: The multitype branching process. Individuals reproduce (branching lines), die
(ending lines), or mutate (lines changing type) independently of each other; the various types
are indicated by different line styles. Left: The fat lines mark the clone founded by a single
individual (bullet) at time t. Right: The fat lines mark the lines of descent defined by three
individuals (bullets) at time t + τ . After coalescence of two lines, their ancestor receives twice
the ‘weight’, as indicated by extra fat lines.

The connection of this stochastic process with the deterministic model described in
Section 2.1 is twofold. Firstly, in the limit of an infinite number of individuals (i.e.,
n :=

∑
i ni(0) → ∞), the sequence of random variables Y (n)(t)/n converges almost

surely to the solution y(t) of ẏ = Hy with initial condition y(0) = n(0)/n [Eth86, Thm.
11.2.1], Pr

(
limn→∞ Y (n)(t)/n = y(t)

)
= 1. (The superscript (n) denotes the dependence

on the number of individuals.) The connection is now clear since p(t) := y(t)/
∑

i yi(t)
solves the mutation–selection equation (2).

Secondly, taking expectations of Yi and marginalizing over all other variables, one
obtains the differential equation for the conditional expectations

d

dt
E

(
Yi(t) | n(0)

)
= (Bi −Di)E

(
Yi(t) | n(0)

)

+
∑

j

[
MijE

(
Yj(t) | n(0)

)−MjiE
(
Yi(t) | n(0)

)]
.

(8)

Clearly, the matrix H appears as the (infinitesimal) generator here, and the solution is
given by T (t) n(0), where T (t) := exp(tH) is the corresponding positive semigroup (see
also [Hof88, Ch. 11.5]). In particular, we have E

(
Yi(t) | ej

)
= Tij(t) for the expected

number of i-individuals at time t, in a population started by a single j-individual at time
0 (a ‘j-clone’). In the same way, Tij(τ) is the expected number of descendants of type i at
time t + τ in a j-clone started at an arbitrary time t, cf. the left panel of Figure 2. (Note
that, due to the independence of individuals and the Markov property and homogeneity
of the process on the ‘large’ state space N0

Γ , the progeny distribution depends only on
the age of the clone, and on the founder type.) Further, the expected total size of a
j-clone of age τ , irrespective of the descendants’ types, is

∑
i Tij(τ).

Initial conditions come into play if we consider the reproductive success of a clone
relative to the whole population. A population of independent individuals, with initial
composition p(t), has expected mean clone size

∑
i,j Tij(τ)pj(t) at time t + τ (here, t

always means ‘absolute’ time, whereas τ denotes a time increment). The expected size
of a single j-clone at time t + τ , relative to the expected mean clone size of the whole

5



I. MUTATION–SELECTION MODELS

population, then is

zj(τ, t) :=
∑

i

Tij(τ)/
∑

k,`

Tk`(τ) p`(t) . (9)

The zj express the expected relative success of a type after evolution for a time interval
τ in the sense that, if zj(τ, t) > 1 (< 1), we can expect the clone to flourish more (less)
than average (this does in general not mean that type j is expected to increase (decrease)
in abundance relative to the initial population). Clearly, the values of the zj depend
on the fitness of type j, but also on its mutation rate and the fitness of its (mutated)
offspring. (If there is only mutation, but no reproduction or death, one has a Markov
chain even on the ‘small’ state space Γ and zj(τ, t) ≡ 1.)

We now consider lines of descent, as in the right panel of Figure 2. To this end, we
randomly pick an individual alive at time t + τ , and trace its ancestry back in time; this
results in an unbranched line (in contrast to the lineage forward in time). Let Zt+τ (t)
denote the type found at time t ≤ t+τ , where we will drop the index for easier readability.
We seek its probability distribution Pr

(
Z(t) = j

)
. Since the (relative) clone size zj(τ, t)

also determines the expected (relative) frequency of lines present at time t+τ that contain
a j-type ancestor at time t, we have

Pr
(
Z(t) = j

)
= zj(τ, t) pj(t) =: aj(τ, t) . (10)

The aj(τ, t) define a probability distribution (
∑

j aj(τ, t) ≡ 1), which will be of major
importance, and may be interpreted in two ways. Forward in time, aj(τ, t) is the frequency
of j-individuals at time t, weighted by their relative number of descendants after evolution
for some time τ . Looking backward in time, aj(τ, t) is the fraction of the (p-distributed)
population at time t + τ whose ancestor at time t is of type j. We shall therefore refer
to a(τ, t) as the ancestral distribution at the earlier time, t.

Let us, at this point, expand a little further on this backward picture by explicitly
constructing the time-reversed process. This is done in the usual way, by writing the joint
distribution of parent–offspring pairs (i.e., pairs Z(t) and Z(t + τ)) in terms of forward
and backward transition probabilities. On the one hand,

Pr
(
Z(t + τ) = i, Z(t) = j

)
= Pr

(
Z(t + τ) = i | Z(t) = j

)
Pr

(
Z(t) = j

)

= Pij(τ) aj(τ, t) .
(11)

Here, the Pij(τ) := Pr
(
Z(t + τ) = i |Z(t) = j

)
may be obtained by rewriting the (condi-

tional) expectations defining the (forward) branching process as Tij(τ) = Pij(τ)
∑

k Tkj(τ),
which gives

Pij(τ) = Tij(τ)/
∑

k

Tkj(τ). (12)

On the other hand,

Pr
(
Z(t + τ) = i, Z(t) = j

)
= Pr

(
Z(t) = j | Z(t + τ) = i

)
Pr

(
Z(t + τ) = i

)

= P̃ji(τ, t) pi(t + τ) ,
(13)

where P̃ji(τ, t) := Pr
(
Z(t) = j | Z(t + τ) = i

)
is the transition probability of the time-

reversed process and is obtained as P̃ji(τ, t) = aj(τ, t)Pij(τ)
(
pi(t + τ)

)−1
from (11) and

6



2. THE MODEL WITH DISCRETE GENOTYPES

(13). With Equations (9), (10), and (12), one therefore obtains the elements of the
backward transition matrix P̃ as

P̃ji(τ, t) = pj(t)
Tij(τ)∑

k,` Tk`(τ) p`(t)

(
pi(t + τ)

)−1
. (14)

By differentiating P̃ (τ, t) with respect to τ and evaluating it at τ = 0, one obtains
the matrix Q(t) governing the corresponding backward process in continuous time. Its

elements read Qji(t) = d
dτ

P̃ji(τ, t)
∣∣
τ=0

= pj(t)
(
Hij − δijR̄(t)

)(
pi(t)

)−1 − δij ṗi(t)/pi(t).
Using (5) this simplifies to

Qji(t) =

{
pj(t)Hij

(
pi(t)

)−1
for i 6= j,

−∑
k 6=i pk(t)Hik

(
pi(t)

)−1
for i = j.

(15)

Note that the backward process is, in general, state-dependent (it does not represent a
Markov chain). Note also that time reversal works in the same way if sets of types Xk

instead of single types are considered, as long as mutation and reproduction rates are the
same within classes. Furthermore, an analogous treatment is possible both for mutation
coupled to reproduction, as well as for subsequent generations.

As to the asymptotic behavior of our branching process, it is well-known that, for
irreducible H and t → ∞, the time evolution matrix exp

(
t(H − λmax1)

)
becomes a

projector onto the equilibrium distribution p, with matrix elements pizj (e.g., [Kar81,
App.]). Here, z is the Perron–Frobenius (PF) left eigenvector of H , normalized such
that

∑
i zipi = 1. As suggested by our notation, one also has

lim
t,τ→∞

z(τ, t) = z , (16)

which follows from (9).8 We therefore term zi the relative reproductive success of type i.
The stationary backward process is governed by the matrix Qji = pj

(
Hij−δijλmax

)
p−1

i ,
which can now be interpreted as a Markov generator. Further, the (asymptotic) ancestral
distribution, given by ai = zipi, turns out to be the equilibrium distribution of the back-
ward process, since

∑
i Qjiai =

∑
i pj(Hij − δijλmax)p

−1
i zipi =

∑
i pjzi(Hij − δijλmax) = 0.

Due to ergodicity of the latter (Q is irreducible if H is), a is, at the same time, the
distribution of types along each line of descent (with probability 1).

2.3 The equilibrium ancestral distribution

As we saw in Section 2.2, there is a simple link between the algebraic properties of H
and the probabilistic structure of the mutation–selection process at equilibrium, which

8Both z and p also admit a more stochastic interpretation. If the population does not go to extinction,
one has limt→∞ Yi(t)/

∑
j Yj(t) = pi almost surely, see [Ath72, Thm. V.7.2], which is the continuous-time

analog of the Kesten–Stigum theorem for discrete time [Kes66, Kur97]. Further, for the critical process
generated by H−λmax1, one has limt→∞ t Pr

(
Y (t) 6= 0 |Y (0) = ej

)
= zj/C, where C is a constant, and

limt→∞ 1
t E

(
Yi(t) | Y (0) = ej ,Y (t) 6= 0

)
= Cpi; this is the continuous-time analog of a result by Jagers

[Jag75, p. 94]. Note that, in the long run, the expected number of offspring depends on the founder type
only through the probability of nonextinction of its progeny.
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Figure 3: Equilibrium values of population frequencies pk (dotted line), ancestral frequencies
ak (dashed line), and relative reproductive success zk (solid line) for the biallelic model with
additive fitness Rk = γ (N − k) (where γ is the loss in reproduction rate due to a single
mutation), point mutation rate µ = 0.2γ, mutation asymmetry parameter κ = 1

2 , and sequence
length N = 100. The logarithmic right axis refers to the zk only.

may be summarized as follows. The PF right eigenvector p (with
∑

i pi = 1) determines
the composition of the population at mutation–selection balance; the corresponding left
eigenvector z (normalized so that

∑
i zipi = 1) contains the asymptotic offspring expecta-

tion (or relative reproductive success) of the various types; and the ancestral distribution,
defined by ai = pizi, gives the asymptotic distribution of types that are met when lines
of descent are followed backward in time (cf. Figure 2). Figure 3 shows p, a, and z for a
single-step mutation model with linear fitness. One sees that zk decreases exponentially.

For the single-step mutation model, we may directly transform the eigenvalue equation
Hp = λmaxp into an equation for a. To this end, we define a diagonal transformation

matrix S with non-zero elements Skk =
∏k

`=1

√
U−

` /U+
`−1 and obtain a symmetric matrix

by H̃ := SHS−1. The corresponding PF right and left eigenvectors are given by p̃ = Sp
and z̃ = S−1z. But now, as H̃ is symmetric, we have z̃ ∼ p̃ (where ∼means proportional
to). Hence, due to ak = zkpk = z̃kp̃k ∼ p̃2

k, one has p̃k ∼
√

ak . Thus, we obtain the

following explicit form of the eigenvalue equation for H̃ :

(
Rk − U+

k − U−
k

)√
ak +

√
U+

k−1U
−
k

√
ak−1 +

√
U+

k U−
k+1

√
ak+1 = λmax

√
ak . (17)

Note that (17) relates the mean fitness of the equilibrium population (R̄ = λmax) to the
ancestral frequencies ak.

This property of the single-step mutation model, that there is a diagonal transfor-
mation matrix which symmetrizes the matrix H and makes it interpretable in terms of
the ancestral distribution, will be crucial for the derivation of the main results of this
chapter. In the next chapter, it will be generalized to continuous genotype spaces, for
which it will find a similarly useful application.
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2.4 Observables and averages

Now, we define the observables, i.e., quantities that can (in principle) be measured, which
are used to describe the population. Besides the usual population mean, we shall also
introduce the mean with respect to the ancestral distribution (see the Section 2.3).

We will consider means and variances of two observables. These are, for each type (or
class) i, its fitness value Ri and its mutational distance Xi from the reference genotype
(or the class X0). For the biallelic model in particular, mutational distance corresponds
to the Hamming distance to s+. If, in addition, this is the fittest type, Xi just gives the
number of deleterious mutations. But in general it can also be used to describe the value
of any additive trait with equal contributions of sites or loci. Similarly, for single-step
mutation, we define Xk to be the distance from the class X0, thus Xk = k for class Xk.
Again, Xk may be viewed as (the genetic contribution to) any character with discrete
values that depends linearly on the mutation classes.

Representing an arbitrary observable as (Oi), such as (Ri) or (Xi), we will denote its
population average as

Ō(t) :=
∑

i

Oi pi(t) . (18)

By omission of the time dependence we will indicate the equilibrium average (with respect
to the unique distribution p, cf. the end of Section 2.1).

As to mean fitness, R̄(t) determines the mutation load , L(t) := Rmax − R̄(t). Here,
Rmax = maxi Ri is the fitness of the fittest genotype, in line with the usual convention
(see, e.g., [Ewe79, Bür00]). It is well-known that the equilibrium value R̄ := limt→∞ R̄(t)
is given by the largest eigenvalue, λmax, of H .

For the variance of fitness, VR(t) =
∑

i(Ri− R̄(t))2 pi(t), we differentiate R̄(t) accord-
ing to (2), i.e., d

dt
R̄(t) =

∑
i Riṗi(t) = VR(t) +

∑
i,j RiMijpj(t), and hence

VR(t) =
d

dt
R̄(t)−

∑
i,j

RiMijpj(t) =
d

dt
R̄(t) +

∑
j

( ∑
i

(Rj −Ri)Mij

)
pj(t) . (19)

The interpretation of this completely general formula is as follows: In absence of mutation,
(19) just reproduces Fisher’s Fundamental Theorem, i.e., the variance of fitness equals the
change in mean fitness, as long as there is no dominance (see, e.g., [Ewe79]). If mutation is
present, however, a second component emerges, which is given by the population mean of
the mutational effects on fitness (see below for a definition), weighted by the corresponding
rates. It may be understood as the rate of change in mean fitness due to mutation alone.
At mutation–selection balance, this second term is obviously the only contribution.

For the single-step mutation model in particular, we can define deleterious and advan-
tageous mutational effects separately as s+

k = Rk−Rk+1 and s−k = Rk−1−Rk, respectively.
For decreasing fitness values (which is the usual case, but not strictly presupposed here)
these are positive. This way we obtain

VR = s+U+ − s−U− = s+ U+ − s− U− + Cov(s+, U+)− Cov(s−, U−) (20)

for the equilibrium variance, a result we will rely on in the following.

9



I. MUTATION–SELECTION MODELS

Analogously, we define the population mean, X̄(t) =
∑N

i=0 Xi pi(t), and variance,
VX(t) =

∑
i(Xi − X̄(t))2 pi(t), of the mutational distance.

We will also need the average of our observables with respect to the ancestral distribu-
tion defined in (10), Ô(τ, t) :=

∑
i Oi ai(τ, t) =

∑
i zi(τ, t) Oi pi(t), the ancestral average.

In the following, we will only be concerned with the ancestral distribution in equilibrium,
i.e., with both t and τ going to infinity. For irreducible M, this is given by

Ô :=
∑

i

Oi ai =
∑

i

zi Oi pi . (21)

These averages may be read forward in time (corresponding to a weighting of the current
population with expected offspring numbers), and backward in time (corresponding to
an averaging with respect to the distribution of the ancestors). A third interpretation
is available if M is irreducible, which entails that the equilibrium backward process
defined by Q is ergodic (see the end of Section 2.2). Then, with probability 1, the
equilibrium ancestral average also coincides with the average of the observable over a
lineage backwards in time by Birkhoff’s ergodic theorem.

Note that the information so obtained is not contained in the population average,
which is merely a ‘time-slice’ average. The ancestral mean adds a time component to
the averaging procedure, which provides extra information on the evolutionary dynam-
ics. In [Her02, App. A] it is shown that the ancestral averaging coincides with the way
observables are evaluated in a system of quantum statistical mechanics.

2.5 Linear response and mutational loss

We now come to another interpretation of the equilibrium ancestral frequencies intro-
duced in Section 2.2. Consider the derivative of the equilibrium mean fitness with respect
to the i-th fitness value in a general system of parallel mutation and selection (2),

∂R̄

∂Ri

=
∂

∂Ri

(∑

j,k

zjHjkpk

)
= ai + R̄

∂

∂Ri

(∑
j

zjpj

)
= ai . (22)

Here, we made use of the normalization condition
∑

j zjpj =
∑

j aj ≡ 1. The ancestral
frequency ai therefore measures the linear response (or sensitivity) of the equilibrium
mean fitness to changes in the i-th fitness value.9 A similar calculation for the response
to changes in the mutation rates results in

∂R̄

∂Mij

= (zi − zj) pj . (23)

Using (22) and (23), we can express the equilibrium mean fitness as

R̄ = R̂ +
∑
i,j

ziMijpj =
∑

i

Ri
∂R̄

∂Ri

+
∑
i,j

Mij

∂R̄

∂Mij

. (24)

9If mutation is coupled to reproduction, the linear response to variations in the death rate Di is given
by −ai.
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Let us give a variational interpretation for the ancestral mean fitness as well. To this
end, we define a quantity G as the difference of ancestral and population mean fitness
in equilibrium. Assume now that we change all mutation rates Mij by variations in a
common factor µ. From (24) and (22) we then find that the mutational loss relates to
the linear response of the equilibrium mean fitness to changes in the mutation rates as

G := R̂− R̄ = −µ
∂R̄

∂µ
. (25)

Actually, this relation holds for arbitrary (haploid) mutation–selection systems, in par-
ticular also if mutation and reproduction are coupled (in which case the mutation rates
are replaced by mutation probabilities).

There is a second line of interpretation, which clarifies the role of G in the equilibrium
dynamics. If an individual mutates from j to i, its offspring expectation changes by
zj − zi, where the sign determines whether a loss (+) or gain (−) is implied. Since the
mutational flow from j to i in equilibrium is Mij pj, the entire system loses offspring at
rate

∑
i,j(zj − zi) Mij pj, which is the same as G (compare with (24)). Hence, we refer to

G as the mutational loss of the system.
The mutational loss does not include any information about the destination of the

‘lost’ offspring. This, however, may easily be found by recalling that, asymptotically,
every ancestor of type i leaves a fraction of zipj descendants of type j in the equilibrium
population. Furthermore, pi(zi − 1) = ai − pi is the excess offspring produced by an
i-individual. We thus come to a picture of a constant flow of mutants from the ancestors
to the equilibrium population.

2.6 Three limiting cases

For many of the results and all examples, we will restrict our treatment to the case of the
single-step mutation model as described by (3). Although most results do not depend on
this particular choice, we will, for simplicity, concentrate on this scheme here, and only
briefly mention possible extensions. Some discussion of this model with respect to its
approximation of ‘real’ biological systems is given in [Her02, Sec. 2.6].

Our primary aim in the following section is to establish simple relations for the equi-
librium means and variances of mutational distance and fitness. Whereas these relations
are, in general, approximations, they hold as exact identities in three limiting cases. All
three are biologically meaningful by themselves, and two of them are indeed well studied.

For a consistent treatment, it will be advantageous to think of the fitness values
and mutation rates as being determined by the mutational distance per class (or site),
xk := Xk/N = k/N ∈ [0, 1],

Rk = Nrk = Nr(xk) , U±
k = Nu±k = Nu±(xk) . (26)

Here, also rk and u±k are introduced as fitness and total mutation rates per class. They
can now be thought of as being defined, without loss of generality, by three functions
r and u± on the compact interval [0, 1]. We will refer to r as the fitness function, and
to u+ and u− as the (deleterious and advantageous) mutation functions of the model.

11



I. MUTATION–SELECTION MODELS

Both u+ and u− are assumed to be continuous and positive, with boundary conditions
u−(0) = u+(1) = 0, and r to be bounded from above and to have at most finitely
many discontinuities, being either left or right continuous at each discontinuity in ]0, 1[.
Furthermore, at each point x of discontinuity of r, we assume r(x) to be the larger of
the left- and right-sided limit values, respectively r(0) ≥ r(0+) and r(1) ≥ r(1−) at the
interval boundaries. (Here, −∞ is explicitly allowed for the lower value.) This should
include all biologically relevant examples. For the biallelic model, the mutation functions
are simple linear functions of x,

u+(x) = µ(1 + κ)(1− x) , u−(x) = µ(1− κ)x . (27)

Note that the classical stepwise mutation model [Oht73] is not covered by this framework,
since its genotype space Z is inherently non-compact. However, if it has a proper (i.e.,
non-zero) equilibrium genotype distribution, it may be approximated by a model with
finitely many genotypes, and thus, indirectly, the above procedure applies.

The first exact limiting case is given by unidirectional mutation, defined as u− ≡ 0 in
our model. The second one is the linear case, in which fitness and mutation rates depend
linearly on some trait Yk = Nyk = Ny(xk) with y(0) = 0 and y(1) = 1, such as

r(x) = r0 − αy(x) , u+(x) = β+(1− y(x)) , u−(x) = β−y(x) , (28)

with strictly positive constants β±. Note that, if y(x) is equal to the mutational distance
x, the fitness function is linear and the mutation functions u± reproduce the mutation
scheme of the biallelic model if β± = (1±κ)µ. This case can be understood as the limit of
vanishing epistasis, in which the system is known as the Fujiyama model in the sequence
space literature, cf. [Kau93].

The third case is the limit of an infinite number of mutation classes, N →∞, which we
will call mutation class limit for short. In the case of the biallelic multilocus model, this
limit has been used and discussed in [Baa01]. Biologically, it addresses the situation of
weak or almost neutral mutations, where the average mutational effect (over the mutation
classes) is small compared to the mean total mutation rate, U À s. The limit further
assumes that differences in mutation rate between neighboring (pairs of) classes are small
compared to the mean rate itself. In this case, genetic change by mutation proceeds
in many steps of small average effect and the model is a genuine multi-class model in
the sense that typically a large number of classes are relevant in mutation–selection
equilibrium. Note that only the average mutational effect must be small; this allows for
single steps with much larger effect (such as in truncation selection, see Figure 10).

Technically, the limit N → ∞ is performed such that the mutational effects s± and
the fitness values and mutation rates per class, r and u±, remain constant. If fitness
values and mutation rates are defined by the three functions r and u± as described above
(26), increasing N simply leads to finer ‘sampling’ of these functions.

With this kind of scaling, the means and variances per class of the observables defined
in Section 2.4 approach well defined limits (cf. Section 3), which then serve as approxi-
mations for the original model with finite N. We will denote them by the corresponding
lower case letters, i.e., r̂ := R̂/N , vX := VX/N , etc.; an additional subscript will indicate
the limit value, e.g., x̄∞ := limN→∞ x̄. Note that it is, in general, the variance per class

12
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of a given quantity that is meaningful in this limit, not the variance of the quantity per
class (e.g., Var(X/N)), which tends to zero (cf. Section 3.6). The described limit is the
biological analog of the thermodynamic limit in statistical mechanics. It is, however, sub-
stantially different from the so-called infinite-sites limit, in which the stepwise mutation
model is obtained. Both issues are discussed in [Her02, App. A, Sec. 2.7].

Another point worth mentioning is that, for the mutation class limit, no limiting
model exists. Although the limiting genotype space is a compact interval, one may not
define a sensible continuum-of-alleles (COA) model because, in the limit, the mutant
distributions concentrate on the source genotype. Nevertheless, a model with a finite
number of genotypes may approximate a COA model (and vice versa), as discussed in
the next chapter.

3 Results for means and variances of observables

This section is devoted to our main findings for the single-step mutation model, which
are summarized in Section 3.1. The proofs and a more extended discussion are postponed
to Sections 3.2–3.6. Section 3.7 then contains some remarks about the accuracy of these
results for models not among the exact limiting cases described in Section 2.6.

3.1 Statement of the results

Let us start by recollecting the main definitions and assumptions from Section 2. We
think of the system as being defined by a fitness function r : [0, 1] → R, mutation func-
tions u± : [0, 1] → R≥0, and the number of mutation classes, N. Here, r is assumed to
have at most finitely many discontinuities, being either left or right continuous at each
discontinuity x ∈ ]0, 1[, with r(x) = max{r(x−), r(x+)}, and satisfying r(0) ≥ r(0+),
r(1) ≥ r(1−).10 Further, u± are taken to be continuous and positive, with boundary
conditions u−(0) = u+(1) = 0. The trait values are defined as xk = k/N (0 ≤ k ≤ N).

Then, the population frequencies are given by the PF eigenvector p corresponding to
the eigenvalue equation

(
r(xk)− u+(xk)− u−(xk)

)
pk + u+(xk−1) pk−1 + u−(xk+1) pk+1 = r̄ pk , (29)

with the (population) mean fitness r̄ as PF eigenvalue. (Here, the connection to the
evolution equation (3) is given via Rk = Nr(xk) and U±

k = Nu±(xk).) The ancestral
frequencies a can be determined from the PF eigenvector of the symmetrized equation

(
r(xk)− u+(xk)− u−(xk)

)√
ak

+
√

u+(xk−1)u
−(xk)

√
ak−1 +

√
u+(xk)u

−(xk+1)
√

ak+1 = r̄
√

ak ,
(30)

cf. (17). The mean fitness and trait values with respect to both frequencies are defined
as

r̄ =
∑

k

r(xk) pk , x̄ =
∑

k

xk pk , r̂ =
∑

k

r(xk) ak , x̂ =
∑

k

xk ak . (31)

10Note that a lower limit value of −∞ is allowed in each case.
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We consider three limiting cases. For unidirectional mutation, u− ≡ 0 is assumed
instead of positivity, the linear case is given by (28), and the mutation class limit is
defined as N →∞. In the latter case, we use indices r̄N , r̄∞ etc. to denote the finite-size
and limit values, respectively.

The main result is

Theorem 1 (maximum principle). Let

g(x) = u+(x) + u−(x)− 2
√

u+(x)u−(x) . (32)

(a) In the mutation class limit,

r̄∞ := lim
N→∞

r̄N = sup
x∈[0,1]

(
r(x)− g(x)

)
. (33)

If the supremum is attained at a unique value (under the above assumptions, there is at
least one), then this is precisely the ancestral mean x̂∞ := limN→∞ x̂N and we have

r̄∞ = r(x̂∞)− g(x̂∞) = r̂∞ − g(x̂∞) . (34)

In any case, when increasing N , the ancestral distribution may only concentrate near
those values of x for which the supremum is attained.
(b) In the linear case (28),

r̄ = max
y∈[0,1]

(
r(y)− g(y)

)
, (35)

where, for strictly positive constants β± in (28), the maximum is attained at a unique
value, which equals the ancestral mean trait ŷ, and r(ŷ) = r̂ holds.
(c) For unidirectional mutation, where g = u+, the equilibrium population with maximal
mean fitness is characterized by

r̄ = max
k

(
r(xk)− u+(xk)

)
. (36)

Here, the largest value of k at which the maximum is attained, k̂, defines the only non-
zero ancestral frequency ak̂ = 1, which yields x̂ = xk̂ and r(x̂) = r̂. (However, if the
maximum is not unique, the pk and zk are mutually singular; hence, in this case, the
ancestral frequencies can not be constructed as ak = zkpk, which is identically zero.)

The function g, defined as twice the difference between the arithmetic and geometric
mean of the mutation functions, will be called mutational loss function due to

Proposition 1. In the mutation class limit, if (34) holds, the mutational loss per class,
gN = GN/N , converges to g(x̂∞). In the linear case and for unidirectional mutation, we
have G/N = g(ŷ), respectively G/N = g(x̂).

For the biallelic model, the mutational loss function reads explicitly

g(x) = µ
(
1 + κ− 2κx− 2

√
(1− κ2)x(1− x)

)
. (37)

The population mean of the trait value and the variances are given by

14



3. RESULTS FOR MEANS AND VARIANCES OF OBSERVABLES

Theorem 2. For the mutation class limit, assume r to be continuously differentiable
with derivative r′. Then, in this limit and the linear case, we have

r̄∞ = r(x̄∞) , respectively r̄ = r(ȳ) , (38)

if this equation has a unique solution (e.g., for strictly monotonic r, i.e., α 6= 0 in the
linear case). If further, in the linear case, y(x) = x, the variances per site of fitness and
of distance from the wildtype are given by

vR,∞ = −r′(x̄∞)
(
u+(x̄∞)− u−(x̄∞)

)
and vX,∞ =

vR,∞
(r′(x̄∞))2 , (39)

respectively, without the index ∞ for the linear case. Here, −r′(x̄∞) is (the limit of ) the
population mean of the mutational effects.

If r has a jump discontinuity at xjump from r+ to r− and we have r+ ≤ r̄∞ ≤ r−,
then x̄∞ = xjump and vR,∞ diverges. In this case, Vr,∞ = limN→∞ VR/N2 is finite,

Vr,∞ = (r+ − r̄∞)(r̄∞ − r−) . (40)

For the biallelic model, (39) reads explicitly

vR,∞ = −r′(x̄∞)µ (1 + κ− 2x̄∞) and vX,∞ = −µ (1 + κ− 2x̄∞)

r′(x̄∞)
. (41)

Concerning (40), see the examples in Figures 8 and 10.
Note that, if the position xopt of the fitness optimum lies in the interior of [0, 1] (i.e.,

stabilizing rather than directional selection is considered) and if mutation is symmetric
between adjacent classes11 around it (which is often assumed for stabilizing selection),
i.e., u+(x) = u−(x) for all x in some neighborhood of xopt, we have g(x) = 0 there.
Then, in the mutation class limit, the above results trivially yield x̂∞ = x̄∞ = xopt and
vR,∞ = vX,∞ = 0. The latter implies that the next weaker order of the variances, VR,∞,
respectively VX,∞, is relevant, about which our results provide no information.

The results presented here lead to simple graphical constructions of the means as
shown in Figure 4. These allow for an intuitive overview over the dependence of these
quantities on (the shape of) the fitness and mutation functions, without the need for
explicit calculations.

We now come to the proofs and some interpretation. Our starting point is the
mutation–selection equilibrium of the single-step mutation model (3) for finite N , i.e.,
the eigenvalue equation (29). We will mostly use the equivalent equation (30) for the
ancestral distribution, which is the eigenvalue equation for the largest eigenvalue of the
symmetric matrix H̃ (divided by N). For the latter, Rayleigh’s principle is applica-
ble, which is a general maximum principle involving the full (N + 1)-dimensional space:
r̄ = N−1 supy 6=0

∑
k,` ykH̃k`y`/

∑
k y2

k. In Sections 3.2–3.4 we will show, for each of the
three limiting cases separately, how it boils down to the simple scalar maximum princi-
ple of Theorem 1. We will then come to the proofs of Proposition 1 and Theorem 2 in
Sections 3.5 and 3.6, respectively.

11This is not to be confused with symmetric site mutation in the biallelic model, described by κ = 0.
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(x)r

(x)g

∞r

x̂∞

r̂

1 x(1+κ)/20

∞

(x)r

(x)g
∞r

∞r

x̂∞ x∞ 1 x(1+κ)/20

Figure 4: Graphical constructions for the observable means in the mutation class limit, fol-
lowing the results in Section 3.1. Upper part: r̄∞ is the maximal distance r(x)− g(x), cf. (33).
This is attained at x = x̂∞, cf. (34), where r′(x̂∞) = g′(x̂∞). Lower part: x̄∞ is the solution of
r̄∞ = r(x̄∞), cf. (38).

3.2 Unidirectional mutation

We start with the limiting case of unidirectional mutation, since exclusion of back muta-
tions leads to a considerably simpler situation, and we can show how our findings connect
to well-known results. To be specific, we assume

u− ≡ 0 and u+(x) > 0 for x ∈ [0, 1[. (42)

All results then follow fairly directly from the equilibrium condition (29).
Owing to u− ≡ 0 and the resulting reducibility of H , the equilibrium distribution

p is in general not unique (compare [Sch74, Sec. I.2]). We therefore require r̄ to be the
largest eigenvalue of (29). The following lemma then ensures the uniqueness of p, which
is always attained if the initial population satisfies p0(0) > 0 (see [Wil65, Ch. 9]).

Lemma 1. For any non-negative eigenvector p of (29) with ‖p‖1 = 1 and eigenvalue r̄,
there exists a label k̂, 0 ≤ k̂ ≤ N , which divides all classes of genotypes into two parts,

pk = 0 for k < k̂, pk > 0 for k ≥ k̂ , (43)

and satisfies
r(xk̂)− u+(xk̂) = r̄ . (44)
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Furthermore,

r(xk)− u+(xk) < r̄ for k > k̂, (45)

which makes p the only eigenvector to r̄ with the above properties. In other words, if
condition (44) is true for more than one label, then k̂ is the largest of them.

Proof: The first statement follows directly from (29) and (42): If k̂ denotes the smallest
label such that p

k̂
> 0, then p

k
> 0 for all k > k̂. For the second statement, assume there

is a label k > k̂ with r(xk) − u+(xk) ≥ r̄. Then (29) and (43) lead to the contradiction
r̄ = r(xk)− u+(xk) + u+(xk−1)pk−1/pk > r̄. ¤

A similar result is obtained for the corresponding left eigenvector z and a label ǩ,

zk = 0 for k > ǩ, zk > 0 for k ≤ ǩ . (46)

However, if (43) is satisfied for more than one label, then ǩ is the smallest such label,
and thus ǩ < k̂. As a consequence, we have zk = 0 whenever pk > 0 (and vice versa).
Thus, the interpretation of the zk as the expected relative numbers of offspring is invalid
and the ancestral frequencies can not be constructed as ak = zkpk (which is identically
zero). But, in any case, the mutational distance of every line of ancestors in equilibrium
dynamics converges to k̂ (with probability 1). Thus, the only non-zero element of the
ancestral distribution is ak̂ = 1.

With these results, we are able to give the

Proof of Theorem 1(c): Let r̄ be chosen according to (36), k̂ as the largest k at which
the maximum is attained, p

k
= 0 for k < k̂, and p

k̂
= C > 0. Then, (29) uniquely defines

all pk for k > k̂, and we may choose C such that ‖p‖1 = 1. This way, we constructed
an eigenvector p for the eigenvalue r̄. According to Lemma 1, this must be the largest
eigenvalue and p is unique. The other statements have been discussed above. ¤

If the sequence r(xk) or the sequence u+(xk) is monotonically decreasing (as in the
biallelic model), k̂ is also the fittest class present in the equilibrium population,

r̂ = r(x̂) = max
k
{r(xk) : pk 6= 0} . (47)

If additionally k̂ coincides with the class of maximal fitness, i.e., r̂ = rmax, then (44) is a
special case of Haldane’s principle, which relates the mutation load l to the deleterious
mutation rate of the fittest class [Kim66, Bür98],

l = rmax − r̄ = u+(x̂) . (48)

In derivations of (variants of) this equation, it is often tacitly assumed that the equi-
librium frequency of the fittest class is non-zero. This, however, is in general not the
case and must be made explicit here since we are also interested in the change of the
equilibrium distribution with varying mutation rates. This can lead to a shift in k̂ and
hence in r̂.
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3.3 The linear case

If fitness values and mutation rates depend linearly on some trait Y , as described in (28),
the maximum principle holds as an exact identity. This may be derived from (30) by a
short direct calculation.

Proof of Theorem 1(b): We show that the system (30) reduces to just two equations,
one corresponding to the necessary extremum condition following from (35), the other
establishing that r̄ indeed equals this maximum.

Taking the difference of two arbitrary equations of the linear system (30), say for k
and `, divided by

√
ak and

√
a`, respectively, we get

(β+ − β− − α)(yk − y`)

+
√

β+β−
(√

yk(1− yk−1)

√
ak−1

ak

−
√

y`(1− y`−1)

√
a`−1

a`

+

√
yk+1(1− yk)

√
ak+1

ak

−
√

y`+1(1− y`)

√
a`+1

a`

)
= 0 .

(49)

With the ansatz
ak−1

ak

= C
yk

1− yk−1

⇔ ak+1

ak

= C−1 1− yk

yk+1

, (50)

Equation (49) can be divided by (yk−y`) and becomes independent of k and `. Note that
(50) also takes care of the boundary conditions a−1 = aN+1 = 0 if y0 = 0 and yN = 1.
Summing both sides of (1− yk−1)ak−1 = Cykak over k, we obtain C = (1− ŷ)/ŷ and thus
from (49)

β+ − β− − α +
√

β+β−
1− 2ŷ√
ŷ(1− ŷ)

= 0 , (51)

which is exactly the extremum condition r′(ŷ) = g′(ŷ) following from (33). Together with
the negative second derivative, this implies the maximum principle. It is then straight-
forward to show that the solution of (51) is unique. As a consequence, the maximum in
(35) is indeed assumed at the ancestral mean trait value ŷ.

Further, we can use (50) to eliminate ak±1 from (30). After multiplication by
√

ak

this reads

[
r0−αyk− r̄−β+(1−yk)−β−yk +

√
β+β−

(
yk

√
1− ŷ

ŷ
+(1−yk)

√
ŷ

1− ŷ

)]
ak = 0 (52)

and we obtain, by summation over k,

r̄ = r0 − αŷ − β+(1− ŷ)− β−ŷ + 2
√

β+β−ŷ(1− ŷ) = r(ŷ)− g(ŷ) , (53)

so the mean fitness is indeed given by (35). Since fitness is assumed linear in the trait, the
mean values with respect to the population and ancestral distributions are also related
via r̄ = r(ȳ) and r̂ = r(ŷ). ¤
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For an interpretation of this result, first consider a trait proportional to the mutational
distance from the reference class, in which case the system coincides with the Fujiyama
model. Since this is a model without epistasis, the means and variances are easily obtained
[O’B85, Baa01]. In particular, they are independent of the number of classes. What is
more, our derivation shows that they only rely on a linear dependence of fitness and
mutation functions on some trait, as well as the boundary conditions for the mutation
functions. This means that they remain unchanged if mutation classes are permuted, or
even subjoined or removed.

3.4 Mutation class limit

The main idea of the proof of the maximum principle in the limit N → ∞ is to look at
the system locally, i.e., at some interval of mutation classes in (29) and (30). This will
provide us with upper and lower bounds for the mean fitness of a system with finite N.
In the limit N →∞, these can then be shown to converge to the same value r̄∞.

Proof of Theorem 1(a): For a lower bound, we consider submatrices of H that, for
any class Xk, consist of the rows (and columns) corresponding to Xk−m through Xk+n.
Each of them describes the evolution process on a certain interval of mutation classes at
whose boundaries there is mutational flow out, but none in. Thus, each largest eigen-
value, r̄k,m,n, corresponding to the local growth rate, is a lower bound for r̄N , compare
[Sch74, Cor. of Thm. I.6.4]. In order to estimate r̄k,m,n, it is advantageous to use the
formulation in ancestor form—with the same local growth rates as largest eigenvalues of
the corresponding symmetric submatrices of H̃ . Here, lower bounds can be found with
Rayleigh’s principle, and follow from evaluating the corresponding quadratic form for the
vector (1, 1, . . . , 1)T :

r̄N ≥ r̄k,m,n ≥
1

n + m + 1

( k+n∑

`=k−m

r` − gN,` −
√

u+
k−m−1u

−
k−m −

√
u+

k+nu
−
k+n+1

)
, (54)

where gN,` = u+
` + u−` −

√
u+

`−1u
−
` −

√
u+

` u−`+1. The RHS is itself greater than or equal to

ρk,m,n := inf
y∈Ik,m,n

(
r(y)− g(y)

)− sup
y∈Ik,m,n

∣∣g(y)− gN(y)
∣∣−

√
u+

k−m−1u
−
k−m +

√
u+

k+nu
−
k+n+1

m + n + 1
,

(55)
where Ik,m,n = [k−m

N
, k+n

N
] and the rules for inf/sup have been applied. We will now con-

struct a sequence ρN(x) := ρkN (x),mN (x),nN (x) for each x ∈ [0, 1], using suitable sequences
for the indices, such that

lim
N→∞

ρN(x) = r(x)− g(x) . (56)

Equations (54)–(56) will then establish lim infN→∞ r̄N ≥ supx∈[0,1](r(x)− g(x)).
Note first that, for x = 0 or x = 1, ρN(x) = ρxN,0,0 = r(x)−g(x) holds for arbitrary N.

Now, fix x ∈ ]0, 1[. If r is continuous in [x− d, x] for a suitable d > 0, let kN(x) = bxNc,
mN(x) = bd√Nc, and nN(x) ≡ 0. Otherwise r is continuous in [x, x + d] for some d > 0,
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and we define kN(x) = dxNe, mN(x) ≡ 0, and nN(x) = bd√Nc. With these choices, the
last term in (55) vanishes for N → ∞ since mN(x) + nN(x) → ∞, and the enumerator
is bounded. So does the supremum term because of the uniform convergence gN → g:
supy∈IkN ,mN ,nN

|g(x)− gN(x)| ≤ supy∈[0,1] |g(x)− gN(x)| → 0. The latter follows from the

uniform continuity of
√

u± since, in

|g(x)− gN(x)|

=

∣∣∣∣
(√

u+(x− 1
N

)−
√

u+(x)

) √
u−(x) +

√
u+(x)

(√
u−(x + 1

N
)−

√
u−(x)

)∣∣∣∣ ,
(57)

the terms in parentheses vanish uniformly in x as N →∞ and
√

u±(x) is bounded. The
infimum term in (55), and thus ρN(x), converges to r(x) − g(x) since xkN (x) → x, the
function r is continuous in all IN 3 x, and |IN | = (mN(x)+nN(x))/N → 0. This finishes
the proof for the lower bound.

For an upper bound, consider a local maximum of the ancestral distribution, i.e., a
k+ such that ak+ ≥ ak+±1 (with the convention aN+1 = a−1 = 0 such a maximum always
exists). Evaluating (30) for this k+ then yields the inequality

r̄N ≤ rk+ − gN,k+ ≤ sup
k

(
rk − gN,k

)
. (58)

In the limit, this establishes lim supN→∞ r̄N ≤ supx∈[0,1](r(x) − g(x)), from which, to-
gether with the lower bound from above, the maximum principle (33) follows (including
convergence of the sequence r̄N).

We now prove that the ancestral distribution is concentrated around those x for which
r(x)− g(x) is maximal, from which (34) follows if the maximum is unique. Multiplying
the equilibrium equation in ancestor form (30) by

√
ak and summing over k, we get

r̄N =
N∑

k=0

[(
r(xk)− u+(xk)− u−(xk)

)
ak

+
√

u+(xk−1)u−(xk)
√

akak−1 +
√

u+(xk)u−(xk+1)
√

ak+1ak

]
.

(59)

Using
√

akak±1 ≤ 1
2
(ak + ak±1), we obtain

r̄N ≤
N∑

k=0

(r(xk)− gN(xk)) ak = r̂N − (̂gN)N , (60)

with gN as defined above. Since r̄N → r̄∞ and gN(x) → g(x) uniformly in x ∈ [0, 1], we
can find, for any given ε > 0, an Nε, such that, for all N > Nε,

N∑

k=0

(
r(xk)− g(xk)

)
ak > r̄∞ − ε2 . (61)

We now divide this sum into two parts,
∑

k :=
∑

k>
+

∑
k≤ . The first part,

∑
k>

, collects

all k with r(xk)− g(xk) > r̄∞ − ε, the second part contains the rest. We then obtain

r̄∞ − ε2 <

N∑

k=0

(
r(xk)− g(xk)

)
ak ≤ r̄∞

∑

k>

ak + (r̄∞ − ε)
∑

k≤

ak = r̄∞ − ε
∑

k≤

ak (62)

20



3. RESULTS FOR MEANS AND VARIANCES OF OBSERVABLES

and thus
∑

k≤ ak < ε. We conclude that, for N sufficiently large, the ancestral distribution

is concentrated in those mutation classes for which r(x)− g(x) is arbitrarily close to its
maximum, r̄∞. ¤

3.5 Mutational loss

Let us now turn to the connection between the mutational loss G and the mutational loss
function g(x).

Proof of Proposition 1: The claim follows, in each of the three cases, from (24),
(25), and Theorem 1. This is obvious for the linear case and unidirectional mutation.
For the mutation class limit, (34) has to be assumed, then r̂∞ = r(x̂∞) holds. ¤

Recall further that, in the proof of the maximum principle in the mutation class
limit in Section 3.4, we obtained r(x) − g(x) as the largest eigenvalue of a local open
subsystem around x. If r̄∞ is the death rate due to population regulation in the entire
system, r(x) − r̄∞ − g(x) is the net growth rate of the subsystem at x. Hence, g(x)
must describe the rate of mutational loss due to the flow out of the local system. This
can be made more precise within the framework of large deviation theory, which will be
presented in a future publication [Baa].

3.6 Mean mutational distance and the variances

Here, we derive and discuss the results for the mean mutational distance and the variances,
which hold in the linear case and for N →∞.

Proof of Theorem 2: If fitness is linear in an arbitrary trait y(x), we immediately
have r̄ = r(ȳ). For the variance formulas, we must additionally assume that fitness is
linear in the mutational distance, r(x) = rmax−αx. Thus, the covariances in the general
formula (20) vanish, and vR = α (u+ − u−). Due to the linearity, this also determines
the variance in mutational distance as vX = (u+− u−)/α. These relations do not require
that u±(x) are linear in x; they reduce to (39) if this is the case.

In the mutation class limit, we assume that r is continuously differentiable and express
vR,∞ as the limit variance for increasing system size N , using (20) for vR,N ,

vR,∞ = lim
N→∞

N∑

k=0

(rk − rk+1

N−1
u+

k −
rk−1 − rk

N−1
u−k

)
pk = −r′ (u+ − u−)∞ . (63)

Here, we made use of the fact that the mutational effects converge uniformly to the
corresponding values of −r′, i.e., the negative slope of the fitness function.

Since r′ is bounded, (63) in particular shows that vR,∞ is finite, and hence

Vr,∞ = lim
N→∞

[ N∑

k=0

r2
kpk −

( N∑

k=0

rkpk

)2
]

= lim
N→∞

N−1vR,N = 0 . (64)
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For increasing N , the distribution of fitness values per class therefore concentrates around
r̄∞. Accordingly, the mean mutational distance in the limit satisfies (38) if this equation
has a unique solution, including convergence of the sequence x̄N . With this, the mean
of the mutational effects, s±N (see Section 2.4), converges to −r′(x̄∞). Furthermore, we
have vR,∞ = −r′(x̄∞)

(
u+(x̄∞) − u−(x̄∞)

)
. The variance in x can then be obtained via

the linear approximation r(x) ' r(x̄∞) + r′(x̄∞)(x− x̄∞) as vX,∞ = vR,∞/(r′(x̄∞))2.

If there is a jump in the fitness function, vR diverges according to the above relation,
but Vr,∞ is finite and determined by the fraction of the population below and above the
jump, which yields (40). ¤

For fitness functions with kinks, the proof is analogous, as long as the left- and right-sided
limits of r′ remain bounded, and the convergence of the mutational effects is uniform.

3.7 Accuracy of the approximation

We now illustrate the accuracy of the analytical expressions for means and variances given
in Section 3.1. To pay respect to the invariance of the equilibrium distributions under
scaling of both reproduction and mutation rates with the same factor, we introduce γ as
an overall constant for the reproduction rates. In an application, it should be chosen to
represent roughly the average effect of a single mutation on the reproduction rate in a
mutant genotype (with the maximum number of mutations considered) as compared to
the wildtype. This does not exclude the possibility that effects of single mutations may
be quite large. In the figures, both reproduction and mutation rates are given in units of
this constant, i.e., as r/γ, respectively µ/γ.

Figure 5 displays an example of a biallelic model that deviates from all three exact
limiting cases described in Section 2.6, and, for comparison, three modifications that
are closer to one of the exact limits each. All numerical values, also in the rest of this
article and in Figure 3, are virtually exact and, if not noted otherwise, obtained by the
power method [Wil65, Ch. 9], also known as von Mises iteration, with the matrix H . For
continuous fitness functions, the approximate expressions for the observable means agree
with the exact ones up to corrections of order N−1 (as indicated by numerical comparison,
not shown) or of order (u−)2 [Her02, Sec. 5.2]. For fitness functions with jumps, the error
seems to be at most of order N−1/2 (cf. Figure 10); for a jump at x = 0 such as in the
sharply peaked landscape, however, the corrections to r̄ appear to be still of order N−1

for the biallelic model (cf. Figure 6).

Further examples, exhibiting more conspicuous features, are shown in Section 4. For
most of them, one will also find good agreement of numerical and analytical values for
the means for sequences of length N = 100; for the variances, however, one sometimes
needs longer ones, like N = 1000. In the biallelic model, we generally find stronger
deviations for higher mutation rates, as in this regime back mutations become more and
more important, whereas for small mutation rates, deviations are of linear order in µ.
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Figure 5: The top row refers to a biallelic model that deviates from all three exact limiting
cases described in Section 2.6 in having a strongly non-additive fitness function r/γ (left, solid
line), symmetric site mutation (κ = 0), and small sequence length (N = 20). The mean values
of the observables (middle) and corresponding variances (right) are shown as a function of the
mutation rate µ/γ, both for the model itself (symbols) and according to the expressions given
in Section 3.1 (lines, sometimes hidden by symbols). Even here, we find reasonable agreement.
Deviations, however, are visible for larger mutation rates. As can be seen from the last two rows,
going towards any of the three exact limits, i.e., increasing the number of mutation classes (left,
N = 100), going to more asymmetric mutation (middle, κ = 0.8), or using a different fitness
function with less curvature (right, r/γ: top left, dashed line), we find that these deviations
vanish quickly. In the case of increasingly asymmetric mutation, however, this is not true for
the variances, since the approximation becomes only exact here in either of the other two limits
(cf. Section 3.6).
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4 Application: threshold phenomena

In this section, we analyze how the equilibrium behavior of the single-step mutation
model changes if the mutation rates are varied relative to the fitness values. Usually, if
mutation rates change slightly, the observable means and variances (e.g., of traits and
fitness) at the new equilibrium are close to the old ones. At certain critical mutation
rates, however, threshold phenomena may occur, associated with much larger effects.
The prototype of this kind of behavior is the so-called error threshold, first observed in a
model of prebiotic evolution many years ago [Eig71] and discussed in numerous variants
ever since (for review, see [Eig89, Baa00]).

Here, we will discuss and classify related behavior in our model class. We shall,
however, avoid the term error threshold as the collective name for all threshold effects, but
rather, and more generally, speak of mutation thresholds . This is because the definition of
the error threshold is closely linked to the model in which it had been observed originally,
namely the quasispecies model with the sharply peaked fitness landscape.

Following [Her02, Sec. 6], we will define mutation thresholds by discontinuous changes
in the observable means (or their derivatives) as functions of the mutation rates. Since the
largest eigenvalue of H (being simple) and its (properly chosen) right and left eigenvectors
depend analytically on the fitness values and mutation rates (compare [Kat80, Sec. II.1]),
we need to apply the mutation class limit N → ∞.12 Throughout this section, we will
therefore consider the limit values only, and hence omit the index ∞.

In order to keep the overall shapes of the fitness and mutation functions constant, we
vary all mutation rates by a common scalar factor µ ≥ 0, chosen as the mean mutation
rate over all classes,

µ =
1

2

∫ 1

0

(
u+(x) + u−(x)

)
dx . (65)

This is consistent with the definition of µ as the mean point mutation rate for the biallelic
model, cf. (27) and Figure 1. By slight abuse of notation, we define the shape of the
mutational loss function as g(1, x) = µ−1g(x) (which does not depend on µ, cf. (32)), and
introduce µ as a variable parameter via g(µ, x) = µ g(1, x).

Then, the population mean fitness, as a function of µ, is given by

r̄(µ) = sup
x∈[0,1]

(
r(x)− g(µ, x)

)
. (66)

With the assumption from Section 2.6 that at each point of discontinuity of r the larger
of the left- and right-sided limit values is attained, there is, for every µ ≥ 0, at least one
value of x that maximizes r(x)− g(µ, x). Hence we may define

x̂(µ) = max{x ∈ [0, 1] : r̄(µ) = r(x)− g(µ, x)} , (67)

which, by Theorem 1, coincides with the ancestral mean genotype if the supremum in (66)
is unique. With respect to x̄(µ), Theorem 2 states that r(x̄(µ)) = r̄(µ) is satisfied. This,

12This parallels the application of the thermodynamic limit in statistical physics for the definition of
phase transitions.
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however, may be ambiguous and, unfortunately, we do not have any further information
about x̄(µ). Hence, we are left with the non-constructive definition x̄(µ) = lim

N→∞
x̄N(µ).

We begin by stating two general properties.

Lemma 2. The mean fitness r̄ is Lipschitz continuous as a function of µ.

Proof: The inequality |r̄(µ)− r̄(µ′)| ≤ |µ−µ′|maxx∈[0,1] g(1, x) follows easily from (66)
and the properties of the supremum. ¤

Lemma 3. For such µ ≥ 0 for which the supremum in (66) is unique, x̂ is continuous.

Proof: Let ε > 0 be given and consider I = ]x̂(µ) − ε, x̂(µ) + ε[ ∩ [0, 1]. Recall that r
is at least left or right continuous at x̂(µ), having only finitely many discontinuities, and
that g is continuous and thus bounded. Since, further, the supremum is unique,

h = r(x̂(µ))− g(µ, x̂(µ))− sup
x∈[0,1]\I

(
r(x)− g(µ, x)

)
> 0 . (68)

Therefore, for any µ′ ≥ 0 with |µ− µ′| < 1
2
h/maxx∈[0,1] g(1, x) =: δ, we have

sup
x∈I

(
r(x)− g(µ′, x)

)
> sup

x∈I

(
r(x)− g(µ, x)

)− 1
2
h

> sup
x∈[0,1]\I

(
r(x)− g(µ, x)

)
+ 1

2
h > sup

x∈[0,1]\I

(
r(x)− g(µ′, x)

)
,

(69)

from which x̂(µ′) ∈ I and thus the claim follows. ¤

Let us further make a couple of assumptions that exclude pathological cases and thus
simplify the discussion without narrowing the biological applications.

(A1) The fitness function r has a unique maximum attained at x̂(0) = x̄(0) =: xmin,
referred to as the wildtype position.

(A2) The smallest xmax ∈ ]xmin, 1[ with g(1, xmax) = 0 (i.e., u+(xmax) = u−(xmax)) satis-
fies limµ→∞ x̂(µ) = limµ→∞ x̄(µ) = xmax, and thus describes mutation equilibrium.13

(A3) We have x̄(µ), x̂(µ) ∈ [xmin, xmax] for all µ ≥ 0.

Note that, for the biallelic model, xmax = (1 + κ)/2.
In the following discussion, we will distinguish four types of mutation thresholds,

which all fall together in the original error threshold of the sharply peaked landscape (cf.
Figure 6). These are verbally (and somewhat vaguely) described as

1. a kink in the population mean fitness,
2. the loss of the wildtype from the population,
3. complete mutational degradation, and
4. a jump in the population mean of the mutational distance (or some additive trait).

Here, we will restrict ourselves to their mathematical properties. A detailed biological
discussion is given in [Her02, Sec. 6].

13Note that g(1, xmin) > 0 follows from the latter condition together with (A1).
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Figure 6: The error threshold of the sharply peaked landscape (left) with r(0) = γ (bullet)
and r(x) = 0 for x > 0 (line), for the biallelic model with symmetric mutation (κ = 0). The
observable means are shown in the middle, the variances on the right. Symbols correspond to
N = 100, lines to the expressions in Section 3.1. The ancestral fitness r̂(µ) (not shown) jumps
from γ to 0 at µ = γ. Note that Vr follows the scaling described by (63) and is given by (40)
for N →∞.

4.1 Fitness thresholds

It turns out that the kink in the population mean fitness is, in many respects, the most
fundamental aspect to classify mutation thresholds. We define a kink in r̄ as a non-
differentiable point µc. Assume r̄ to be differentiable in two small enough intervals left
and right of such a point µc (which is the generic case). There, we conclude from (25)
and Proposition 1 that d/dµ r̄(µ) = −g(1, x̂(µ)). Since g(1, .) is continuous and bounded,
the left- and right-sided limits of r̄′ at µc differ, if they exist, and x̂ is discontinuous.
According to this reasoning we give the

Definition 1. A mutation rate µc is said to be a mutation threshold in fitness, or fitness
threshold for short, if the mean ancestral genotype x̂ is discontinuous at µ = µc.

As a consequence, the mean mutational distance x̄, and the variances vR and vX , will
typically show kinks as well. An example is presented in Figure 7.

The origin of a fitness threshold is easily understood from the maximum principle.
For a generic choice of µ, the function r(x)− g(µ, x) is maximized for a unique x = x̂(µ).
For some fitness and mutation functions, however, there are particular values of µ that
lead to multiple solutions and hence to a jump in x̂ when µ is changed across this value.

Theorem 3. Assume r, u± ∈ C2([xmin, xmax]). Then g is twice continuously differ-
entiable with respect to x in ]xmin, xmax]. Assume further that g′′(1, x) 6= 0 whenever
g′(1, x) = 0. (The prime always denotes the derivative with respect to x.) Consider

C = sup
x∈[xmin,xmax]

(
r′′(x)− r′(x)g′′(1, x)

g′(1, x)

)
, (70)

which might take the values ±∞. Then there is a fitness threshold if C > 0 and there is
no fitness threshold if C < 0.
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Figure 7: Means (middle) and variances (right) for a biallelic model with asymmetric mutation
(κ = 0.4), and the fitness function r/γ shown on the left. One observes a fitness threshold
(µc/γ ' 0.562). Symbols correspond to N = 100, dashed lines to N = 500, and solid lines to
the expressions from Section 3.1.

The marginal case C = 0 is discussed in [Her02, Sec. 6.2.1], together with extensions to
fitness and mutation functions with kinks and jumps. Note that this criterion does not
indicate whether there are one or multiple thresholds for a given combination of r and
u±. Neither does it provide the value of r̄ at the threshold, nor of µc. In fact, the value
C is independent of the scalar factor µ, but only depends on the shapes of the mutation
and fitness function.

Proof of Theorem 3: The differentiability of g is a direct consequence of the chain
rule and the positivity assumptions regarding u±. With respect to the main statement,
recall that, according to Definition 1, a fitness threshold is signaled by a discontinuity in
x̂. Thus, in the absence of a threshold, x̂(µ) varies continuously from xmin to xmax by
assumptions (A1)–(A3). This is the case if, at each x in the half-open interval [xmin, xmax[,
the maximum in (66) is uniquely attained for some finite µ ≥ 0. It is easily verified that
a sufficient condition for this is

∀x ∈ ]xmin, xmax[ ∃µ > 0 : r′(x) = g′(µ, x) and r′′(x) < g′′(µ, x) . (71)

Now assume that C < 0, in which case we have, for all x ∈ [xmin, xmax],

r′′(x)− r′(x)g′′(1, x)

g′(1, x)
< 0 . (72)

We first show that both r and g are strictly decreasing in ]xmin, xmax[. To see this, recall
that r has a global maximum at xmin by (A1) and that g(x) > 0 for x ∈ [xmin, xmax[ and
g(xmax) = 0 by (A2). Suppose there exists an x ∈ ]xmin, xmax[ with r′(x) = 0, and let xr

be the smallest such x. Then either g′(1, xr) = 0 and thus limx↗xr

(
r′′(x)− r′(x)g′′(1,x)

g′(1,x)

)
=

r′′(xr) − r′′(xr) = 0 by de l’Hospital’s rule (which is applicable since, by assumption,
g′′ 6= 0 in a neighborhood of xr), in contradiction to (72), or g′(1, xr) 6= 0, in which case
we obtain r′′(xr) < 0 in contradiction to r′(x) < 0 for x ∈ ]xmin, xr[. Further, imagine
g′(x) = 0 for some x ∈ ]xmin, xmax[, and let xg be the largest such x. Then, since g′(x) < 0
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for x ∈ ]xg, xmax[, we have g′′(xg) < 0 (with a strict inequality by assumption) and thus
limx↘xg g′′(x)/g′(x) = +∞, which again contradicts (72) since r′(xg) < 0. Therefore,
µ(x) := r′(x)/g′(1, x) is well-defined and positive everywhere in ]xmin, xmax[, it guarantees
r′(x) = g′(µ(x), x), and (72) yields r′′(x) < g′′(µ(x), x), which completes the first part of
the proof by (71).

If C > 0 we can find, due to the assumptions made, an x0 in ]xmin, xmax[ with
g′(1, x0) 6= 0 and r′′(x0)−r′(x0)g

′′(1, x0)/g
′(1, x0) > 0. This implies r′′(x0)−g′′(µ, x0) > 0

whenever r′(x0) − g′(µ, x0) = 0, i.e., a local minimum. Therefore, the maximum of
r(x)− g(µ, x) is never attained at x0 and we must have a jump in x̂(µ). ¤

4.2 Wildtype thresholds

The loss of the wildtype is the classic criterion for the original error threshold as defined
in [Eig71]: For the sharply peaked landscape, the frequency p0 of the wildtype (or master
sequence) remains finite for small mutation rates even for N → ∞, but vanishes above
the critical mutation rate (in this limit). The same effect may be observed for any fitness
function with a jump at the wildtype position xmin.

14

If r is continuous at xmin, however, the population distribution spreads over a large
number of mutation classes with similar fitness for any finite mutation rate. While for
finite N the frequency in any class remains positive for arbitrary µ (as long as there are
back mutations), the frequency of any single mutation class (including the wildtype class)
vanishes for N →∞. Still, one may ask for some related phenomenon that goes together
with the loss of the wildtype in all models in which this effect is observed, but defines a
threshold also in a broader model class. (The fitness threshold as defined above does not
meet this requirement, since fitness functions with a jump at the wildtype may well have
multiple fitness thresholds, but only lose their wildtype once.)

Again, we give a definition based on the ancestral distribution.

Definition 2. A wildtype threshold is the largest mutation rate µ−c > 0 below which the
ancestral mean fitness coincides with the fitness of the wildtype,

r̂(µ) = r̂(0) = rmax , µ < µ−c . (73)

This threshold may equivalently be defined as the largest µ−c below which x̂(µ) = xmin.

Theorem 4. There is a wildtype threshold if and only if

lim
x↘xmin

g(1, x)− g(1, xmin)

r(x)− r(xmin)
< ∞ . (74)

Accordingly, fitness functions with a jump at xmin always lead to a wildtype threshold.
Note that the LHS of (74) equals limx↘xmin

g′(1, x)/r′(x) if r and g are differentiable.

14As the mean fitness varies continuously, the wildtype frequency in the limit decreases linearly with
the mutation rate, until the mean fitness reaches the lower value at the jump. For larger mutation rates,
the wildtype frequency in the limit is zero due to the sharpness of the population distribution for N →∞
(cf. Section 3.6).
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Figure 8: Means (middle) and variances (right) for a model with symmetric mutation (κ = 0),
N = 100 (symbols), and the fitness function r(x) = 3

4γ (1− x)2 with an additional single peak
of height γ at x = 0 (left). Due to the latter, one finds a wildtype threshold (µ−c /γ ' 0.641),
which is also a fitness threshold. Lines correspond to the expressions in Section 3.1. For
1 ≤ r̄/γ < 3

4 , i.e., 0 ≤ µ/γ < 1
4 , the variance in fitness no longer follows Equation (41), but

scales differently and is given by (40) for N →∞ (see the discussion in Section 3.6). For finite
N , we can approximate vR by a combination of both relations, where (40) and (41) dominate
for small and large µ, respectively. Note that r̄ is analytic at µ/γ = 1

4 , we thus have no fitness
threshold at this point.

Proof of Theorem 4: For a wildtype threshold to occur, r(x)−g(µ, x) must be max-
imized at x = xmin for some µ > 0. Therefore, the existence of a wildtype threshold
implies an upper bound of 1/µ−c on the LHS of (74), which proves the ‘only if’ part. For
the ‘if’ part, assume that there are sequences xi in ]xmin, xmax] and µi > 0 with µi → 0
and r(xi) − µi g(1, xi) ≥ r(xmin) − µi g(1, xmin) for all i. Let xj → x∞ be a convergent
subsequence. Since r and g are assumed to be continuous, we have r(x∞) ≥ r(xmin) and
hence x∞ = xmin, since r(xmin) is the unique maximum of r by assumption (A1). Thus,
we find

g(1, xj)− g(1, xmin)

r(xj)− r(xmin)
≥ 1

µj

→∞ , (75)

contradicting (74) and thus completing the proof. ¤
Note that a wildtype threshold will always lead to non-analytic behavior of x̂(µ) and

r̄(µ) at µ−c and is therefore closely related to a fitness threshold. In general, however, it
need not show up as a prominent feature with a jump in means or variances. If we have
a fitness threshold with a jump in x̂ at x̂(µ) = xmin, however, this will also be a wildtype
threshold. In a system with a series of thresholds, the wildtype threshold (if it exists) is
always the one with the smallest µc. An example in shown in Figure 8.

4.3 Degradation thresholds

A far reaching effect of the error threshold is that selection altogether ceases to operate.

Definition 3. A degradation threshold is the smallest mutation rate µ+
c above which the

population mean fitness is insensitive to any further increase of the mutation rate,

x̂(µ) = xmax , µ > µ+
c . (76)
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Figure 9: Means (middle) and variances (right) for the biallelic model with asymmetric muta-
tion (κ = 0.8), N = 100 (symbols), and the fitness function r(x) = γ (xmax − x)q/(xmax)q with
xmax = (1+κ)/2 = 0.9 and q = 2.2 (left). One finds a degradation threshold (µ+

c /γ ' 0.606),
which is also a fitness threshold. As r̂ behaves just like r(x̂) with a similar accuracy of the ap-
proximation, it is not shown here.

Also, the other means and variances then coincide with their values in mutation equilib-
rium, and the population is degenerate.

Theorem 5. A degradation threshold occurs if and only if

lim
x↗xmax

r(x)− r(xmax)

g(1, x)
< ∞ . (77)

Proof: For a degradation threshold, r(x) − g(µ, x) is maximal at x = xmax (where
g(µ, xmax) = 0) for any finite µ > µ+

c . On the one hand, existence of the threshold
implies the criterion with a bound µ+

c . On the other hand, if we have sequences xi

in [xmin, xmax[ and µi → ∞ with r(xi) − µi g(1, xi) ≥ r(xmax), we can again choose a
convergent subsequence xj → x∞. Since g(1, x) is continuous and xmax is the only zero
of g in [xmin, xmax] by (A2), we have x∞ = xmax. As in the wildtype case above, this
contradicts (77) and proves the criterion. ¤

The degradation threshold is related to the fitness threshold in an analogous way
as the wildtype threshold above. In particular, we always find non-analytic behavior of
x̂(µ) and r̄(µ) at µ+

c , but not necessarily a jump or a kink. However, a fitness threshold
with a jump of x̂(µ) onto xmax is necessarily a degradation threshold. Examples for a
degradation threshold are given in Figures 9 and 10.

4.4 Trait thresholds

As stated above, there is usually a kink in the population mean genotype x̄(µ) at a fitness
threshold. The most pronounced change in the equilibrium distribution of x, however, is
captured by

Definition 4. A mutation rate µx
c is a trait threshold if x̄ is discontinuous for µ = µx

c .
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Figure 10: Means (middle) and variances (right) for a model with symmetric mutation (κ = 0)
and truncation selection, i.e., r(x) = γ for x ≤ 1

8 and r(x) = 0 otherwise (left). As in the
sharply peaked landscape, cf. Figure 6, one finds a combined fitness, wildtype, degradation,
and trait threshold (µc/γ ' 2.94). The variance in fitness follows the different kind of scaling
described in Theorem 2. Symbols correspond to N = 100, dashed lines to N = 1000, and solid
lines to the expressions in Section 3.1. As r̂ behaves just like r(x̂) with similar accuracy, it is not
shown here. Note that the deviations of the approximate expressions are somewhat stronger (of
order N−1/2) for fitness functions with jumps, cf. Section 3.7.

Since a discontinuous change in x̄ is usually accompanied by a jump in the local mutation
rates u±(x̄) as well as r′(x̄), it typically also leads to jumps in vX and vR. The mean
fitness, however, is not at all affected at such a point (if it does not coincide with a fitness
threshold as defined above).

Theorem 6. A trait threshold occurs if and only if r is not strictly decreasing from xmin

to xmax.

Proof: Assume r to be strictly decreasing from xmin to xmax. Then, since r̄(µ) varies
continuously from r(xmin) to r(xmax) as µ changes from 0 to ∞, Theorem 2 implies that
x̄ is continuous as well, which proves the ‘only if’ part. Otherwise, if there is some µ such
that r̄(µ) = r(x1) = r(x2) with xmin ≤ x1 < x2 ≤ xmax, it is obvious from Theorem 2 and
the monotonicity of r̄ that x̄ may not vary continuously from xmin to xmax. ¤

Obviously, any fitness landscape with a trait threshold also fulfills C > 0 in Theorem
3 and thus has a fitness threshold, but not vice versa. We have µc ≥ µx

c , i.e., the jump
in x̄ in general precedes the fitness transition with the jump in x̂, see the example in
Figure 11. Trait and fitness thresholds should, therefore, be clearly distinguished. In
contrast to the fitness threshold (or a phase transition in physics), the trait threshold is
not driven by collective (self-enhancing) action, but only mirrors a simple feature of the
fitness function.
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Figure 11: Means (middle) and variances (right) for a model with a fitness function r/γ (left)
with an ambiguity for r(x)/γ = 0.5 and asymmetric mutation (κ = 0.5). Thus, one finds a trait
threshold (µx

c/γ ' 0.372), which precedes a fitness threshold (µc/γ ' 0.408), cf. Section 4.4.
Symbols correspond to N = 100, dashed lines to N = 500, and solid lines to the expressions in
Section 3.1. As r̂ behaves just like r(x̂) with similar accuracy, it is not shown here.
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II

The continuum-of-alleles model

Mutation–selection models have been described in Section I.1 in a general framework. The
rest of Chapter I was then devoted to models with discrete genotypes. This chapter now
turns to models in which genotypes are labeled by the elements of some interval I ⊂ R,
which have been introduced by Kimura [Kim65] and are usually referred to as continuum-
of-alleles (COA) models. Here, the elements of I refer to genotype classes rather than
single genotypes (as in the discrete single-step model (I.3)), defined through their effect
on a quantitative trait. The large number of alleles and possible effects justifies the
approximation by a continuum. The most important difference to the models of Chapter
I is that a different type of mutant distributions is appropriate here.

We will assume the genotype interval to be either compact, most commonly [0, 1] or
[−1, 1], or R itself. As in Section I.1, the reproduction rates are described by a function
r : I → R and the mutation rates by u : I × I → R≥0, where u(x, y) corresponds to a
mutation from type y to type x. We define u1 : I → R≥0 as the function of total mutation
rates,

u1(x) =

∫

I

u(y, x) dy for all x ∈ I. (1)

Then u(x, y)/u1(y) is the density function of the distribution of mutant types x, condi-
tioned on a mutation to occur in type y, which happens with rate u1(y). In correspondence
to the time evolution equation (I.1), the equilibrium genotype density p is a solution of

(
r(x)− u1(x)

)
p(x) +

∫

I

u(x, y) p(y) dy = λ p(x) for all x ∈ I (2)

that fulfills p ≥ 0 and
∫

I
p(x) dx = 1. For notational convenience later on, we use the

symbol λ for the equilibrium mean fitness r̄ =
∫

I
r(x) p(x) dx.

The first aim of this chapter is to analyze the relationship between the COA model
and the discrete model of Chapter I, namely how the former can be approximated by
the latter, which is done in Section 2. This is important mainly because it gives a
rigorous justification of numerical methods, which are needed since the COA model can,
in general, not be treated analytically. Further, it forms a basis on which some results
may be transferred from the discrete model.

The second aim is to take first steps towards a simple maximum principle for the
equilibrium mean fitness of the COA model, analogous to the central result of Chapter I.
In Section 3, some model classes are presented for which explicit upper and lower bounds
can be given. In a special case they can be shown to converge towards each other in an
appropriate limit and thus indeed establish a simple maximum principle. From numerical
examples one may speculate that this is even true for a broader class of models.
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The basis for all this are the sufficient criteria for the existence and uniqueness of a
solution of the equilibrium condition (2) given by Bürger [Bür88] (with some generaliza-
tion in [Bür00, Sec. IV.3]). These will be summarized and discussed in some detail in
Section 1.

1 General properties

1.1 Operator notation

Let us first put the equilibrium condition (2) in operator notation. Since we are interested
in probability densities, we will consider the space of Lebesgue integrable functions on I,
L1(I), or a subspace thereof, as the underlying function space. We define, for notational
brevity,

w = u1 − r (3)

and then, for elements f of the function space and all x ∈ I,

(Tf)(x) = w(x)f(x) , (4)

(Uf)(x) =

∫

I

u(x, y)f(y) dy , (5)

A = T − U . (6)

With this, (2) is equivalent to the eigenvalue equation

(A + λ)p = 0 . (7)

Being a (non-zero) multiplication operator, T cannot be compact (compare [Mor95,
Thm. 2.1]). Strong results like analogs to the Perron–Frobenius theorem, however, are
only available for compact, or at least power compact1, operators, see Schaefer [Sch74,
Ch. V]. Therefore one considers the following family of kernel operators:

(Kαf)(x) =

∫

I

kα(x, y)f(y) dy , (8)

where

kα(x, y) =
u(x, y)

w(y) + α
. (9)

These are, under conditions that will be given shortly, power compact or even compact.
Their connection to the operator A from (6) is stated in the following

Lemma 1 (Bürger). Let T and U be operators in a Banach space X, with U being
bounded, T densely defined, i.e., D(T ) = X, and T + α invertible. Then f is an eigen-
vector of A = T − U with eigenvalue −α, i.e., 0 6= f ∈ D(A) = D(T ) and

(A + α)f = 0 , (10)

1An operator is said to be power compact if one of its powers is compact.
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if and only if g = (T + α)f is an eigenvector of Kα = U(T + α)−1 with eigenvalue 1,
i.e.,

(Kα − 1)g = 0 . (11)

Proof: This is the statement of [Bür88, Prop. 2.1(i)]. From the simple calculation

(Kα − 1)g = (U(T + α)−1 − 1)(T + α)f = (U − T − α)f = −(A + α)f (12)

the formal equivalence of (10) and (11) follows. Since (T + α)−1 is bounded, we have
(T + α)−1g ∈ D(T ) for all g. ¤

So, explicitly in our case, the eigenvalue equation (7) is equivalent to

(Kλ − 1)q = 0 (13)

with q = (T + λ)p.

1.2 Existence and uniqueness of solutions

We follow Bürger [Bür88] to find sufficient conditions for the existence and uniqueness
of a solution of (7). To this end, the corresponding kernel operators Kα from (8) are
considered.

An important class of bounded kernel operators from Lq(I) to Lp(I) (1 ≤ p, q ≤ ∞)
are the Hille–Tamarkin operators, see [Jör70, Sec. 11.3]. Their kernels need to satisfy

K


pq := ‖k1‖p < ∞ with k1(x) = ‖k(x, .)‖q′ , (14)

where (Kf)(x) =
∫

I
k(x, y) f(y) dy, k(x, .) denotes the function y 7→ k(x, y), and q′ is the

conjugate exponent to q satisfying 1
q

+ 1
q′ = 1, 1 ≤ q′ ≤ ∞. The Hille–Tamarkin norm.


pq turns the set Hpq(I) of all Hille–Tamarkin operators into a Banach space [Jör70,

Thm. 11.5]. Here, we are interested in p = q = 1, in which case (14) yields

K


11 =

∫

I

ess sup
y∈I

|k(x, y)| dx < ∞ (15)

and K2 is compact for every K ∈ H11(I) [Jör70, Thm. 11.9].
Let us now turn to kernel operators that are power compact, positive, and irreducible.

An operator is called positive if it maps the set of non-negative functions into itself, for
which, in the case of kernel operators, non-negativity of the kernel is necessary and
sufficient [Jör70, p. 122]. A kernel operator is irreducible if its kernel satisfies [Sch74,
Exm. 4 in Sec. V.6]

∫

I\J

∫

J

k(x, y) dx dy > 0 for all measurable J ⊂ I with |J |, |I\J | > 0. (16)

Here, |J | denotes the Lebesgue measure of a measurable set J . Then the theorem of
Jentzsch [Sch74, Thm. V.6.6], which parallels the Perron–Frobenius theorem for matri-
ces, states that the spectral radius is an algebraically simple eigenvalue with an (up to
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normalization) unique positive eigenfunction (i.e., strictly positive a.e.2) and the only
eigenvalue with a positive eigenfunction.

In our case, the following requirements are sufficient for the Kα to be Hille–Tamarkin
operators [Bür88, Sec. 3].

(U1) u is non-negative and measurable.
(U2) u1(x) from (1) exists for a.e. x ∈ R and u1 is essentially bounded, u1 ∈ L∞(I).
(T1) w = u1 − r is measurable and satisfies ess infx∈I w(x) = 0. (The latter can be

achieved, without loss of generality, by adding a suitable constant to r.)
(T2) (w + 1)−1 ∈ L∞(I) is then already a consequence of (T1).
(U4)

∫
I
ess supy∈I u(x, y)/(w(y) + α) dx < ∞ for one (and then for all) α > 0.

For α > 0, Kα is irreducible if U is [Bür88, proof of Thm. 2.2(c)], i.e.,
∫

I\J

∫

J

u(x, y) dx dy > 0 for all measurable J ⊂ I with |J |, |I\J | > 0. (17)

To keep the equilibrium genotype distribution from having atoms, we assume, similar to
[Bür00, cond. 3” in Sec. IV.3], that there is a set J ⊂ I with positive measure, in which
w takes its infimum, ess infx∈J w(x) = 0, such that

ess inf
x,y∈J

u(x, y)

∫

J

(w(x))−1 dx > 1 (18)

or the integral diverges.
Putting everything together, we have the following

Theorem 1 (Bürger). Under the above conditions, (2) has a unique positive solution
p ∈ L1(I) with ‖p‖1 = 1, for which λ > 0 is the largest spectral value of −A from (6).

Proof: See the above, [Bür88, Thm. 3.5], and [Bür00, Sec. IV.3]. ¤

Another result that will be needed in the sequel is

Lemma 2 [Bür88, Lems. 1–3, Thm. 2.2(ii)]. Under the above conditions, the spectral ra-
dius ρ(Kα) is, as a function of α, strictly decreasing and satisfies ρ(Kλ) = 1 and
limα→∞ ρ(Kα) = 0. Thus, ρ(Kα) < 1 implies α > λ and ρ(Kα) > 1 implies α < λ.

2 Discretization

In this section, we will consider two methods to approximate compact kernel operators
by operators of finite rank, i.e., operators with a finite-dimensional image. Under certain
additional restrictions, these techniques carry over to non-compact operators like A from
(6). One, the Nyström method, is applicable to continuous functions r and u on compact
intervals I and involves sampling3 of these functions. The other, the Galerkin method,

2The abbreviation ‘a.e.’ stands for ‘almost every’ or ‘almost everywhere’ and means that the set at
which the condition it refers to is not fulfilled has zero (Lebesgue) measure.

3The term sampling is used in the meaning also used in signal processing: Instead of a continuous
function one considers its values at a (properly chosen) finite set of points.
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is based on projections to finite-dimensional subspaces and works—in principle—for a
broad class of measurable kernels. In order to get an approximation for A, however, one
has to make quite strong assumptions, e.g., that the functions r and u are, in some sense,
uniformly continuous. Then, it turns out, the local averaging in the projection process
can be replaced by sampling again (if an additional condition is fulfilled).

As the case of a compact genotype interval is simpler, it will be treated first. Through-
out this section we will assume that the criteria from Section 1.2 are satisfied, namely
(U1), (U2), (U4), (T1), (T2), (17), and (18).

2.1 Compact genotype interval

Let the genotype interval I be compact and C(I) denote the Banach space of bounded,
continuous functions equipped with the supremum norm ‖f‖∞ = supx∈I |f(x)|. We
consider operators K of the form

(Kf)(x) =

∫

I

k(x, y)f(y) dy for all x ∈ I (19)

with a continuous kernel k : I × I → R. First note these two basic results:

Proposition 1. An operator K of the form (19) maps L1(I) into C(I) ⊂ L1(I).

Proof: We follow the proof of [Eng97, Thm. 2.1], where this is shown for L2(I), which,
since I is compact, is a subspace of L1(I). Let f ∈ L1(I) and x, ξ ∈ I be given. Then

|(Kf)(x)− (Kf)(ξ)| ≤
∫

I

|k(x, y)− k(ξ, y)| |f(y)| dy ≤ sup
y∈I

|k(x, y)− k(ξ, y)| ‖f‖1 . (20)

Due to the uniform continuity of k in I × I, we have

lim
ξ→x

sup
y∈I

|k(x, y)− k(ξ, y)| = 0 , (21)

from which the continuity of Kf follows. ¤

Proposition 2. An operator K of the form (19) is compact from C(I) or L1(I) to either
of the two spaces.

Proof: Follow the proof of [Eng97, Thm. 2.10] (or [Lan93, XVII.4]), where this is shown
for L2(I) ⊂ L1(I), and use Hölder’s inequality whenever the Cauchy–Schwarz inequality
is used. Alternatively, see [Sch74, Exm. 3 in Sec. IV.10]. ¤

Thus, if in our case the functions r and u are continuous, also the kernel kα is, for
every α > 0. It then follows from Proposition 1 that the equilibrium genotype density p
is continuous as well. Therefore we can restrict our attention to C(I) in our quest for a
solution of the eigenvalue equation (7). This makes the Nyström method applicable as a
discretization procedure, which will be presented now.
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II. THE CONTINUUM-OF-ALLELES MODEL

2.1.1 The Nyström method

The Nyström method is based on quadratures, which are used for numerical integration,
compare Kress [Kre99, Ch. 12]. We will use this (slightly restricted)

Definition 1. A quadrature rule Qn is a mapping of the form

Qn : C(I) → R , f 7→ Qnf =
Nn∑

k=1

αn,kf(tn,k) , (22)

with n ∈ N, Nn ∈ N, quadrature points tn,k ∈ I, and quadrature weights αn,k > 0, for
k ∈ Nn := {1, . . . , Nn}. A sequence of quadrature rules, or simply a quadrature, (Qn) is
said to be convergent if

Qnf → Qf for all f ∈ C(I), (23)

where Q is the linear functional that maps each f ∈ C(I) to its integral, Qf =
∫

I
f(x) dx.

Another notion that is important for the Nyström method is the collectively compact
convergence of operators. The standard reference for this matter is Anselone’s book
[Ans71].

Definition 2. A sequence (Kn) of (compact) operators in a Banach space X is col-
lectively compact provided that the set {KnB : n ∈ N} is relatively compact (i.e., its
closure is compact) for every bounded set B ⊂ X. If furthermore the sequence converges
pointwise to an operator K one speaks of collectively compact convergence, in symbols
Kn

cc−→ K.

As a direct consequence of this definition, K is compact (as well as all Kn).
The central result for the Nyström method is

Theorem 2. Let K be a compact kernel operator of the form (19) whose eigenvalue
equation

(K − ν)g = 0 (24)

is to be approximated. To this end, let (Qn)n∈N be a convergent quadrature with the
notation as in Definition 1. A complete discretization is given by the Nn ×Nn matrices
Kn with entries

Kn,k` = αn,` k(tn,k, tn,`) , (25)

a partial discretization by means of the operators Kn on C(I) with

(Knf)(x) =
Nn∑

k=1

αn,k k(x, tn,k)f(tn,k) = Qn(k(x, .)f) . (26)

Consider the corresponding eigenvalue equations

(Kn − νn)gn = 0 and (Kn − νn)gn = 0 , (27)

where gn is an Nn-dimensional vector with components gn,k, and gn ∈ C(I). Then, under
the above conditions the following statements are true:
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(a) Both eigenvalue equations in (27) are equivalent and connected via

gn(x) =
Nn∑

k=1

αn,k k(x, tn,k)gn,k . (28)

(b) For every ν 6= 0 from (24) there is a sequence (νn) of eigenvalues of (27) such that
νn → ν as n →∞. Conversely, every non-zero limit point of any sequence (νn) of
eigenvalues of (27) is an eigenvalue of (24).

(c) Every bounded sequence (gn) of eigenfunctions of (27) associated with eigenvalues
νn → ν 6= 0 contains a convergent subsequence; the limit of any convergent subse-
quence (gni

)i is an eigenfunction of (24) associated with the eigenvalue ν (unless
the limit is zero).

Proof: (a) is the statement of [Kre99, Thm. 12.7] or [Eng97, Lem. 3.15]. (b) and (c)
rely on the collectively compact convergence Kn

cc−→ K, which is shown, e.g., in [Ans71,
Props. 2.1, 2.2], [Kre99, Thm. 12.8], or [Eng97, Thm. 3.22]. The statements then follow
from [Ans71, Thms. 4.11, 4.17]. ¤

With respect to the discretization procedure we are aiming for, we will restrict our-
selves to quadratures that allow for disjoint partitions of I with intervals In,k, i.e.,

In,k ∩ In,` 6= ∅ and
⋃Nn

k=0 In,k = I, such that tn,k ∈ In,k and |In,k| = αn,k (with k ∈ Nn).
For such quadratures it is easy to see that4

‖Qn‖ =
Nn∑

k=1

αn,k = |I| (29)

and that the partitions are unique (up to the boundary points of the intervals). Further-
more we have

Lemma 3. Let (Qn) be a convergent quadrature that allows for partitions of I as de-
scribed above. Then limn→∞ maxk∈Nn |In,k| = 0.

Proof: Assume the contrary. Then there are an ε > 0 and sequences (ni)i and (ki)i with
limi→∞ ni = ∞ and |Ini,ki

| ≥ ε. Due to the compactness of I, these can be chosen such
that limi→∞ tni,ki

=: t exists. Consider f(x) = max{1−2|x−t|/ε, 0}, which is a continuous
function. For this we have Qf ≤ ε/2, but limi→∞ Qni

f ≥ ε limi→∞ f(tni,ki
) = ε, which

contradicts the convergence of the quadrature (23). ¤

2.1.2 Application to the COA model

In our case of the COA model with a compact interval I and continuous functions r and
u, the complete discretization is given by the following Nn ×Nn matrices:

Tn,k` = δk` w(tn,k) ≥ 0 , (30)

Un,k` = αn,` u(tn,k, tn,`) ≥ 0 , (31)

An = T n −Un, Kα,n = Un(T n + α)−1 for α > − min
k∈Nn

w(tn,k). (32)

4If not noted otherwise, the following convention for operator norms is used. If an operator maps a
space X into itself, we denote its norm by the same symbol as the norm of X, e.g., ‖.‖X , or ‖.‖1 for L1;
in all other cases the unornamented symbol ‖.‖ is used.
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The eigenvalue equations to be solved are

(An + λn)pn = 0 with pn > 0. (33)

Here, −An + c is positive with a suitable constant c. We further have to assume that
the An are irreducible (which might not be the case for special choices of the tn,k, e.g., if
u1(tn,k) = 0 for some k). Then, due to the Perron–Frobenius theorem, there exist (up to
normalization) unique positive pn belonging to the eigenvalues −λn = −ρ(−An + c) + c,
where ρ(M) denotes the spectral radius of a matrix M, cf. the end of Section I.2.1. With
qn = (T n + λn)pn also the eigenvalue equations

(Kλn,n − 1)qn = 0 (34)

are solved (and vice versa), cf. Lemma 1.
Both Kλn,n and qn can be embedded into C(I) as described by (26) and (28). Then,

with Theorem 2, one might conclude the convergence ‖qn−q‖∞ → 0. In the end, however,
we are interested in the population vectors pn and their convergence to the density p. It
might be easiest to interpret the vectors pn as point measures on I. But then the best
one can hope for is weak convergence since the set of point measures is closed under the
total variation norm. It will turn out that we can indeed achieve norm convergence if we
embed the pn into L1(I) the following way. We choose a disjoint partition of I as above
and let

pn =
Nn∑

k=1

pn,k1In,k
, (35)

where 1J denotes the characteristic function of a set J . (Note that pn,k denotes the k-th
component of pn ∈ RNn , whereas pn is an L1 function.) Thus the pn can be interpreted
as probability densities on I, if we normalize them such that ‖pn‖1 = 1. This is most
easily expressed using the induced norm ‖f‖(n) :=

∑Nn

k=1 αn,k|fk| on RNn . Convergence

in total variation then corresponds to ‖pn − p‖1 → 0 [Rud86, Thm. 6.13]. One can also
define operator analogs of the An by

Anf =
Nn∑

k=1

1In,k

Nn∑

`=1

An,k`
1

|In,`|
∫

In,`

f(x) dx , (36)

for which (An + λn)pn = 0 holds. These, however, will not be used in the sequel.5

2.1.3 Convergence of eigenvalues and eigenvectors

We now come to prove the main approximation result:

Theorem 3. With the notation and assumptions from Sections 1.1 and 2.1.2,

(a) limn→∞ λn = λ > 0 and

5The An are of finite rank and thus compact. Therefore, An → A can hold neither in the norm nor
in the collectively compact sense, since then A would be compact as well.
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(b) limn→∞ ‖pn−p‖1 = 0, i.e., the probability measures corresponding to these densities
converge in total variation.

The idea of the proof of part (a) is as follows. In the following two lemmas, we first
determine an upper and a lower bound for the λn and conclude that there is a convergent
subsequence. Then we show that every convergent subsequence converges to λ and hence
the sequence itself.

Lemma 4. There is a constant M > 0 such that |λn| ≤ M for all n ∈ N.

Proof: Using (30) and (31), one checks

|λn| =
‖λnpn‖(n)

‖pn‖(n)

=
‖Anpn‖(n)

‖pn‖(n)

≤ sup
‖f‖

(n)
=1

Nn∑

k=1

αn,k

∣∣∣∣∣
Nn∑

`=1

(Tn,k` − Un,kl)f`

∣∣∣∣∣

≤ max
k

w(tn,k) + max
k,`

u(tn,k, tn,`)
Nn∑

k=1

αn,k ≤ ‖w‖∞ + ‖u‖C(I×I) sup
m
‖Qm‖ =: M > 0 .

Here, ‖Qm‖ = |I| due to (29). More generally, for any convergent quadrature, according
to the theorem of Banach–Steinhaus, supm ‖Qm‖ < ∞, compare [Rud91, Thm. 2.5]. ¤

Lemma 5. lim inf
n→∞

λn > 0.

Proof: We start by following Bürger [Bür00, p. 134] and show that the spectral radius
ρ(Kα) is larger than 1 for sufficiently small α > 0, from which then λ > α > 0 follows by
Lemma 2. Let J be the interval from (18). Then we have

(Kα1J)(x) =

∫

J

u(x, y)

w(y) + α
dy ≥ 1J(x) ess inf

x′,y′∈J
u(x′, y′)

∫

J

(w(y) + α)−1 dy (37)

and thus

‖Kα
m‖1

1/m ≥ ess inf
x,y∈J

u(x, y)

∫

J

(w(y) + α)−1 dy for all m ∈ N, (38)

which implies that the spectral radius satisfies

ρ(Kα) ≥ ess inf
x,y∈J

u(x, y)

∫

J

(w(y) + α)−1 dy. (39)

The RHS is, as a function of α, strictly decreasing. Thus, as a consequence of B. Levi’s
monotone convergence theorem [Hew69, Thm. III.12.22], also

lim
α↘0

ρ(Kα) ≥ ess inf
x,y∈J

u(x, y)

∫

J

(w(y))−1 dy > 1 (40)

according to (18) (including divergence of both sides).
Now we choose α > 0 such that the RHS of (39) is larger than or equal to 1 + ε,

with a sufficiently small ε > 0. Furthermore, we pick, according to the convergence of
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the quadrature, an n0 with ess infx,y∈J u(x, y)|Qn(w + α)−1 − Q(w + α)−1| < ε/2 for all
n ≥ n0. This way

(Kα,n1J)(x) = Qn

(
u(x, .)(w + α)−11J

) ≥ 1J(x) ess inf
x′,y′∈J

u(x′, y′)Qn(w + α)−1

≥ 1J(x)

(
ess inf
x′,y′∈J

u(x′, y′)Q(w + α)−1 − ε

2

)
≥ 1J(x)

(
1 +

ε

2

)
,

(41)

and hence, by Lemma 2, λn > α > 0 for all n ≥ n0, from which the claim follows. ¤

Proof of Theorem 3(a): According to Lemmas 4 and 5, the sequence (λn)n has a
convergent subsequence (λni

)i with limit λ′ ∈ ]0,M ]. Consider (Kλ′f)(x) = Q(kλ′(x, .)f)
as well as (Knf)(x) := (Kλn,nf)(x) = Qn(T + λn)−1(T + λ′)(kλ′(x, .)f).

We first show that the ‘distorted’ quadrature Q̃ni
= Qni

(T +λni
)−1(T +λ′) is conver-

gent. To this end, note that, for i0 large enough, such that infj≥i0 λnj
> 0, and i ≥ i0,

‖(T + λni
)−1(T + λ)− 1‖∞ = sup

‖f‖∞≤1

∥∥∥∥
w + λ

w + λni

f − f

∥∥∥∥
∞

≤ ‖(w + inf
j≥i0

λnj
)−1‖∞ |λ− λni

| ‖f‖∞ → 0 .
(42)

Then, since (Qn) is convergent by assumption, we have, for all f ∈ C(I),

‖(Q̃ni
−Q)f‖∞ ≤ ‖Qni

((T + λni
)−1(T + λ′)− 1)f‖∞ + ‖(Qni

−Q)f‖∞ → 0, (43)

where the first term vanishes in the limit due to supm ‖Qm‖ < ∞ and (42).
With this it follows from Theorem 2 that ρ(Kn) = 1 is also an eigenvalue of Kλ′

going with a non-negative eigenfunction. The latter is even a.e. positive since, due to
the irreducibility (17) of Kλ′ , there cannot be a set with positive measure on which
a non-negative eigenfunction vanishes.6 But since, according to Theorem 1, there is,
up to normalization, only one positive eigenfunction, we have λ′ = λ. Therefore every
convergent subsequence of (λn)n converges to λ, and thus, due to the boundedness, also
the sequence itself. ¤

The strategy for the proof of part (b) of Theorem 3 is as follows. We first show that the
norms ‖pn‖1 and ‖qn‖∞ are (ultimately) ‘equivalent’. Thus, as ‖pn‖1 = 1, the sequence
(‖qn‖∞) has a convergent subsequence. We then demonstrate that convergence of the
norms of a subsequence (qni

)i implies the convergence of the subsequence itself. Finally,
the claim is proven by showing that every convergent subsequence of (qn) converges to q
from (13) and hence the sequence itself.

Lemma 6. There are constants c1, c2 > 0 and an n0 ∈ N such that

0 < c1‖pn‖1 ≤ ‖qn‖∞ ≤ c2‖pn‖1 for every n ≥ n0. (44)

6Let q̃ be the eigenfunction and J = {x : q̃(x) > 0} with |J | > 0. Assume |J | < |I|. Then, for
x ∈ I\J , we have 0 = q̃(x) =

∫
J

kλ′(x, y)q̃(y) dy, which implies, for a.e. y ∈ J , that kλ′(x, y)q̃(y) = 0 and
thus u(x, y) = 0, contradicting (17).
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Proof: On the one hand, due to (34),

‖qn‖∞ = sup
x∈I

Nn∑

`=1

αn,` kλn
(x, tn,`) qn,` ≥ max

k∈Nn

Nn∑

`=1

αn,` kλn
(tn,k, tn,`) qn,` = max

k∈Nn

qn,k . (45)

Choose n0 according to Lemma 5 such that λn ≥ α for some α > 0 and every n ≥ n0.
Let c1 := |I|−1α > 0. Then we have, for every n ≥ n0, recalling qn = (T n + λn)pn,

0 < c1‖pn‖1 = c1

Nn∑

k=1

αn,k pn,k = c1

Nn∑

k=1

αn,k(Tn,kk + λn)−1qn,k

≤ c1|I|α−1 max
k∈Nn

qn,k ≤ ‖qn‖∞ .

(46)

On the other hand, using Kλn,nqn = Un(T n + λn)−1(T n + λn)pn = Unpn,

‖qn‖∞ = sup
x∈I

Nn∑

`=1

αn,` u(x, tn,`) pn,` ≤ ‖u‖C(I×I)‖pn‖(n) =: c2‖pn‖1 , (47)

which completes the proof. ¤
Lemma 7. If ‖qn‖∞ → c holds, then also qn → c q/‖q‖∞ with q from (13).

Proof: Due to the collective compactness of (Kn), see [Kre99, Thm. 12.8] or [Eng97,
Thm. 3.22], the qn = Knqn are contained in a compact set. Hence there is a convergent
subsequence (qni

)i, whose limit we denote by q̃, with ‖q̃‖∞ = c and q̃ ≥ 0. Consider

‖q̃ −Kλq̃‖∞ ≤ ‖q̃ −Kni
qni
‖∞ + ‖Kni

‖∞‖qni
− q̃‖∞ + ‖Kni

q̃ −Kλq̃‖∞. (48)

As i → ∞, the first term vanishes due to Kni
qni

= qni
, the second since, according to

the theorem of Banach–Steinhaus, supn ‖Kn‖∞ < ∞, and the third due to the pointwise
convergence of Kni

towards Kλ. Thus, q̃ is an eigenfunction of Kλ to the eigenvalue 1 and,
according to the theorem of Jentzsch [Sch74, Thm. V.6.6], unique up to normalization,
and therefore q̃ = c q/‖q‖∞. Since this is true for all convergent subsequences, the claim
follows (again due to the collective compactness). ¤
Proof of Theorem 3(b): With our choice ‖pn‖1 = 1 there is, due to Lemma 6, a
subsequence (qni

)i such that ‖qni
‖∞ converges. Let us denote the limit by c. Hence,

according to Lemma 7, also qni
→ cq/‖q‖∞ =: q̃ holds. Now consider

‖pni
− (T + λ)−1q̃‖1 =

Nni∑

k=1

∫

Ini,k

∣∣pni,k
− (w(x) + λ)−1q̃(x)

∣∣ dx

≤
Nni∑

k=1

|Ini,k
| sup

x∈Ini,k

∣∣pni,k
− (w(x) + λ)−1q̃(x)

∣∣

≤ |I|max
k

sup
x∈Ini,k

∣∣(w(tni,k
) + λni

)−1qni,k
− (w(x) + λ)−1q̃(x)

∣∣

≤ |I|max
k

∣∣(w(tni,k) + λni
)−1 − (w(tni,k

) + λ)−1
∣∣ qni

(tni,k) +

|I|max
k

(w(tni,k
) + λ)−1

∣∣qni
(tni,k)− q̃(tni,k

)
∣∣ +

|I|max
k

sup
x∈Ini,k

∣∣(w(tni,k
) + λ)−1q̃(tni,k

)− (w(x) + λ)−1q̃(x)
∣∣ .

(49)
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The first term is bounded from above by

|I| |λ− λni
| ‖(w + inf

m≥n0

λm)−1(w + λ)−1‖∞ sup
i
‖qni

‖∞ , (50)

for ni ≥ n0 with sufficiently large n0, and vanishes for i →∞ because of λn → λ and the
boundedness of ‖qni

‖∞. The second term vanishes due to the uniform convergence of the
qni

towards q̃, and the third due to the uniform continuity of (w + λ)−1q̃ and Lemma 3.
With this we have pni

→ (T + λ)−1q̃ in L1(I), and hence ‖(T + λ)−1q̃‖1 = 1, from which
c = ‖q‖∞ follows. Therefore, each convergent subsequence of (qn)n converges to q and
thus, as in the proof of Lemma 7, the sequence itself. Together with what has just been
shown the claim follows. ¤

2.2 Unbounded genotype interval

Now we assume the genotypes to be taken from I = R and the functions r and u to be
continuous. It will be one aim of this section to analyze what further conditions have
to be imposed in order to allow for a discretization procedure similar to the one in the
previous section. In order to do so, we start by a summary of the relevant theory.

2.2.1 The Galerkin method

In the Galerkin method, an approximation of compact operators is achieved using pro-
jections to finite-dimensional subspaces. This method has been reviewed, e.g., by Kras-
nosel’skii et al. [Kra72, Sec. 18]. The results needed in the sequel are collected in the
following

Theorem 4. Let K be a compact linear operator on the Banach space Y. Consider the
eigenvalue equation

(K − ν)g = 0 , (51)

which is to be approximated. To this end, let (Yn) be a sequence of closed subspaces of
Y with bounded projections Pn onto them. On these subspaces, let the compact linear
operators Kn be defined, together with the eigenvalue equations

(Kn − νn)gn = 0 . (52)

Assume that

‖Kn − PnK‖Yn
→ 0 , ‖K − PnK‖Y → 0 as n →∞. (53)

Then the following statements are true:

(a) For every ν 6= 0 from (51) there is a sequence (νn) of eigenvalues of (52) such that
νn → ν as n →∞. Conversely, every non-zero limit point of any sequence (νn) of
eigenvalues of (52) is an eigenvalue of (51).

(b) Every bounded sequence (gn) of eigenvectors of (52) associated with eigenvalues
νn → ν 6= 0 contains a convergent subsequence; the limit of any convergent subse-
quence (gni

)i is an eigenvector of (51) associated with the eigenvalue ν (unless the
limit is zero).
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Proof: See [Kra72, Thms. 18.1, 18.2], where also certain cases of unbounded projections
are treated. ¤

A sufficient condition for the validity of the second assumption in (53) is given by the
following

Proposition 3. Let X be a normed space, Y a Banach space, and K a compact linear
operator from X into Y , which is to be approximated. For bounded linear operators
Pn : Y → Y (n ∈ N) with Pn → 1 pointwise for n →∞ we have ‖PnK −K‖ → 0.

Proof: We follow Werner [Wer00, Thm. II.3.5] (or Engl [Eng97, Rem. 2.8]). Let U
denote the unit ball in X and A = K(U) ⊂ Y the completion of its image under K,
which is compact due to the compactness of K. Consider the expression

lim sup
n→∞

‖PnK −K‖ = lim sup
n→∞

sup
x∈U

‖PnKx−Kx‖ ≤ lim sup
n→∞

sup
y∈A

‖(Pn − 1)y‖ . (54)

Then, for arbitrary ε > 0, there exists a finite ε-net {y1, . . . , yk} ⊂ A, i.e., for all y ∈ A
we have inf1≤i≤k ‖y − yi‖ < ε. Therefore,

sup
y∈A

‖(Pn − 1)y‖ ≤ sup
1≤i≤k

‖(Pn − 1)yi‖+ ‖Pn − 1‖ inf
1≤i≤k

‖y − yi‖

≤ sup
1≤i≤k

‖(Pn − 1)yi‖+ ε sup
m∈N

‖Pm − 1‖ ,
(55)

where supm∈N ‖Pm − 1‖ < ∞ according to the theorem of Banach–Steinhaus. Fur-
thermore, limn→∞ sup1≤i≤k ‖(Pn − 1)yi‖ = 0 holds by assumption, which implies that
lim supn→∞ supy∈A ‖(Pn−1)y‖ ≤ ε supm∈N ‖Pm−1‖, thus limn→∞ supy∈A ‖(Pn−1)y‖ = 0,
as ε was arbitrary. With this and (54) the claim follows. ¤

The question if such operators Pn exist—under the further restriction of being of finite
rank—leads to

Definition 3. If for a Banach space Y there exists a sequence (Pn) of operators of finite
rank that satisfies the hypotheses of Proposition 3, then Y is said to have the approxima-
tion property, i.e., the operators of finite rank from X into Y are dense in the compact
operators.

This is not true for all Banach spaces, cf. the little review in [Wer00, Sec. II.6] or the
advanced books by Lindenstrauss and Tzafriri [Lin77, Lin79]. An explicit proof for L1(R)
is given in Proposition 4 below. The more general case of Lp spaces, 1 ≤ p ≤ ∞, is treated
in [Sch74, Thm. IV.2.4].

2.2.2 Application to kernel operators

In our case of the COA model we have X = Y = L1(R) and K is of the form

(Kf)(x) =

∫

R
k(x, y)f(y) dy for all x ∈ R (56)
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with a measurable kernel k : R×R→ R. Therefore, for the Galerkin method to work, it is
necessary that L1(R) has the approximation property. Generally, this is shown by means
of conditional expectations in a quite abstract fashion, compare [Sch74, Thm. IV.2.4].
We will make this approach explicit here by using a sequence ({In,k : 1 ≤ k ≤ Nn})n

of families of disjoint intervals that get finer and finer and at the same time ultimately
cover every bounded interval.7

Proposition 4. The Banach space L1(R) has the approximation property, i.e., the op-
erators of finite rank are dense in the compact operators in L1(R).

Explicitly, one may choose finite-dimensional subspaces Yn of Y = L1(R) that consist
of all step functions with prescribed (bounded) intervals In,k (k ∈ Nn := {1, . . . , Nn})
with the following properties:

(I1) For every bounded interval I ⊂ R and every ε > 0 there is an n0 such that, for all
n ≥ n0, a set L ⊂ Nn exists for which In,L :=

⋃
`∈L In,` satisfies |I\In,L| = 0 and

|In,L\I| < ε. (We then say that I is ε-optimally covered.)
(I2) |In,k ∩ In,`| = 0 for all n ∈ N and 1 ≤ k < ` ≤ Nn.

Then, with the characteristic functions ϕn,k = 1In,k
, the projections Pn onto the subspaces

Yn spanned by {ϕn,k : k ∈ Nn} are given by

Pnf =
Nn∑

k=1

ϕn,k
1

|In,k|
∫

In,k

f(x) dx for f ∈ L1(R), (57)

where
∫

In,k
f(x) dx are the conditional expectations mentioned above. The projections

satisfy ‖Pn‖1 = 1.

Proof: Obviously, the subspaces Yn are closed, finite-dimensional, and the Pn are, due
to (I2), projections onto them. Since

‖Pnf‖ =
Nn∑

k=1

∫

In,k

|f(x)| dx ≤
∫

R
|f(x)| dx = ‖f‖1 for every f ∈ L1(R) (58)

and ‖Pnϕn,k‖ = ‖ϕn,k‖ for every k ∈ Nn, we have ‖Pn‖ = 1.
We now show that Pn → 1 pointwise. To this end, let f ∈ L1(R) and ε > 0 be given.

Remember that the set of all step functions is, by definition, dense in L1(R), compare
[Lan93, Sec. VI.3]. Therefore, we can find a step function ψ =

∑m
k=1 ψk1Jk

(with bounded
intervals Jk) that satisfies ‖f − ψ‖1 < ε/3. Due to (I1) we can now choose an n0 such
that |⋃m

k=1 Jk\
⋃Nn

k=1 In,k| = 0 for all n ≥ n0. Then, the only contributions to ‖Pnψ−ψ‖1

are due to mismatches at the boundaries of the Jk. Therefore, let J+
k and J−k (k ∈ Nn) be

open intervals of measure η = ε/(12m maxk |ψk|) that contain the right and left boundary
points of Jk, respectively. Choosing n1 ≥ n0 according to (I1) large enough such that
every J±k is η-optimally covered for n ≥ n1, we have ‖Pnψ − ψ‖1 < 2

∑m
k=1 2ηψk ≤ ε/3

for n ≥ n1. Putting everything together yields, for n ≥ n1,

‖Pnf − f‖1 ≤ ‖Pn(f − ψ)‖1 + ‖Pnψ − ψ‖1 + ‖ψ − f‖1 < ε , (59)

which proves ‖Pnf − f‖ → 0 for n →∞ and thus the approximation property. ¤
7Both properties are formally captured by (I1) in Proposition 4.
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With respect to a kernel operator K of the form (56) and some f ∈ Yn, represented
as f =

∑Nn

k=1 ϕn,kfk, the above procedure amounts to the discretization

(PnKf) =
Nn∑

k=1

ϕn,k
1

|In,k|

(∫

In,k

∫

R
k(x, y)

Nn∑

`=1

f`ϕn,`(y) dy dx

)

=
Nn∑

k=1

ϕn,k

Nn∑

`=1

1

|In,k|

(∫

In,k

∫

In,`

k(x, y) dy dx

)
f` =:

Nn∑

k=1

ϕn,k

Nn∑

`=1

Mn,k`f`

(60)

with an Nn ×Nn matrix Mn = (Mn,k`). The corresponding eigenvalue equation is

Mngn = νngn , or equivalently PnKgn = νngn , (61)

where gn ∈ Yn is granted due to the projection property. An example of intervals In,k sat-
isfying (I1) and (I2) is In,k = [−n+2−n(k−1),−n+2−nk] with k ∈ Nn = {1, . . . , 2n+1n}.

2.2.3 Compact kernel operators

We further need to determine under which conditions a kernel operator K of the form
(56) is compact on one of the following Banach spaces:

• C(R), equipped with the supremum norm ‖.‖∞,
• L1(R) with the usual norm ‖.‖1, or
• C1(R) := C(R) ∩ L1(R) with the norm |||.||| := max{‖.‖∞, ‖.‖1}.

To this end, we follow Jörgens [Jör70, Secs. 11, 12]. A first result in this respect is

Proposition 5 [Jör70, Thms. 12.2, 12.3]. A kernel operator K on C(R) of the form (56)
is compact if and only if the following two conditions are fulfilled:

(C1) The function x → k(x, .) from R to L1(R) is continuous and bounded.
(C2) For every ε > 0 there exists a finite open covering (V1, . . . , Vn) of R and points

xj ∈ Vj such that ‖k(x, .)− k(xj, .)‖1 < ε for all x ∈ Vj and all j.

Then, its operator norm is given by

‖K‖∞ = sup
x∈R

∫

R
k(x, y) dy . (62)

As in [Jör70, Sec. 12.4], we consider the dual system 〈C(R), C1(R)〉 with the bilinear
form 〈f, g〉 =

∫
R f(x)g(x) dx. For this, we define the transposed KT of K via

(KTg)(y) =

∫

R
g(x)k(x, y) dx for all y ∈ R. (63)

We then have

Theorem 5 (Jörgens). If both K and KT are compact as operators on C(R), they are
so as operators on C1(R) and L1(R) as well. Then, they can be approximated by operators
of finite rank.
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Proof: As both KT and K are bounded as operators on C(R), they are, at the same
time, Hille–Tamarkin operators in H∞∞(R) since the respective norm,

.
∞∞ in (14), is

just given by (62). Then, according to [Jör70, Thm. 11.5], K and KT can also be regarded
as bounded operators on L1(R); thus, both map C1(R) into itself. Due to [Jör70, Thm.
12.6] there is, for every ε > 0, an operator of finite rank, Kε, with |||Kε − K||| < ε,
where |||A||| := max{‖A‖∞, ‖AT‖∞} is a norm for the Banach algebra of all operators
on C(R) that map C1(R) into itself and have a transposed of the same kind. We have
|||Af ||| ≤ |||A||||||f ||| for f ∈ C1(R), see [Jör70, Sec. 12.4]. Thus, |||A||| can serve as an upper
bound for the operator norm of A on C1(R). Therefore, K is compact as an operator on
C1(R) and can be approximated by Kε. Furthermore, according to [Jör70, Thm. 11.5],
‖Kε −K‖1 ≤ |||(Kε −K)T||| < ε holds. Hence, K is compact as an operator on L1(R) as
well. ¤

2.2.4 Application to the COA model

In order to be able to apply Theorem 5 to the COA model, we need both Kα and Kα
T

to be bounded as operators on C(R), i.e., cf. (62),

‖Kα‖∞ = sup
x∈R

∫

R
kα(x, y) dy < ∞ , (64)

‖Kα
T‖∞ = sup

y∈R

∫

R
kα(x, y) dx < ∞ . (65)

The latter is already a consequence of (U4). Furthermore, both operators need to be
compact, which can be checked by conditions (C1) and (C2).

With all this, we would be able to apply Theorem 4 and approximate Kα by operators
of finite rank. However, the biological system is described by the (non-compact) operator
A = T − U , not by some Kα. It will be shown that it is indeed possible to discretize the
operators T and U directly by applying the projections Pn from Proposition 4, if further
restrictions apply. Then, even more generally, the approximation can be done by choosing
arbitrary points in the intervals In,k at which the functions w and u are sampled. Both
procedures will now be described in detail.

In the first setting, Kλ is approximated by Kn := PnU(PnT + λn)−1. Explicitly, for
f ∈ Yn with f =

∑Nn

k=1 fkϕn,k, it reads

PnTf =
Nn∑

k=1

ϕn,k
1

|In,k|
∫

In,k

w(x) dx fk =
Nn∑

k=1

ϕn,kw(twn,k)fk , (66)

PnUf =
Nn∑

k,`=1

ϕn,k
1

|In,k|
∫

In,k

∫

In,`

u(x, y) dy dx f` =
Nn∑

k,`=1

ϕn,k|In,`|u(tux
n,k`, t

uy
n,k`)f` , (67)

with appropriate points twn,k, tux
n,k` ∈ In,k and tuy

n,k` ∈ In,` that satisfy

1

|In,k|
∫

In,k

u(x, tuy
n,k`) dx = u(tux

n,k`, t
uy
n,k`) . (68)
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These exist due to the continuity of w and u. But more generally, we may pick the points
arbitrarily from the respective intervals.

In either case, we define the Nn ×Nn matrices T n, Un, and An := T n −Un via

Tn,kk := w(twn,k) , Un,k` := |In,`|u(tux
n,k`, t

uy
n,k`) . (69)

The corresponding operators in Yn are given by

Tnf =
Nn∑

k=1

ϕn,kTn,kkfk , Unf =
Nn∑

k,`=1

ϕn,kUn,k`f` , An = Tn − Un , (70)

again with f =
∑Nn

k=1 fkϕn,k. For notational convenience, we also define the matrices
P α,n by

PnKαf =
Nn∑

k,`=1

ϕn,k
1

|In,k|
∫

In,k

∫

In,`

u(x, y)

w(y) + α
dy dxf` =:

Nn∑

k,`=1

ϕn,kPα,n,k`f` . (71)

The eigenvalue equation to be solved is

(An + λn)pn = 0 , (72)

which is equivalent to
(An + λn)pn = 0 , (73)

where pn =
∑Nn

k=1 pn,kϕn,k ∈ Yn. With Kα,n = Un(Tn + α)−1, for α > −mink∈Nn w(tn,k),
and qn = (Tn + λn)pn also the eigenvalue equation

(Kλn,n − 1)qn = 0 (74)

is solved (and vice versa), cf. Lemma 1. (The inequality λn > −mink∈Nn w(tn,k) follows
from Theorem 1.)

For these procedures to be valid approximations, the first condition in (53), i.e.,
‖Kn−PnK‖Yn

→ 0, has to be true for K = Kλ and Kn = Un(Tn +λn)−1. This, however,
is not given automatically. Problems arise from the fact that in Kn the averaging defined
by Pn (or, more generally, the sampling) is applied to the enumerator and denominator
of kλn separately, whereas in PnK the quotient kλ is averaged as such. It turns out that
some additional requirements of uniform continuity are sufficient for the convergence.
This is made precise in the following two propositions.

Proposition 6. Suppose that the following conditions are true:

(S1) u(x, .) is uniformly continuous for all x ∈ R.
(S2) u(., y) is continuous for all y ∈ R.
(S3) (w + α)−1 is uniformly continuous for all α > 0.
(S4) There is a function wmin : R→ R≥0, satisfying

∫

R
sup
y∈R

u(x, y)

wmin(y) + α
dx < ∞ for all α > 0, (75)

and an n0 ∈ N such that w(y) ≥ wmin(y
′) for all n ≥ n0, ` ∈ Nn, and y, y′ ∈ In,`.
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Then, for K = Kα and Kn = PnU(PnT + α)−1 with any α > 0 and the projections
Pn from Proposition 4, the first condition in (53) is fulfilled, i.e., ‖Kn − PnK‖Yn

→ 0
as n → ∞. The same is true for Kn = Kα,n = Un(Tn + α)−1 with the more general
discretization from above if in addition to (S1)–(S4) the following condition is satisfied:

(S5) There is a function umax : R× R→ R≥0, satisfying
∫

R
sup
y∈R

umax(x, y)

wmin(y) + α
dx < ∞ for all α > 0, (76)

and an n1 ≥ n0 such that u(x, y) ≤ umax(x
′, y) for all n ≥ n1, k ∈ Nn, y ∈ R, and

x, x′ ∈ In,k.

Let us split the rather technical proof into a couple of digestible lemmas.

Lemma 8. If conditions (S1)–(S3) are true, then for every ε > 0 and every compact
interval I ⊂ R there is an n2 such that for all n ≥ n2 and all k, ` ∈ Nn with In,k ∩ I 6= ∅
we have

1

|In,`|

∣∣∣∣Pα,n,k` − Un,k`

Tn,`` + α

∣∣∣∣ <
ε

|I| . (77)

Proof: Let ε and I be given as above and I0 =
⋃

n∈N
⋃

k:In,k∩I 6=∅ In,k, which is a bounded

interval due to (I1) from Proposition 4. By assumptions (S1)–(S3), u and (w + α)−1 are
uniformly continuous on I0 × R and R, respectively. Further, (w + α)−1 is bounded by
α−1. Thus, there is an n2 such that, for every n ≥ n2 and k, ` ∈ Nn with In,k ∩ I 6= ∅,

∣∣∣∣
1

|In,k|
1

|In,`|
∫

In,k

∫

In,`

u(x, y)

w(y) + α
dy dx− u(tux

n,k`, t
uy
n,k`)

w(twn,`) + α

∣∣∣∣

=

∣∣∣∣∣
u(tkx

n,k`, t
ky
n,k`)

w(tky
n,k`) + α

− u(tux
n,k`, t

uy
n,k`)

w(twn,`) + α

∣∣∣∣∣

≤
∣∣∣∣∣
u(tkx

n,k`, t
ky
n,k`)

w(tky
n,k`) + α

− u(tux
n,k`, t

w
n,`)

w(twn,`) + α

∣∣∣∣∣ +
|u(tux

n,k`, t
w
n,`)− u(tux

n,k`, t
uy
n,k`)|

w(twn,`) + α
<

ε

|I| .

(78)

Here, the points tkx
n,k` ∈ In,k and tky

n,k` ∈ In,` are chosen such that the first equality holds,
which is possible due to the continuity of kα. From this the claim follows easily with (69)
and (71). ¤

Lemma 9. For every ε > 0 there is a compact interval I1 such that, for all intervals
I ⊃ I1 and all n ∈ N, ∑

k
In,k∩I=∅

|In,k|max
`∈Nn

Pα,n,k`

|In,`| < ε . (79)

Proof: Due to (U4) there is a compact interval I1 such that, for all I ⊃ I1,

∑

k
In,k∩I=∅

|In,k|max
`∈Nn

Pα,n,k`

|In,`| ≤
∑

k
In,k∩I=∅

|In,k| 1

|In,k|
∫

In,k

max
y∈R

u(x, y)

w(y) + α
dx

≤
∫

R\I1
max
y∈R

u(x, y)

w(y) + α
dx < ε .

(80)

¤
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Lemma 10. If condition (S4) is true, and if

(i) Un,k` =
|In,`|
|In,k|

∫
In,k

u(x, tuy
n,k`) dx for all k, ` ∈ Nn or

(ii) condition (S5) is fulfilled,
then for every ε > 0 there is a compact interval I2 such that, for all intervals I ⊃ I2 and
all n ∈ N, ∑

k
In,k∩I=∅

|In,k|max
`∈Nn

Un,k`

|In,`|(Tn,`` + α)
< ε . (81)

Proof: In case (i) we have, using (68),

∑

k
In,k∩I=∅

|In,k|max
`∈Nn

u(tux
n,k`, t

uy
n,k`)

w(twn,`) + α
=

∑

k
In,k∩I=∅

max
`∈Nn

∫
In,k

u(x, tuy
n,k`) dx

w(twn,`) + α

≤
∑

k
In,k∩I=∅

∫

In,k

max
y∈R

u(x, y)

wmin(y) + α
dx ≤

∫

R\I2
max
y∈R

u(x, y)

wmin(y) + α
dx < ε

(82)

for some compact interval I2, due to (S4), and all intervals I ⊃ I2. In case (ii) we can
find, due to (S5), a compact interval I2 such that, for all intervals I ⊃ I2,

∑

k
In,k∩I=∅

|In,k|max
`∈Nn

u(tux
n,k`, t

uy
n,k`)

w(twn,`) + α
≤

∑

k
In,k∩I=∅

|In,k|max
y∈R

u(tux
n,k`, y)

wmin(y) + α

≤
∑

k
In,k∩I=∅

max
y∈R

∫
In,k

umax(x, y) dx

wmin(y) + α
≤

∫

R\I2
max
y∈R

umax(x, y)

wmin(y) + α
dx < ε .

(83)

¤

Proof of Proposition 6: Let ε > 0 be given. Choose a compact interval I such that
I ⊃ I1∪ I2 with I1 and I2 from Lemmas 9 and 10, respectively. Let I3 =

⋃
n,k:In,k∩I 6=∅ In,k.

Further, let n0 be as in (S4), n1 as in (S5) (or n0 = n1 if not applicable), n2 as in Lemma
8, and n ≥ max{n0, n1, n2}. Then

‖PnKα −Kα,n‖Yn
= sup

f∈Yn

‖f‖Yn
≤1

Nn∑

k=1

|In,k|
∣∣∣∣∣

Nn∑

`=1

(
Pα,n,k` − Un,k`

Tn,`` + α

)
f`

∣∣∣∣∣

≤
( ∑

k
In,k∩I 6=∅

+
∑

k
In,k∩I=∅

)
|In,k|max

`∈Nn

1

|In,`|

∣∣∣∣Pα,n,k` − Un,k`

Tn,`` + α

∣∣∣∣

≤
∑

k
In,k∩I 6=∅

|In,k| ε

|I3| +
∑

k
In,k∩I=∅

|In,k|
(

max
`∈Nn

Pα,n,k`

|In,`| + max
`∈Nn

Un,k`

|In,`|(Tn,`` + α)

)
< 3ε

(84)

according to Lemmas 8–10. From this the claim follows. ¤
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Proposition 7. Let αn > −mink∈Nn w(tn,k) with αn → α > 0 as n → ∞ and the
hypotheses of Proposition 6 be satisfied. Then ‖Kαn,n − PnKα‖Yn

→ 0.

Proof: Consider

‖PnKα−Un(Tn + αn)−1‖Yn

≤ ‖PnKα − Un(Tn + α)−1‖Yn
+ ‖Un[(Tn + αn)−1 − (Tn + α)−1]‖Yn

.
(85)

The first term tends to zero as n →∞ according to Proposition 6. For the second, choose
n0 such that infn≥n0 αn > 0. Then, for n ≥ n0,

‖Un[(Tn + αn)−1 − (Tn + α)−1]‖Yn

= |α− αn| ‖Un(Tn + αn)−1(Tn + α)−1‖Yn
≤ |α− αn| ‖U‖Y ( inf

n≥n0

αn)−1α−1 . (86)

This vanishes as n → ∞ since all constants that occur are finite, from which the claim
follows. ¤

2.2.5 Convergence of eigenvalues and eigenvectors

Let us now show

Theorem 6. Let λ, p, λn, and pn be as in (7) and (73). Then

(a) limn→∞ λn = λ > 0 and
(b) limn→∞ ‖pn−p‖1 = 0, i.e., the probability measures corresponding to these densities

converge in total variation.

The plan is the same as described in Section 2.1.3. The proofs, however, are quite different
due to the more general setup.

Lemma 11. There is a constant M > 0 such that lim supn→∞ λn ≤ M .

Proof: Choose an α > 0 such that ‖Kα‖Y ≤ 1− ε for some 0 < ε < 1, which is possible
since ‖Kα‖Y → 0 for α → ∞. Then, due to Propositions 3 and 6, respectively, there
is an n0 such that |‖PnKα‖Y − ‖Kα‖Y | ≤ ε/3 and |‖Kα,n‖Yn

− ‖PnKα‖Yn
| ≤ ε/3 for all

n ≥ n0. For these n we have ρ(Kα,n) ≤ ‖Kα,n‖Yn
≤ ‖PnKα‖Yn

+ ε/3 ≤ ‖PnKα‖Y + ε/3 ≤
‖Kα‖Y + 2ε/3 ≤ 1 − ε/3 < 1 and thus λn < α by Lemma 2. Then, with M = α, the
claim follows. ¤

Lemma 12. lim infn→∞ λn > 0.

Proof: Similarly as in the proof of Lemma 5, we choose α > 0 such that ρ(Kα) ≥ 1 + ε
with a sufficiently small ε > 0. We know from the theorem of Jentzsch [Sch74, Thm. V.6.6]
that ρ(Kα) is a simple eigenvalue of Kα and the only one with a positive eigenfunction.
The same is true for ρ(Kα,n) with respect to Kα,n (as an operator in Yn). Theorem 4
together with Proposition 6 implies that there is a sequence of eigenvalues νn of Kα,n

with limit ρ(Kα). Therefore, lim infn→∞ ρ(Kα,n) ≥ ρ(Kα) ≥ 1 + ε and thus λn > α > 0
for sufficiently large n. From this the claim follows. ¤
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2. DISCRETIZATION

Proof of Theorem 6(a): From Lemma 11 and 12 we conclude that there is a con-
vergent subsequence (λni

)i with limit λ′ ∈ ]0,M ]. Then, due to Proposition 7, Kλni ,ni

converges to PnKλ′ in norm. Hence, with Theorem 4, limi→∞ ρ(Kλni ,ni
) = ρ(Kλni ,ni

) = 1
is an eigenvalue of Kλ′ . Furthermore, a subsequence of qni

converges to an eigenfunction
q̃ of Kλ′ , and q̃ ≥ 0 (but q̃ 6= 0). As there is only one non-negative eigenfunction, we
conclude λ′ = λ. Since this is true for every convergent subsequence of (λn), the claim
follows. ¤

Lemma 13. There are constants c1, c2 > 0 and an n0 ∈ N, such that, for every n ≥ n0,
0 < c1‖pn‖1 ≤ ‖qn‖1 ≤ c2‖pn‖1 holds.

Proof: Choose n0 according to Lemma 12 such that c1 := infn≥n0 λn > 0. One then
easily checks that, for n ≥ n0,

0 < c1‖pn‖1 = c1‖(PnT + λn)−1qn‖1 ≤ ‖qn‖1

= ‖(PnT + λn)pn‖1 = ‖PnUpn‖1 ≤ ‖U‖Y ‖pn‖1 =: c2‖pn‖1 .
(87)

¤

Lemma 14. If ‖qn‖1 → c holds, then also qn → c q/‖q‖1.

Proof: Due to the compactness of Kλ, there is a subsequence (qni
)i such that (Kλqni

)i

converges. Let q̃ denote its limit. Then

‖qni
−q̃‖1 ≤ ‖Kni

qni
− Pni

Kλqni
‖1 + ‖(Pni

Kλ −Kλ)qni
‖1 + ‖Kλqni

− q̃‖1

≤ ‖Kni
− Pni

Kλ‖Yni
‖qni

‖1 + ‖Pni
Kλ −Kλ‖Y ‖qni

‖1 + ‖Kλqni
− q̃‖1 → 0

(88)

due to Propositions 7 and 4. Therefore, we have limi→∞ qni
= q̃, with ‖q̃‖1 = c and q̃ ≥ 0

a.e. Now we continue as in the proof of Lemma 7. Consider

‖q̃ −Kλq̃‖1

≤ ‖q̃ −Kni
qni
‖1 + ‖Kni

− Pni
Kλ‖Yn

‖qni
‖1 + ‖Kλ‖Y ‖qni

− q̃‖1 + ‖Pni
Kλ −Kλ‖Y ‖q̃‖1 .

The first term vanishes for i →∞ due to Kni
qni

= qni
, the second and fourth according

to Propositions 7 and 4, respectively. Thus, q̃ is an eigenfunction of Kλ to the eigenvalue
1 and, according to Theorem 1, unique up to normalization, and hence q̃ = q. Since this
is true for all convergent subsequences, the claim follows (again due to the compactness
of Kλ). ¤

Proof of Theorem 6(b): With our choice ‖pn‖1 = 1 there is, due to Lemma 13, a
subsequence (qni

)i such that ‖qni
‖1 converges and has a strictly positive limit c. Thus,

according to Lemma 14, also qni
→ cq/‖q‖1 =: q̃ holds. Let n0 be sufficiently large such

that α := infn≥n0 λn > 0. Then, for n ≥ n0,

‖pn − (T + λ)−1q̃‖1 = ‖(PnT + λn)−1qn − (T + λ)−1q̃‖1

≤ ‖[(PnT + λn)−1 − (PnT + λ)−1]qn‖1

+ ‖(PnT + λ)−1(qn − q̃)‖1

+ ‖[(PnT + λ)−1 − (T + λ)−1]q̃‖1

≤ 1
αλ
|λ− λn|c2 + 1

λ
‖qn − q̃‖1 + 1

λ2‖(1− Pn)T q̃‖1 → 0 .

(89)
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With this, we have pni
→ (T + λ)−1q̃ in L1(I), and especially ‖(T + λ)−1q̃‖1 = 1, from

which c = ‖q‖1 follows. Therefore, each convergent subsequence of (qn)n converges to q
and thus, as in the proof of Lemma 14, the sequence itself. Together with what has just
been shown the claim follows. ¤

2.2.6 Comparison to the case of a compact genotype interval

Both approaches, the application of the Nyström method in the case of a compact geno-
type interval and of the Galerkin method in the case of an unbounded interval, effectively
lead to the same approximation procedure in our case of the COA model. First, one
chooses appropriate intervals In,k and points tn,k ∈ In,k (also for an unbounded interval the
use of identical points twn,k = tux

n,k` = tuy
n,`k = tn,k seems reasonable in many cases). Then,

the operators T and U from (4) and (5), respectively, are approximated by matrices T n

and Un, cf. (30), (31), and (69). For these, the eigenvalue problem (T n−Un +λn)pn = 0
is solved. Here, the eigenvectors pn are considered as probability densities on I. Then,
under the conditions described above, the eigenvalues λn converge to λ and the mea-
sures corresponding to the pn converge in total variation to the equilibrium genotype
distribution described by the solution p of the original problem (2).

The differences between the two approaches lie on the intermediate technical level
of the compact operators Kα and Kα,n and the solutions q and qn of the equivalent
eigenvalue problems (13), (27), and (52). Here, in the first case we have collectively
compact convergence Kλn,n

cc−→ Kλ going together with ‖qn − q‖∞ → 0, whereas in the
second case ‖PnKλ−Kλ‖Y → 0 in Y = L1(R) and ‖Kλn,n−PnKλ‖Yn

→ 0 in the subspaces
Yn going together with ‖qn − q‖1 → 0. On this level, neither does ‖Kλn,n −Kλ‖∞ → 0
hold in the first case, compare [Kre99, Thm. 12.8], nor any kind of collectively compact
convergence in the second.

Both methods may, strictly speaking, only be applied to continuous mutation ker-
nels u. This excludes, for example, Γ-distributions (reflected at the source type), where
u(x, y) ∝ |x − y|Θ−1 exp(−d |x − y|), which have poles for x = y if Θ ∈ ]0, 1[ and
d > 0. These distributions incorporate biologically desirable properties, such as strong
leptokurticity, and have been used, e.g., in [Hil82]. However, kernels as the above may
be approximated arbitrarily well by continuous ones in the sense that the norm of the
difference operator—and thus the difference of the largest eigenvalues—gets arbitrarily
small. Then, the procedures described here may be applied to these continuous kernels.

3 Towards a simple maximum principle

In Section I.3.4 a simple maximum principle was derived that characterizes the equilib-
rium mean fitness of the mutation–selection model with discrete genotypes. With the
results of the previous two sections, one can hope to transfer it, at least partially, to the
COA model. Some first results in this direction are presented in the rest of this section.
In Section 3.1, an upper bound for the mean fitness is given, which is valid if the mutation
kernel may be symmetrized by a multiplication operator. Then, a symmetric analog of
the equilibrium condition (2) exists, which involves the ancestral distribution. Section
3.2 is concerned with lower bounds. Here, weaker restrictions are sufficient, namely some
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kind of approximate local symmetrizability of the mutation kernel. Then, however, the
interpretation of the symmetrized system in terms of the ancestral distribution is lost
and—so far—no sharp upper bound can be proved.

In the mutation class limit of the discrete case, upper and lower bounds could be shown
to converge towards each other, which established the maximum principle. Therefore, a
natural question is whether there is an analogous limit for the COA model. So far,
the situation is clear only in the very restricted setting that the mutant distributions—
relative to the source type—are translationally invariant. The positive answer for this
case is discussed in Section 3.3. The numerical examples in Section 3.4, however, lead
to the conjecture that local symmetrizability is sufficient for the existence of a simple
maximum principle.

In this section we come back to the notational convention from Chapter I and use the
(non-compact) operator H = U − T , with T and U from (4) and (5), instead of A = −H
from (6).

3.1 An upper bound for the mean fitness

In the discrete case, the derivation of an upper bound for the mean fitness was based
on the symmetric equilibrium condition (I.30) around a local maximum of the ancestral
distribution. A similar argument is possible for the COA model—both with a compact
and with an unbounded genotype interval. As for the discrete model, the approach relies
on the possibility to symmetrize the operator H by means of a multiplication operator.
This is analyzed in the following

Proposition 8. Assume the notation from Section 1.1 and suppose the conditions from
Section 1.2 are true. Then there is a multiplication operator S, defined via a function
s ∈ C(I) by (Sf)(x) = exp(s(x))f(x), such that H̃ := SHS−1 is symmetric if and only
if the mutation kernel is of the form

u(x, y) = exp(β(x)) ũ(x, y) exp(−β(y)) (90)

with β ∈ C(I) and a continuous, symmetric function ũ : I × I → R≥0, ũ(x, y) = ũ(y, x).
In this case, s = −β + c with some c ∈ R and ũ is uniquely determined by

ũ(x, y) =
√

u(x, y)u(y, x) . (91)

For the proof we need the following

Lemma 15. Any function u : I × I → R≥0 with symmetric zeros, i.e., for which

u(x, y) = 0 ⇔ u(y, x) = 0 , (92)

can be written in the form

u(x, y) = ũ(x, y) exp(α(x, y)) (93)

with ũ : I × I → R≥0 being symmetric, ũ(y, x) = ũ(x, y), and α : I × I → R being anti-
symmetric, α(y, x) = −α(x, y). The function ũ is uniquely determined by the condition
ũ(x, y) =

√
u(x, y)u(y, x) and α(x, y) is only ambiguous for points where u(x, y) = 0. If

u is continuous, ũ is continuous as well and α is continuous at least where u > 0.
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Proof: Let ũ(x, y) =
√

u(x, y)u(y, x), which is continuous if u is. If ũ(x, y) > 0 let

α(x, y) = 1
2
(log u(x, y)− log u(y, x)). Then (93) holds as exp(α(x, y)) =

√
u(x, y)/u(y, x),

and α is continuous in a neighborhood of (x, y) if u is. Otherwise, (93) is trivially true
due to (92), and α(x, y) is arbitrary (and can thus be chosen anti-symmetric). Suppose
there are functions û and β with the same properties as ũ and α. Then these satisfy
ũ(x, y) =

√
û(x, y) exp(β(x, y))û(y, x) exp(β(y, x)) = û(x, y) and, if ũ(x, y) > 0, also

2α(x, y) = log û(x, y) + β(x, y)− log û(y, x)− β(y, x) = 2β(x, y). ¤

Proof of Proposition 8: Note first that, if s exists, it is required to be bounded and
thus both S and S−1 are bounded as operators in C(I) or L1(I). Further, the operator
H̃ is symmetric if and only if Ũ = SUS−1 is. With the notation from Lemma 15, which
is applicable since the symmetry of Ũ implies that u has symmetric zeros, this is the case
if and only if

exp(s(x)) ũ(x, y) exp(α(x, y)) exp(−s(y)) = exp(s(y)) ũ(y, x) exp(α(y, x)) exp(−s(x))
(94)

for all x, y ∈ I, with ũ satisfying (91). For ũ(x, y) > 0, this is equivalent to

α(x, y) = β(x)− β(y) (95)

with β = −s − c and any c ∈ R. Assume s exists as described. Then we have the
freedom to choose α according to (95) even for ũ(x, y) = 0. Conversely, if (90) is true,
any s = −β + c has the desired properties. ¤

If there is a symmetric H̃, the equivalent of the equilibrium condition (2) is

(
r(x)− u1(x)

)√
a(x) +

∫

I

√
u(x, y)u(y, x)

√
a(y) dy = λ

√
a(x) for all x ∈ I , (96)

which follows from multiplying (2) by exp(−β(x)) and letting
√

a(x) = exp(−β(x))p(x).
Here, the additive constant in β should be chosen such that a is a probability density,
i.e.,

∫
I
a(x) dx =

∫
I
(exp(−β(x))p(x))2 dx = 1. Indeed, a describes the ancestral distribu-

tion with the same interpretation as in Section I.2.3. Note that even in the case of an
unbounded genotype interval, if conditions (S1)–(S3) on page 49 are true, Proposition
1 can easily be generalized, which implies that p, and thus a, is continuous. Now, with
(96), an upper bound for λ can be established.

Theorem 7. Suppose there is an operator S as specified in Proposition 8 and, if the
genotype interval I is unbounded, that the ancestral density a is bounded and assumes its
supremum. Then an upper bound for the mean fitness λ is given by

λ ≤ sup
x∈I

(
r(x)− g(x)

)
(97)

with

g(x) =

∫

I

u(y, x) dy −
∫

I

√
u(x, y)u(y, x) dy . (98)

Proof: Choose x̂ such that a(x̂) = supx∈I a(x). Then, (96) with x = x̂ yields

λ ≤ (
r(x̂)− u1(x̂)

)
+

∫

I

ũ(x̂, y) dy = r(x̂)− g(x̂) ≤ sup
x∈I

(
r(x)− g(x)

)
. (99)

¤
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3.2 A lower bound for the mean fitness

In this section, we restrict ourselves to a compact genotype interval I and continuous
functions r and u. Furthermore, we need the mutation kernel to be symmetrizable—either
globally, which amounts to (90), or locally in some sense, as analyzed in Proposition 9
below. The latter requires u to be of the form

u(x, y) = exp
(
γ(y)(x− y)

)
h(y, |x− y|) (100)

or

u(x, y) = exp
(
γ
(

1
2
(x + y)

)
1
2
(x− y)

)
ũ(x, y) , (101)

where ũ(x, y) =
√

u(x, y)u(y, x) is symmetric.
In (100), each function h(y, .) : [0, |I|] → R≥0 describes the common shape of the

mutant distribution to the left and right of the source genotype y. Any asymmetry
between both sides may only be due to an exponential in the difference of the destination
genotype x and y, where the exponential factor γ may depend on y. Similarly, in (101), ũ
describes the symmetric part when interchanging x and y, and γ, here depending on the
arithmetic mean of x and y, may lead to some asymmetry. Although (100) and (101) are
quite strong restrictions, they allow for many biologically reasonable mutation kernels,
going beyond symmetric Gaussian and Γ-distributions (reflected about zero), which are
usually considered, cf. [Bür00, Fig. IV.2.1]. An example, also displaying different degrees
of asymmetry, is shown in the right panel of Figure 2 in Section 3.4 below.

The main result concerning lower bounds for the mean fitness is

Theorem 8. Consider the COA model as described by (2) with a compact genotype in-
terval I and continuous functions r and u. Suppose the mutation kernel is of the form
(90), (100), or (101). Let ε > 0 be given. Then, lower bounds for the mean fitness λ are
given by

λ ≥ r(z)− gε(z) (102)

with z such that Jz := [z − η/2, z + η/2] ⊂ I and

gε(z) = u1(z)− 2

∫ η
2

0

h(z, ξ) dξ + 2

∫ η
2

0

∫ η
2

ξ

|h(z, ζ)− h(z, η − ζ)| dζ dξ + ε . (103)

Here, the largest possible value of η > 0 depends on ε, r, and u and, in the cases (90)
and (101),

h(z, ξ) = ũ(z + ξ/2, z − ξ/2) . (104)

The strategy for the proof of Theorem 8 is based on the way we proceeded in the discrete
case (Section I.3.4). We look at small genotype intervals, for which the largest eigenvalues
of the corresponding local subsystems serve as lower bounds for λ. Their common length
η is chosen small enough such that the reproduction rates and mutant distributions can
be considered constant—up to a part that contributes less than a given ε to the largest
eigenvalue of the subsystem. For these (approximate) subsystems, a lower bound for the
largest eigenvalue can be given explicitly.
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First, we need some definitions. Let w0 = maxx∈I w(x), then H + w0 is a positive
operator. Furthermore, it is convenient to consider C(I) as a subspace of L∞(I), since
then, for a compact subinterval Jz = [z − η/2, z + η/2] ⊂ I, we can define the projection
onto the subspace L∞(Jz) as Pz : L∞(I) → L∞(I), f 7→ 1Jz

f and Az = PzAPz as the
corresponding restriction of an operator A in L∞(I). Then the following lemma ensures
that indeed λ + w0 = ρ(H + w0) ≥ ρ(Hz + w0).

Lemma 16. Let J denote a compact interval and let the operators A = MA + KA and
B = MB + KB on L∞(J) be given in terms of multiplication operators MA, MB and
kernel operators KA, KB. Suppose

(MA,Bf)(x) = mA,B(x)f(x) and (KA,Bf)(x) =

∫

J

kA,B(x, y)f(y) dy (105)

with bounded, measurable functions mA,B, kA,B satisfying the inequalities 0 ≤ mA ≤ mB

and 0 ≤ kA ≤ kB. Then ρ(A) ≤ ρ(B).

Proof: Due to the properties of mA,B and kA,B, both A and B are positive operators
that satisfy A ≤ B by assumption, i.e., Af ≤ Bf for every f ≥ 0 (a.e.). An immediate
consequence is that ‖An‖∞ ≤ ‖Bn‖∞ for every n ∈ N. Thus,

ρ(A) = lim
n→∞

‖An‖1/n
∞ ≤ lim

n→∞
‖Bn‖1/n

∞ = ρ(B) , (106)

compare [Rud91, Thm. 10.13]. (See [Kra72, Thm. 5.3] for a more general result.) ¤

From now on we need to distinguish the three cases of symmetrizability. For global
symmetrizability (90), we consider H̃z and want to split it into a part Dz with constant
‘diagonals’8 and a small remainder Rz. Similarly, in the remaining cases, Hz shall be split
into a symmetrizable Dz plus a remainder Rz. Both Dz and Rz consist of a multiplication
and a kernel part, Dz = MDz + KDz and Rz = MRz + KRz with

(MDzf)(x) = 1Jz
(x) mDz(x) f(x) ,

(KDzf)(x) = 1Jz
(x)

∫

Jz

kDz(x, y)f(y) dy ,
(107)

and similarly for Rz. The multiplication part is the same in all cases (and constant),

mDz ≡ r(z)− u1(z) , (108)

the kernel part differs:

kDz(x, y) =





ũ
(
z + 1

2
(x− y), z − 1

2
(x− y)

)
for (90)

u
(
z + x− y, z

)
for (100)

u
(
z + 1

2
(x− y), z − 1

2
(x− y)

)
for (101)

(109)

8This is a matrix analogy, meaning that, with respect to (107), mDz is a constant function and
kDz (x + d, y + d) = kDz (x, y) for all x, y ∈ Jz and all appropriate d.
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In order to determine the appropriate length η of the subintervals, let ε > 0 be given.
Due to the continuity of r and u there is an η > 0 such that, for all z ∈ I with Jz ⊂ I
and x, y ∈ Jz, we have |(r − u1)(x)− (r − u1)(z)| ≤ ε/2 and, depending on the case,

|ũ(x, y)− ũ(z + 1
2
(x− y), z − 1

2
(x− y))|

|u(x, y)− u(z + x− y, z)|
|u(x, y)− u(z + 1

2
(x− y), z − 1

2
(x− y))|



 ≤ ε

2|I| . (110)

Usually, one will choose η as large as possible. In all cases,

|mRz(x)| ≤ ε

2
and |kRz(x, y)| ≤ ε

2|I| . (111)

This leads to

Lemma 17. ρ(Rz) ≤ ε.

Proof: With (111) one derives

ρ(Rz) ≤ ‖Rz‖∞ ≤ ‖MRz‖∞ + ‖KRz‖∞ , (112)

where

‖KRz‖∞ = sup
‖f‖∞≤1

sup
x∈I

1Jz
(x)

∣∣∣∣
∫

Jz

kRz(x, y)f(y) dy

∣∣∣∣ ≤
ε|Jz|
2|I| ≤

ε

2
(113)

and ‖MRz‖∞ ≤ ‖mRz‖∞ ≤ ε
2
. ¤

We know from Proposition 8 that H is globally symmetrizable if and only if u is of
the form (90). An analog for local symmetrizability with the last two cases in (109) is

Proposition 9. Let Dz be given by (107), (108), and either of the last two cases in (109).
There is a multiplication operator Sz, defined by Szf = exp(sz)f , with sz ∈ C(Jz), such
that D̃z := SzDzS

−1
z is symmetric if and only if the mutation kernel is of the form (100)

or (101), respectively. Then, the sz can be chosen as sz(x) = −γ(z)x+ c with any c ∈ R.

Proof: By Proposition 8, applied to the subinterval Jz, the local symmetry condition is

kDz(x, y) = exp(βz(x)− βz(y)) k̃Dz(x, y) . (114)

The translational invariance of kDz , i.e., kDz(x + d, y + d) = kDz(x, y), and the symmetry
of k̃Dz imply

βz(x) = γ(z)x , k̃Dz(x, y) = h(z, |x− y|) , (115)

with some γ(z) ∈ R and some continuous function h(z, .) : [0, η] → R≥0. For the second
case in (109), we have u(x, y) = kDy(x, y), and, for the last case, u(x, y) = kDz(x, y) with
z = 1

2
(x + y). Inserting this into (114) and using (115) yields (100), respectively

u(x, y) = exp
(
γ
(

1
2
(x + y)

)
1
2
(x− y)

)
h
(

1
2
(x + y), |x− y|) . (116)

Since, in the latter case, the last factor is the general form of a symmetric function ũ(x, y),
this is equivalent to (101). In both cases, obviously, sz(x) = −γ(z)x + c, with any c ∈ R,
symmetrizes Dz. ¤
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With this we are ready to show

Proposition 10. If H is globally or locally symmetrizable then

ρ(Hz + w0) ≥ ρ(Dz + w0)− ε . (117)

For the proof, we first recall

Lemma 18. Let A and B be symmetric operators. Then the triangle inequality holds
for the spectral radius, i.e., ρ(A + B) ≤ ρ(A) + ρ(B) and ρ(A−B) ≥ |ρ(A)− ρ(B)|.

Proof: For symmetric operators A, the spectral radius ρ(A) coincides with the L2 op-
erator norm

‖A‖2 = sup
06=f∈L2(J)

‖Af‖2

‖f‖2

, (118)

see, e.g., [Heu92, Thms. 29.5, 112.6], from which the claim follows. ¤

Proof of Proposition 10: For operators K with kernel k, define the symmetric kernel
k∧(x, y) = k(x, y) ∧ k(y, x), where x ∧ y denotes the minimum of x and y, and let K∧

denote the corresponding kernel operator. If A is the sum of a multiplication operator
MA and a kernel operator KA, let A∧ = MA + (KA)∧. For the sake of brevity, we now
treat both global and local symmetrizability simultaneously. To this end, let D̃z = Dz,
R̃z = Rz for global and D̃z, R̃z as in Proposition 9 for local symmetrizability. As an
exception, H̃z is defined as (H̃)z = PzSHS−1Pz for global symmetrizability with S from
Proposition 8. Then, since similarity transforms do not change the spectrum, Lemma 16
leads to

ρ
(
Hz + w0

)
= ρ

(
H̃z + w0

)
= ρ

(
D̃z + w0 + R̃z

) ≥ ρ
(
D̃z + w0 + (R̃z)

∧) . (119)

Both D̃z and (R̃z)
∧ are symmetric, so Lemma 18 applies and

ρ
(
D̃z +w0 +(R̃z)

∧) ≥ ρ
(
D̃z +w0

)−ρ
(
(R̃z)

∧) ≥ ρ
(
D̃z +w0

)−ε = ρ
(
Dz +w0

)−ε , (120)

which, together with (119), proves the claim. ¤

With the following proposition we have a lower bound for ρ(Dz + w0) and are finally
able to prove Theorem 8.

Proposition 11. Let K be the symmetric kernel operator given by

(Kf)(x) =

∫

J

h(|x− y|)f(y) dy , (121)

where J is a compact interval of length η and 0 ≤ h ∈ C([0, η]). Then

ρ(K) ≥ 2

∫ η
2

0

h(ξ) dξ − 2

∫ η
2

0

∫ η
2

ξ

|h(ζ)− h(η − ζ)| dζ dξ . (122)
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Proof: Let ĥ(ξ) = h(ξ ∧ (η − ξ)) for ξ ∈ [0, η] and

(K̂f)(x) =

∫

J

ĥ(|x− y|)f(y) dy . (123)

It is easy to see that ρ(K̂) = 2
∫ η

2

0
h(ξ) dξ and that this is an eigenvalue with any constant

function as eigenfunction.9 Since K and K̂ are symmetric, Lemma 18 yields

ρ(K) ≥ ρ(K̂)− ρ(K̂ −K) . (124)

The operator K̂−K can be regarded as a Hille–Tamarkin operator from Lq(J) to Lp(J),
with any 1 ≤ p, q ≤ ∞. So, its spectral radius is bounded by the appropriate Hille–
Tamarkin norm

.


pq. For p = 1 and q = ∞ this leads to

ρ(K̂ −K) ≤K̂ −K


1∞ =

∫

J

∫

J

∣∣ĥ(|x− y|)− h(|x− y|)
∣∣ dy dx

= 2

∫ η
2

0

∫ η
2

ξ

∣∣h(ζ)− h(η − ζ)
∣∣ dζ dξ ,

(125)

from which the claim follows. ¤

Proof of Theorem 8: Let ε > 0 be given and η > 0 be chosen as above. Then we
have, in any of the three cases and for every compact interval Jz ⊂ I as above,

λ + w0 = ρ(H + w0) ≥ ρ(Hz + w0) ≥ ρ(Dz + w0)− ε

≥ r(z)− u1(z) + 2

∫ η
2

0

h(z, ξ) dξ − 2

∫ η
2

0

∫ η
2

ξ

|h(z, ζ)− h(z, η − ζ)| dζ dξ − ε + w0

= r(z)− gε(z) + w0

due to Lemma 16 and Propositions 10 and 11. ¤

3.3 An exact limit

In Sections 3.1 and 3.2, upper and lower bounds for the mean fitness have been derived.
Here, we discuss the question whether there is a limit in which these bounds converge
towards each other and establish a simple maximum principle—analogously to the mu-
tation class limit of the model with discrete genotypes. More precisely, we introduce a
parameter ν ≥ 1, which we let go to infinity, and replace the mutation kernel u by uν ,
where ν = 1 reproduces u. In the most general case, we want this limit to have the
following properties.

9To some extent, K and K̂ are operator analogs of a Toeplitz and a circulant matrix, see, e.g., [Gra01].
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(E1) The uν remain globally symmetrizable, such that in each case the upper bound
from Theorem 7 is valid.10

(E2) Theorem 8 is applicable for every ν and the supremum of the lower bounds converges
to the limit of the upper bounds.

It is not clear whether there is a solution to this general case, which I will there-
fore leave for future work. However, things get much simpler if one adds the following
additional assumption, which is also biologically desirable.

(E3) The total mutation rates
∫

I
uν(y, x) dy remain constant, i.e., equal to u1(x).

This requires uν(x, y) to be proportional to u(Aν,y(x), y) with an affine transformation
Aν,y : x 7→ α(ν, y)x + δ(ν, y) for which A−1

ν,y(I) ⊂ I, so in particular α(ν, y) ≥ 1. Since we
are only interested in the limit ν →∞, the scale factor α can be chosen proportional to
ν, i.e., α(ν, y) = ν α(y). Further, we want Aν,y(y) = y, thus δ(ν, y) = −(ν α(y)− 1)y. So
our candidate is

uν(x, y) = ν u
(
y + ν α(y)(x− y), y

)
, (126)

where we set u(x, y) = 0 for (x, y) 6∈ I × I.
Next, due to (E1), all uν must be of the form (90). This implies a constant α(y),

without loss of generality α ≡ 1, linearity of β, β(x) = γ x, and translational invariance
of ũ, ũ(x, y) = h(|x− y|). Thus

u(x, y) = exp(γ (x− y)) h(|x− y|) , (127)

uν(x, y) = ν exp(ν γ (x− y)) h(ν |x− y|) . (128)

This is, of course, a strong restriction since the shape h and the exponential asymmetry
factor γ do not depend on the source genotype y. However, (127) describes a subclass
of the random-walk mutation model introduced by Crow and Kimura [Cro64], which
received considerable attention, see also [Bür00, IV.2].

Given an ε > 0, the largest possible value of η would, in general, depend on ν as
well, cf. (110). Due to the translational invariance of u in this case, however, it is solely
determined by r and u1. Thus, we can choose εν , with εν → 0 as ν →∞, in a way that
the corresponding largest value of η, denoted by ην , is not smaller than |I|/ν. Then, for
every z with Iz,ν = [z − |I|/ν, z + |I|/ν] ⊂ I and every η ∈ [|I|/ν, ην ],

2

∫ η
2

0

ν h(νξ) dξ ≡
∫

I

√
u(x, z)u(z, x) dx (129)

and

∫ η
2

0

∫ η
2

ξ

ν |h(νζ)− h(νη − νζ)| dζ dξ =

∫ η
2

0

∫ η
2

ξ

ν h(νζ) dζ dξ =

∫ η
2

0

∫ ν η
2

νξ

h(ζ) dζ dξ

=

∫ ν η
2

0

∫ ζ
ν

0

h(ζ) dξ dζ =

∫ ν η
2

0

ζ

ν
h(ζ) dζ ≤ |I|

ν

∫ |I|

0

h(ζ) dζ → 0 . (130)

10Alternatively, one may try to find an upper bound based on weaker conditions.
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Accordingly,

lim
ν→∞

λν ≥ lim
ν→∞

(
sup

Iz,ν⊂I

(
r(z)− g(z)

)
+ εν

)
= sup

z∈I

(
r(z)− g(z)

)
(131)

with g being the limit ν → ∞ from (98), so (E2) is fulfilled. This, together with (E1),
establishes—in this restricted setting—a simple maximum principle for the mean fitness,

lim
ν→∞

λν = sup
z∈I

(
r(z)− g(z)

)
. (132)

Note that the function g, however, is constant due to (E3), (129), and (130).
In any case, if (132) holds and the equilibrium can be characterized by (96) in terms

of the ancestral distribution, g again has the interpretation of a mutational loss function.
This can be seen by following the arguments made for the model with discrete genotypes
in Proposition I.1. Starting from (96), one first shows that r̂ν =

∫
I
r(x)aν(x) dx → r(x̂),

if the maximum in (132) is uniquely attained at x̂. Then, one considers the mutational
loss

gν = r̂ν − r̄ν =

∫

I

∫

I

√
aν(x)

√
uν(x, y) uν(y, x)

√
a(y) dx dy (133)

with r̄ν = λν , cf. Section I.2.5. Since r̄ν → r(x̂) − g(x̂) and r̂ν → r(x̂), it follows that
gν → g(x̂).

3.4 Numerical tests

In the previous section, a limiting procedure was defined in which the upper and lower
bounds derived in Sections 3.1 and 3.2 could be shown to converge towards each other
and establish a simple maximum principle for the equilibrium mean fitness (132). This,
however, was restricted to a special case (127), which is quite unsatisfactory. It is therefore
interesting to check numerically if there is hope to generalize these results at least to the
cases with a locally symmetrizable mutation kernel discussed in Section 3.2. With the
results from Section 2, such a numerical treatment rests on solid grounds, since the
continuous models in question can be approximated by discrete ones arbitrarily well and
one does not have to fear numerical artefacts.

Let us consider a standard example first, the COA model with quadratic fitness,

r(x) = −x2 , (134)

and a Gaussian mutant distribution, i.e., u as defined in (127) with

h(|x− y|) = µ
1√
2πσ

exp

(
−|x− y|2

2σ2

)
. (135)

Then the multiplication by exp(γ(x− y)) in (127) simply leads to a shift in the Gaussian
and a modification of its normalization. In this case, the function g is constant (as noted
above) and evaluates to

g(x) ≡ exp(1
2
γ2σ2)− 1 . (136)
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Figure 1: The COA model on I = [−1, 1] with quadratic fitness (134) and a Gaussian mutant
distribution (135) with σ = 0.05 and γ = 10. The left panel compares the equilibrium mean
fitness r̄ = λ (left axis) and mean genotype x̄ =

∫
I x p(x) dx (right axis) of different values of

ν to the predictions according to (132), the maximum principle (solid line). The right panel
shows the genotype distribution at µ = 1 getting narrower for increasing values of ν. Dashed
lines refer to ν = 1, dotted lines to ν = 10, and solid lines to ν = 100. The latter are, in the
left panel, indistinguishable from the predictions of (132).

Some results for I = [−1, 1], σ = 0.05, and γ = 10 are shown in Figure 1. The maximum
principle predicts the mean fitness r̄ = λ and the mean genotype x̄ =

∫
I
x p(x) dx already

with good accuracy for ν = 10, and almost perfectly for ν = 100. For ν = 1 and r̄, the
agreement is less satisfactory but still qualitatively right.

As a second example, let us again consider quadratic fitness (134), but a locally
symmetrizable mutation kernel of the form (100) with

γ(y) = −10(y − 1
2
) and h(y, |x− y|) = µ

|x− y|
2σ2

exp

(
−|x− y|2

2σ2

)
. (137)

Here, the function g involves the error function,

g(x) =

√
π

2
|γ(x)|σ exp

(
γ(x)2σ2

2

)
erf

( |γ(x)|σ√
2

)
− 1 . (138)

Figure 2 shows some results for I = [−1, 1] and σ = 0.05. In this case, the predictions
have the same accuracy as in the previous example, besides for ν = 1 and r̄, where they
are yet less accurate.

As a last example, Figure 3 shows results for the COA model with the mutation kernel
from the previous example (137), hence also the g from (138), but the fitness function

r(x) =
1− tanh(20(x2 − 0.1))

1 + tanh(2)
, (139)

depicted in the right panel, again for I = [−1, 1] and σ = 0.05. The steep cline of the
fitness function leads to reduced accuracy for both r̄ and x̄. But, again, for ν = 100 a
difference to the predictions can hardly be seen.
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Figure 2: The COA model on I = [−1, 1] with quadratic fitness (134) and a mutation kernel of
the form (100) with (137) and σ = 0.05. The left panel compares the equilibrium mean fitness
r̄ (left axis) and mean genotype x̄ (right axis) of different values of ν to the predictions of the
maximum principle (solid line). Dashed lines refer to ν = 1, dotted lines to ν = 10. Again,
the case ν = 100 is indistinguishable from the predictions of (132). The right panel shows the
mutant distributions u(x, y) for ν = 1 and y = −0.2, 0.5, and 0.9, for which the effect of the
different asymmetry parameters γ(−0.2) = 7, γ(0.5) = 0, and γ(0.9) = −4 is clearly visible.
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Figure 3: The COA model on I = [−1, 1] with the fitness function (139), shown in the right
panel, and a mutation kernel of the form (100) with (137) and σ = 0.05. The left panel compares
the equilibrium mean fitness r̄ (left axis) and mean genotype x̄ (right axis) of different values of
ν to the predictions of the maximum principle (solid line). Dashed lines refer to ν = 1, dotted
lines to ν = 10, and dashed-dotted lines to ν = 100.
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All these examples make it tempting to conjecture that also for local symmetrizability—
at least with (100)—the maximum principle becomes exact in the limit ν →∞.
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III

Models for unequal crossover

1 The unequal crossover model

This chapter is mainly concerned with a class of models for unequal crossover (UC),
originally investigated by Shpak and Atteson [Shp02] for discrete time, which is built on
preceding work by Ohta [Oht83] and Walsh [Wal87] (see [Shp02] for further references).
Starting from their results, we prove various existence and uniqueness theorems and
analyze the convergence properties, both in discrete and in continuous time. In this
model class, one considers individuals whose genetic sequences contain a section with
repeated units. These may vary in number i ∈ N0, where i = 0 is explicitly allowed,
corresponding to no unit being present (yet). The composition of these sections (with
respect to mutations that might have occurred) and the rest of the sequence are ignored.

In the course of time, recombination events take place in which a random pair of
individuals is formed and their respective sections are randomly aligned, possibly imper-
fectly with ‘overhangs’. Then, both sequences are cut at a common position between
two building blocks and their right (or left) fragments are interchanged. This so-called
unequal crossover is schematically depicted in Figure 1. Obviously, the total number of
relevant units is conserved in each event.

We assume the population size to be (effectively) infinite.1 Then, the population is
described by a probability measure p ∈ M+

1 (N0), which we identify with an element
p = (pk)k∈N0

in the appropriate subset of `1(N0). Since we will not consider any genotype
space other than N0 in this chapter, reference to it will be omitted in the sequel. These
spaces are complete in the metric derived from the usual `1 norm, which is the same as
the total variation norm here. The metric is denoted by

d(p, q) = ‖p− q‖1 =
∑

k≥0

|pk − qk| . (1)

With this notation, the above process is described by the recombinator

R(p)i =
1

‖p‖1

∑

j,k,`≥0

Tij,k` pk p` . (2)

Here, Tij,k` ≥ 0 denotes the probability that a pair (k, `) turns into (i, j), so, for normal-
ization, we require ∑

i,j≥0

Tij,k` = 1 for all k, ` ∈ N0. (3)

1Concerning finite populations, see the remarks in Section 7.
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Figure 1: An unequal crossover event as described in the text. Rectangles denote the rele-
vant blocks, while the dashed lines indicate possible extensions with other elements that are
disregarded here.

The factor pk p` in (2) describes the probability that a pair (k, `) is formed, i.e., we assume
that two individuals are chosen independently from the population. We generally assume
that Tij,k` is symmetric with respect to both index pairs, Tij,k` = Tji,k` = Tij,`k, which is
reasonable. Then, the summation over j represents the breaking-up of the pairs after the
recombination event. These two ingredients of the dynamics constitute what is known as
(instant) mixing and are responsible for the quadratic nature of the iteration process.

As mentioned above, we will only consider processes that conserve the total copy
number in each event, i.e., T

(q)
ij,k` > 0 for i+j = k+` only. Together with the normalization

(3) and the symmetry condition from above, this yields the weaker condition

∑
i≥0

i Tij,k` =
∑
i,j≥0

i + j

2
Tij,k` =

k + `

2
, (4)

which implies conservation of the mean copy number in the population,

∑
i≥0

iR(p)i =
∑

i,j,k,`≥0

i T
(q)
ij,k` pk p` =

∑

k,`≥0

k + `

2
pk p` =

∑

k≥0

k pk . (5)

Condition (3) and the presence of the prefactor 1/‖p‖1 in (2) make R norm non-
increasing and positive homogeneous of degree 1, i.e., R satisfies ‖R(x)‖1 ≤ ‖x‖1 and
R(ax) = |a|R(x), for x ∈ `1 and a ∈ R. Furthermore, R is a positive operator with
‖R(x)‖1 = ‖x‖1 for all positive elements x ∈ `1. Thus, it is guaranteed that R maps
M+

r , the space of positive measures of mass r, which is complete in the topology induced
by the norm ‖.‖1, i.e., by the metric d from (1), into itself. (For r = 1, of course, the
prefactor is redundant but ensures numerical stability of an iteration with R.)

Given an initial configuration p0 = p(t = 0), the dynamics may be taken in discrete
time steps, with subsequent generations,

p(t + 1) = R(p(t)) , t ∈ N0 . (6)

Our treatment of this case will be set up in a way that also allows for a generalization of
the results to the analogous process in continuous time, where generations are overlapping,

d
dt

p(t) = % (R− 1)(p(t)) , t ∈ R≥0 . (7)

Obviously, the (positive) parameter % in (7) only leads to a rescaling of the time t. We
therefore choose % = 1 without loss of generality. Furthermore, it is easily verified that
the fixed points of (6) are in one-to-one correspondence with the equilibria2 of (7).

2In the sequel, we will use the term fixed point for both discrete and continuous dynamics.
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In the UC model, one distinguishes ‘perfect’ alignments, in which each unit in the
shorter sequence has a partner in the longer sequence, and ‘imperfect’ alignments, with
‘overhangs’ of the shorter sequence. The first are taken to be equally probable, the latter
penalized by a factor qd relative to the first, where q ∈ [0, 1] is a model parameter and
d the length of the overhang (at most the entire length of the shorter sequence; in the
example of Figure 1, we have d = 1). In the extreme case q = 0, only perfect alignments
may occur, whereas for q = 1 overhangs are not penalized at all. For obvious reasons,
the first case is dubbed internal UC, the second random UC [Shp02].

In compact notation, this leads to the transition probabilities

T
(q)
ij,k` = C

(q)
k` δi+j,k+` (1 + min{k, `, i, j}) q0∨(k∧`−i∧j) , (8)

where k ∨ ` := max{k, `}, k ∧ ` := min{k, `}, and 00 = 1. The C
(q)
k` are chosen such that

(3) holds, i.e.,
∑

i,j≥0 T
(q)
ij,k` = 1, and are hence symmetric in k and `. Explicitly, they read

(see also [Shp02, Sec. 2.1])

C
(q)
k` =

(1− q)2

(k ∧ ` + 1)(|k − `|+ 1)(1− q)2 + 2q(k ∧ `− (k ∧ ` + 1)q + qk∧`+1)
. (9)

Note further that the total number of units is indeed conserved in each event and that
the process is symmetric within both pairs. Hence (4) is satisfied.

The aim of this chapter is to find answers to the following questions:

1. Are there fixed points of the dynamics?
2. Given the mean copy number m, is there a unique fixed point?
3. If so, under which conditions and in which sense does an initial distribution converge

to this fixed point?

Of course, the trivial fixed point with p0 = 1 and pk = 0 for k > 0 always exists, which
we generally exclude from our considerations. But even then, the answer to the first
question is positive for general operators of the form (2) satisfying (3) and some rather
natural further condition. This is discussed in Section 2. For the extreme cases q = 0
(internal UC) and q = 1 (random UC), fixed points are known explicitly for every m
and it has been conjectured that, under mild conditions, also questions 2 and 3 can be
answered positively for all values of q ∈ [0, 1] [Shp02]. Indeed, for both extreme cases,
norm convergence of the population distribution to the fixed points can be shown, which
is done in Sections 3 and 5, respectively. Since the dynamical systems involved are infinite
dimensional, a careful analysis of compactness properties is needed for rigorous answers.
The proofs for q = 1 are based on alternative representations of probability measures via
generating functions, presented in Section 4. For the intermediate parameter regime, we
can only show that there exists a fixed point for every m, but neither its uniqueness nor
convergence to it, see Section 6. Some remarks in Section 7 conclude this chapter.
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2 Existence of fixed points

Let us begin by stating the following general fact.

Proposition 1. If the recombinator R of (2) satisfies (3), then the global Lipschitz
condition

‖R(x)−R(y)‖1 ≤ C‖x− y‖1 (10)

is fulfilled, with constant C = 3 on `1, respectively C = 2 if x, y ∈Mr.

Proof: Let x, y ∈ `1 be non-zero (otherwise the statement is trivial). Then

‖R(x)−R(y)‖1 =
∑
i≥0

∣∣∣∣∣
∑

j,k,`≥0

Tij,k`

(
xk x`

‖x‖1

− yk y`

‖y‖1

)∣∣∣∣∣

≤
∑

k,`≥0

∣∣∣∣
xk x`

‖x‖1

− yk y`

‖y‖1

∣∣∣∣
∑
i,j≥0

Tij,k` =
∑

k,`≥0

∣∣∣∣
xk x`

‖x‖1

− xk y`

‖x‖1

+
xk y`

‖x‖1

− yk y`

‖y‖1

∣∣∣∣

≤
∑

k,`≥0

( |xk|
‖x‖1

|x` − y`|+ |y`|
∣∣∣∣

xk

‖x‖1

− yk

‖y‖1

∣∣∣∣
)

= ‖x− y‖1 +
1

‖x‖1

∥∥‖y‖1x− ‖x‖1y
∥∥

1
.

The last term becomes

1

‖x‖1

∥∥‖y‖1x− ‖x‖1y
∥∥

1
=

1

‖x‖1

∥∥(‖y‖1 − ‖x‖1)x + ‖x‖1(x− y)
∥∥

1
≤ 2‖x− y‖1 , (11)

from which ‖R(x)−R(y)‖1 ≤ 3‖x− y‖1 follows for x, y ∈ `1. If x, y ∈Mr, the above
calculation simplifies to ‖R(x)−R(y)‖1 ≤ 2‖x− y‖1. ¤

In continuous time, this is a sufficient condition for the existence and uniqueness of a
solution of the initial value problem (7), cf. [Ama90, Thms. 7.6 and 10.3]. Another useful
notion in this respect is the following.

Definition 1 [Ama90, Sec. 18]. Let Y be an open subset of a Banach space E and let
f : Y → E satisfy a (local) Lipschitz condition. A continuous function L from X ⊂ Y
to R is called a Lyapunov function for the initial value problem

d
dt

x(t) = f(x(t)) , x(0) = x0 ∈ X , (12)

if the orbital derivative L̇(x0) := lim inft→0+
1
t

(
L(x(t))− L(x0)

)
satisfies

L̇(x0) ≤ 0 (13)

for all initial conditions x0 ∈ X.

If further L̇(xF) = 0 for a single fixed point xF only, then L is called a strict Lyapunov
function. If a Lyapunov function exists, we have
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Theorem 1 [Ama90, Thm. 17.2 and Cor. 18.4]. With the notation of Definition 1, as-
sume that there is a Lyapunov function L, that the set X is closed, and that, for an
initial condition x0 ∈ X, the set {x(t) : t ∈ R≥0, x(t) exists} is relatively compact in X.
Then, x(t) exists for all t ≥ 0 and

lim
t→∞

dist(x(t), XL) = 0 , (14)

where XL denotes the largest invariant subset of {x ∈ X : L̇(x) = 0} (in forward and
backward time) and dist(x, XL) = infy∈XL

‖x− y‖.
Obviously, if L is a strict Lyapunov function, we have XL = {xF} and this theorem
implies d(x(t),xF) → 0 as t →∞.

Returning to the original question of the existence of fixed points, we now recall the
following facts, compare [Bil99, Shi96] for details.

Proposition 2 [Yos80, Cor. to Thm. V.1.5]. Assume the sequence
(
p(n)

) ⊂M+
1 to con-

verge in the weak-∗ topology (i.e., pointwise, or vaguely) to some p ∈M+
1 , i.e.,

lim
n→∞

p
(n)
k = pk for all k ∈ N0 , with pk ≥ 0 and

∑
k≥0 pk = 1 . (15)

Then it also converges weakly (in the probabilistic sense) and in total variation, i.e.,
limn→∞ ‖p(n) − p‖1 = 0.

Proposition 3. Assume that the recombinator R from (2) satisfies (3) and has a convex,
weak-∗ closed invariant set M ⊂M+

1 , i.e., R(M) ⊂ M , that is tight, i.e., for every ε > 0
there is an m ∈ N0 such that

∑
k≥m pk < ε for every p ∈ M . Then R has a fixed point

in M .

Proof: Prohorov’s theorem [Shi96, Thm. III.2.1] states that tightness and weak-∗ rel-
ative compactness are equivalent (see also [Bil99, Chs. 1.1 and 1.5]). In our case, M is
tight and weak-∗ closed, therefore, due to Proposition 2, norm compact. Further, M is
convex and R is (norm) continuous by Proposition 1. Thus, the claim follows from the
Leray–Schauder–Tychonov fixed point theorem [Ree80, Thm. V.19]. ¤

With respect to the UC model, we will indeed find such compact invariant subsets.

3 Internal unequal crossover

After these preliminaries, let us begin with the case of internal UC with perfect alignment
only, i.e., q = 0 in (8). This case is the simplest because, in each recombination event,
no sequences longer than the participating sequences can be formed. Here, on M+

1 , the
recombinator (2) simplifies to

R0(p)i =
∑

k,`≥0

k∧`≤i≤k∨`

pk p`

1 + |k − `| . (16)

From now on, we writeRq rather thanR whenever we look at a recombinator with (fixed)
parameter q. It is instructive to generalize the notion of reversibility (or detailed balance,
compare [Shp02, (4.1)]).
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Definition 2. We call a probability measure p ∈ M+
1 reversible for a recombinator R

of the form (2) if, for all i, j, k, ` ≥ 0,

Tij,k` pk p` = Tk`,ij pi pj . (17)

The relevance of this concept is evident from the following property.

Lemma 1. If p ∈M+
1 is reversible for R, it is also a fixed point of R.

Proof: Assume p to be reversible. Then, by (3),

R(p)i =
∑

j,k,`≥0

Tij,k` pk p` =
∑

j,k,`≥0

Tk`,ij pi pj = pi

∑
j≥0

pj = pi . (18)

¤

So, in our search for fixed points, we start by looking for solutions of (17). Since, for
q = 0, forward and backward transition probabilities are simultaneously non-zero only if
{i, j} = {k, `} ⊂ {n, n + 1} for some n, the components pk may only be positive on this
small set as well. By the following proposition, this indeed characterizes all fixed points
q = 0.

Proposition 4. A probability measure p ∈ M+
1 is a fixed point of R0 if and only if its

mean copy number m =
∑

k≥0 k pk is finite, pbmc = bmc+1−m, pdme = m+1−dme, and
pk = 0 for all other k. This includes the case that m is integer and pbmc = pdme = pm = 1.

Proof: The ‘if’ part was stated in [Shp02, Sec. 4.1] and follows easily by insertion into
(16) or (17). For the ‘only if’ part, let i denote the smallest integer such that pi > 0.
Then

R(p)i = p2
i + 2pi

∑

`≥1

pi+`

1 + `
= pi

(
pi + pi+1 +

∑

`≥2

2

` + 1
pi+`

)
≤ pi , (19)

where the last step follows since 2
`+1

< 1 in the last sum, with equality if and only if
pk = 0 for all k ≥ i + 2. This implies m < ∞ and the uniqueness of p (given m) with the
non-zero frequencies as claimed. ¤

It it possible to analyze the case of internal UC on the basis of the compact sets to
be introduced below in Section 4. However, as J. Hofbauer pointed out to us [Hofb], it
is more natural to start with a larger compact set to be introduced in (20). Our main
result in this section is thus

Theorem 2. Assume that, for the initial condition p(0) and fixed r > 1, the r-th mo-
ment exists,

∑
k≥0 krpk(0) < ∞. Then m =

∑
k≥0 k pk(0) is finite and, both in discrete

and in continuous time, limt→∞ ‖p(t)− p‖1 = 0 with the appropriate fixed point p from
Proposition 4.

The proof relies on the following lemma, which slightly modifies and completes the con-
vergence arguments of [Shp02, Sec. 4.1], puts them on rigorous grounds, and extends
them to continuous time.
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Lemma 2. Let r > 1 be arbitrary, but fixed. Consider the set of probability measures
with fixed mean m < ∞ and a centered r-th moment bounded by C < ∞,

M+
1,m,C = {p ∈M+

1 :
∑

k≥0

k pk = m, Mr(p) ≤ C} , (20)

equipped with (the metric induced by) the total variation norm, where

Ms(p) =
∑

k≥0

|k −m|s pk (21)

for s ∈ {1, r}. This is a compact and convex space. Both M1 and Mr satisfy the
inequality Ms(R0(p)) ≤ Ms(p), with equality if and only if p is a fixed point of R0.
Furthermore, M1 is a continuous mapping from M+

1,m,C to R≥0 and a Lyapunov function
for the dynamics in continuous time.

Proof: Let a sequence (p(n)) ⊂ M+
1,m,C be given and consider the random variables

f (n) = (k)k∈N0
on the probability spaces (N0,p

(n)). Their expectation values are equal to
m, which, by Markov’s inequality [Shi96, p. 599], implies the tightness of the sequence
(p(n)). Hence, by Prohorov’s theorem [Shi96, Thm. III.2.1] (see also [Bil99, Chs. 1.1
and 1.5]), it contains a convergent subsequence (p(ni)) (recall that, by Proposition 2,
norm and pointwise convergence are equivalent in this case). Let p̃ ∈ M+

1 denote its
limit and f̃ = (k)k∈N0

a random variable on (N0, p̃), to which the f (ni) converge in

distribution. Since r > 1, the f (ni) are uniformly integrable by Markov’s and Hölder’s
inequalities. Hence, due to [Kal97, Lem. 3.11], their expectation values, which all equal
m, converge to the one of f̃ , which is thus m as well. Now consider the random variables
g(ni) = g̃ = (|k−m|r)k∈N0

on (N0,p
(n)) and (N0, p̃), respectively. The expectation values

of the g(ni) are bounded by C, which, again by [Kal97, Lem. 3.11], is then also an upper
bound for the expectation value of g̃ (to which the g(ni) converge in distribution). This
proves the compactness of M+

1,m,C . The convexity is obvious.
With respect to the second statement, consider

Ms(R0(p)) =
∑
i≥0

∑

k,`≥0

k∧`≤i≤k∨`

|i−m|s
1 + |k − `| pk p`

=
∑

k,`≥0

pk p`

1 + |k − `|
1

2

k∨∑̀

i=k∧`

(|i−m|s + |k + `− i−m|s) .

(22)

For notational convenience, let j = k + `− i. We now show

|i−m|s + |k + `− i−m|s ≤ |k −m|s + |`−m|s . (23)

If {k, `} = {i, j}, then (23) holds with equality. Otherwise, assume without loss of
generality that k < i ≤ j < `. If m ≤ k or m ≥ `, we have equality for s = 1,3 but a

3This describes the fact that a recombination event between two sequences that are both longer or
both shorter than the mean does not change their mean distance to the mean copy number.
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strict inequality for s = r due to the convexity of x 7→ xr. In the remaining cases, the
inequality is strict as well. Hence, Ms(R0(p)) ≤ Ms(p) with equality if and only if p is
a fixed point of R0, since otherwise the sum in (22) contains at least one term for which
(23) holds as a strict inequality.

To see that M1 is continuous, consider a converging sequence (p(n)) in M+
1,m,C and the

random variables h(n) = (|k −m|)k∈N0
on (N0,p

(n)). As above, the latter are uniformly
integrable, from which the continuity of M1 follows. Since M1(p) is linear in p and thus
infinitely differentiable, so is the solution p(t) for every initial condition p0 ∈ M+

1,m,C ,
compare [Ama90, Thm. 9.5 and Rem. 9.6(b)]. Therefore, we have

Ṁ1(p0) = lim inf
t→0+

M1(p(t))−M1(p0)

t
= M1(R0(p0))−M1(p0) ≤ 0 ,

again with equality if and only if p0 is a fixed point. Thus, M1 is a Lyapunov function.
¤

Proof of Theorem 2. By assumption, the r-th moment of p(0) exists, which is equiv-
alent to the existence of the centered r-th moment by Minkowski’s inequality [Shi96, Sec.
II.6.6]. This obviously implies the existence of the mean m. By Lemma 2, p(t) ∈ Pα,δ

follows for all t ≥ 0, directly for discrete time and via a satisfied subtangent condition
[Mar76, Thm. VI.2.1] (see also [Ama90, Thm. 16.5]) for continuous time. In the discrete
case, due to the compactness of M+

1,m,C , there is a convergent subsequence (p(ti)) with
some limit p. Now consider the mean distance M1 to the mean copy number from (21).
If limt→∞ p(t) = p, we have, due to the continuity of M1 and R0,

M1(R0(p)) = lim
t→∞

M1(R0(p(t))) = lim
t→∞

M1(p(t + 1)) = M1(p) , (24)

thus p is a fixed point by Lemma 2. Otherwise, there are two convergent subsequences
(p(ti)), with limit p, and (p(si)), with limit q, which satisfy ti < si < ti+1. Then, we also
have M1(R0(p(ti))) ≥ M1(p(si)) and M1(R0(p(si))) ≥ M1(p(ti+1)), and therefore

M1(p) ≥ M1(R0(p)) = lim
i→∞

M1(R0(p(ti))) ≥ lim
i→∞

M1(p(si)) = M1(q)

≥ M1(R0(q)) = lim
i→∞

M1(R0(p(si))) ≥ lim
i→∞

M1(p(ti+1)) = M1(p) .
(25)

Thus, both p and q are fixed points by Lemma 2 and hence equal by Proposition 4. In
continuous time, the claim follows from Theorem 1 since M1 is a Lyapunov function by
Lemma 2. ¤

Note that, for q = 0, the recombinator can be expressed as R0(p)i =
∑i

j=0 πj,i−j

in terms of explicit frequencies πk,` of fragment pairs before concatenation (with copy
numbers k and `). However, we have, so far, not been able to use this for a simplification
of the above treatment.
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4 Alternative probability representations

In the following treatment, we will consider, as an alternative representation for a prob-
ability measure p ∈M+

1 , the generating function

ψ(z) =
∑

k≥0

pkz
k , (26)

for which ψ(1) = ‖p‖1 = 1 and the radius of convergence is at least 1. We will restrict
our discussion to such p for which lim supk→∞ k

√
pk < 1. Then, by Hadamard’s formula

[Rud86, 10.5], the radius of convergence, ρ(ψ) = 1/ lim supk→∞ k
√

pk, is larger than 1.
This is, biologically, no restriction since for any ‘realistic’ system there are only finitely
many non-zero pk (and thus ρ(ψ) = ∞). Mathematically, this condition ensures the
existence of all moments and enables us to go back and forth between the probability
measure and its generating function, even when looked at ψ(z) only in the vicinity of
z = 1 (see Proposition 6 below and [Shi96, Sec. II.12]). By abuse of notation, we define
the induced recombinator for these generating functions as

R(ψ)(z) =
∑

k≥0

R(p)k zk . (27)

In general, with the exception of the case q = 1, we do not know any simple expression
for R(ψ) in terms of ψ. Nevertheless, (27) will be central to our further analysis.

It is advantageous to use the local expansion around z = 1, written in the form

ψ(z) =
∑

k≥0

(k + 1)ak(z − 1)k , (28)

whose coefficients are given by

ak =
1

(k + 1)!
ψ(k)(1) =

1

k + 1

∑

`≥k

(
`

k

)
p` =: a(p)k ≥ 0 . (29)

In particular, a0 = 1 and a1 = 1
2

∑
`≥0 ` p`. This definition of ak is size biased, and will

become clear from the simplified dynamics for q = 1 that results from it. For the sake
of compact notation, we use a = (ak)k∈N0

both for the coefficients and for the mapping.
The coefficients a are elements of the following compact, convex metric space.

Definition 3. For fixed α and δ with 0 < α ≤ δ < ∞, let

Xα,δ = {a = (ak)k∈N0 : a0 = 1, a1 = α, 0 ≤ ak ≤ δk for k ≥ 2} . (30)

On this space, define the metric

d(a, b) =
∑

k≥0

dk|ak − bk| (31)

with dk = (γ/δ)k for some 0 < γ < 1
3
.
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Obviously, d is indeed a metric and Xα,δ is a convex set, i.e., η a + (1 − η)b ∈ Xα,δ for
all a, b ∈ Xα,δ and η ∈ [0, 1]. Note that we use the same symbol d as in (1) since it
will always be clear which metric is meant. The space Xα,δ is naturally embedded in the
Banach space (cf. [Wal98, Sec. 24.I])

Hγ/δ = {x ∈ RN0 : ‖x‖ < ∞} (32)

with the norm ‖x‖ =
∑

k≥0(γ/δ)k|xk|, for γ and δ as in Definition 3. In particular,
d(a, b) = ‖a− b‖. Further, we have the following two propositions.

Proposition 5. The space Xα,δ is compact in the metric d of (31).

Proof: In metric spaces, compactness and sequential compactness are equivalent, com-
pare [Lan93, Thm. II.3.8]. Therefore, let (a(n)) be any sequence in Xα,δ. By assumption,

a
(n)
0 ≡ 1 and a

(n)
1 ≡ α. Furthermore, every element sequence (a

(n)
k ) ⊂ [0, δk] has a con-

vergent subsequence. We now inductively define, for every k, a convergent subsequence

(a
(nk,i)

k ), with limit ak, such that the indices {nk,i : i ∈ N} are a subset of the preceding
indices {nk−1,i : i ∈ N}. This way, we can proceed to a ‘diagonal’ sequence (a(ni,i)). The
latter is now shown to converge to a = (ak), which is obviously an element of Xα,δ. To
this end, let ε > 0 be given. Choose m large enough such that

∑
k>m(2γ)k < ε/2, and

then i such that
∑m

k=0 dk|a(ni,i)
k − ak| < ε/2. Then

d(a(ni,i), a) =
m∑

k=2

dk|a(ni,i)
k − ak|+

∑

k>m

dk|a(ni,i)
k − ak| <

ε

2
+

∑

k>m

(2γ)k < ε , (33)

which proves the claim. ¤

Proposition 6. If lim supk→∞ k
√

pk < 1, the coefficients ak of (29) exist and a(p) ∈
Xα,δ with α = a(p)1 = 1

2
m = 1

2

∑
k≥0 k pk and some δ. Conversely, if p(a) ∈ Xα,δ for

some α, δ, one has lim supk→∞ k
√

pk < 1.

For a proof, we need the following

Lemma 3. Let f0(z) =
∑

k≥0 ckz
k be a power series with non-negative coefficients ck

and fx(z) =
∑

k≥0
1
k!

f
(k)
0 (x)(z − x)k the expansion of f0 around some x ∈ [0, ρ(f0)[.

Then ρ(f0) = x + ρ(fx), including the case that both radii of convergence are infinite.

Proof: The inequality ρ(fx) ≥ ρ(f0)−x immediately follows from the theorem of repre-
sentability by power series [Rud86, Thm. 10.16] since the open disc Bx(ρ(f0)−x) is entirely

included in B0(ρ(f0)). Consider the power series fxeiϕ(z) =
∑

k≥0
1
k!

f
(k)
0 (xeiϕ)(z − xeiϕ)k

with arbitrary ϕ ∈ [0, 2π[. Due to the non-negativity of the ck, its coefficients ful-

fill |f (k)
0 (xeiϕ)| ≤ ∑

n≥k
n!

(n−k)!
ckx

n−k = f
(k)
0 (x). With this, Hadamard’s formula implies

ρ(fxeiϕ) ≥ ρ(fx). Therefore, f0 admits an analytic continuation on B0(x + ρ(fx)), the
uniqueness of which follows from the monodromy theorem [Rud86, Thm. 16.16]. The
theorem of representability by power series then yields ρ(f0) ≥ x+ρ(fx), which, together
with the opposite inequality above, proves the claim. ¤
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Proof of Proposition 6: The assumption implies ρ(ψ) > 1 for ψ from (26). Then,
from Lemma 3, we know that lim supk→∞

k
√

(k + 1)ak < ∞. Since ak ≤ (k + 1)ak, also
lim supk→∞ k

√
ak < ∞, so there is an upper bound δ for k

√
ak and thus a(p) ∈ Xα,δ. The

converse statement follows from (29) and Lemma 3. ¤

Therefore, any mapping from Xα,δ into itself that is continuous with respect to the metric
d has a fixed point by the Leray–Schauder–Tychonov theorem [Ree80, Thm. V.19].

Note further that each Xα,δ contains a maximal element with respect to the partial
order a ≤ b defined by ak ≤ bk for all k ∈ N0, which is given by (1, α, δ2, δ3, . . .). This
property finally leads to

Proposition 7. The space Pα,δ = {p ∈ M+
1 : a(p) ∈ Xα,δ}, equipped with (the metric

induced by) the total variation norm, is compact and convex.

The proof is based on the following two lemmas.

Lemma 4. For any subset of Pα,δ, the corresponding generating functions from (26) are
locally bounded on B1+1/δ(0).

Proof: It is sufficient to show boundedness on every compact K ⊂ B1+1/δ(0), see

[Rem98, Sec. 7.1]. Thus, let such a K be given and fix r ∈ [0, 1
δ
[ such that K ⊂ B1+r(0).

Then, for every p ∈ Pα,δ and every z ∈ K,

|ψ(z)| =
∣∣∣
∑

k≥0

pkz
k
∣∣∣ ≤

∑

k≥0

pk(1 + r)k = ψ(1 + r) =
∑

k≥0

(k + 1)a(p)k rk

≤ 1 + 2 α r +
∑

k≥2

(k + 1)(rδ)k < ∞ ,
(34)

where rδ < 1 was used. This needed to be shown. ¤

Lemma 5. If for a sequence (p(n)) ⊂ Pα,δ the coefficients a(n) = a(p(n)) from (29)
converge to some a with respect to the metric d from (31), then the generating functions
ψn from (26) converge compactly to some ψ with ψ(z) =

∑
k≥0 pkz

k and thus the p(n)

converge in norm to p ∈ Pα,δ.

Proof: According to Lemma 4, the sequence (ψn) is locally bounded in B1+1/δ(0). Due

to the pointwise convergence |a(n)
k − ak| ≤ d−1

k d(a(n),a) → 0, we have

ψ(k)
n (1) = (k + 1)! a

(n)
k

n→∞−−−→ (k + 1)! ak = ψ(k)(1) (35)

for every k ∈ N0. Then, the compact convergence ψn → ψ follows from Vitali’s theorem
[Rem98, Thm. 7.3.2]. In particular, this implies the convergence p

(n)
k → pk ≥ 0 and

1 =
∑

k≥0 p
(n)
k = ψn(1) → ψ(1) =

∑
k≥0 pk, thus p ∈M+

1 .

Now choose r ∈ ]1, 1 + 1
δ
[. For every ε > 0, there is an nε such that, for all n ≥ nε,

sup|z|≤r |ψ(z)− ψn(z)| < ε. This implies

|p(n)
k − pk| =

∣∣∣∣
1

2πi

∮

|z|=r

ψn(z)− ψ(z)

zk+1
dz

∣∣∣∣ <
ε

rk
(36)
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for all n ≥ nε by Cauchy’s integral formula [Lan99, Thm. 7.3]. Now, let ε > 0 be given.
Then

‖p(n) − p‖1 =
∑

k≥0

|p(n)
k − pk| < ε

1

1− 1
r

(37)

for all n ≥ nε, which proves the claim. ¤

Proof of Proposition 7: Let (p(n)) denote some (arbitrary) sequence in Pα,δ and
(a(n)) = (a(p(n))) the corresponding sequence in Xα,δ. Due to Proposition 5, there is
a convergent subsequence (a(ni))i. Then, by Lemma 5, (p(ni))i converges in norm to
some p ∈ Pα,δ. This proves the compactness property. The convexity of Pα,δ is a simple
consequence of the convexity of M+

1 , the linearity of the mapping a, and the convexity
of Xα,δ. ¤

Another property of the mapping a : Pα,δ → Xα,δ is stated in

Lemma 6. For every α and δ, the mapping a : Pα,δ → Xα,δ from (29) is continuous
(with respect to the total variation norm and the metric d) and injective. Its inverse
p : a(Pα,δ) → Pα,δ is continuous as well.

Proof: Let p, q ∈ Pα,δ and assume a(p) = a(q). Then, as in the proof of Lemma 3,
the uniqueness of the generating function in B1+1/δ(0) follows, and thus p = q, which
proves the injectivity of a. The other statements follow from Vitali’s theorem [Rem98,
Thm. 7.3.2]: Norm convergence of a sequence (p(n)) ⊂ Pα,δ to some p implies convergence
of its element sequences and thus compact convergence of the corresponding generating
functions ψn to ψ, where ψ(z) =

∑
k≥0 pk zk. This, in turn, implies convergence of each

sequence (a(p(n))k) to a(p)k, from which, as in (33), the convergence (a(p(n))) → a(p)
(with respect to d) follows. The converse is the statement of Lemma 5 (see also [Ped89,
Prop. 1.6.8]). ¤

Note that, if ρ(ψ) > 2, the inverse of the mapping a is given by

p(a)k =
∑

`≥k

(−1)`−k

(
`

k

)
(` + 1) a` .

5 Random unequal crossover

Let us now turn to the random UC model, described by q = 1 in (8). Here, the recombi-
nator (2) simplifies to [Shp02, (3.1)]

R1(p)i =
∑

k,`≥0

k+`≥i

1 + min{k, `, i, k + `− i}
(k + 1)(` + 1)

pk p` . (38)

As for internal UC, by Lemma 1, the reversibility condition (17) directly leads to an
expression for fixed points,

pk

k + 1

p`

` + 1
=

pi

i + 1

pj

j + 1
for all k + ` = i + j . (39)
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This has pk = C(k + 1)xk as a solution, with appropriate parameter x and normalization
constant C. Again, it turns out that all fixed points are given this way, as stated by

Proposition 8 [Shp02, Thm. A.2]. Every fixed point p ∈M+
1 of R1 is of the form

pk =

(
2

m + 2

)2

(k + 1)

(
m

m + 2

)k

, (40)

where m =
∑

k≥0 k pk ≥ 0.

One can verify this in several ways, one being a direct inductive calculation.
The main result of this section is

Theorem 3. Assume that lim supk→∞
k
√

pk(0) < 1. Then, both in discrete and in con-
tinuous time, limt→∞ ‖p(t)−p‖1 = 0 with the appropriate fixed point p from Proposition
8.

For a proof, we consider the following alternative process, verbally described in [Shp02, p.
720f], which induces the same dynamics as random UC. This ultimately leads to a simple
expression for the induced recombinator of the coefficients a from (29), which allows for
an explicit solution.

Proposition 9. Let p ∈M+
1 . Then,

πk =
∑

`≥k

1

` + 1
p` (41)

gives a probability measure π ∈M+
1 , and the recombinator can be written as

R1(p)i =
i∑

j=0

πj πi−j = (π ∗ π)i , (42)

where ∗ denotes the convolution in `1(N0).

Proof: It is easily verified that π is normalized to 1. With respect to (42), note the
following identity for k + ` ≥ i,

|{j : (i− `) ∨ 0 ≤ j ≤ i ∧ k}| = 1 + min{k, `, i, k + `− i} , (43)

which can be shown by treating the four cases in the LHS separately. With this, inserting
(41) into the RHS of (42) yields

i∑
j=0

πj πi−j =
i∑

j=0

∑

k≥j

∑

`≥i−j

1

(k + 1)(` + 1)
pk p`

=
∑

k,`≥0

k+`≥i

1

(k + 1)(` + 1)
pk p`

i∧k∑

j=(i−`)∨0

1

=
∑

k,`≥0

k+`≥i

1 + min{k, `, i, k + `− i}
(k + 1)(` + 1)

pk p` = R1(p)i .

(44)

¤
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Here, (41) describes a process in which, without any pairing, each sequence is cut equally
likely between two of its building blocks. In a second step, described by (42), these
fragments are paired randomly and joined.

This nice structure has an analog on the level of the generating functions.

Proposition 10. Let φ(z) =
∑

k≥0 πkz
k denote the generating function for π from (41).

Then

φ(z) =
1

1− z

∫ 1

z

ψ(ζ) dζ and R1(ψ)(z) = φ(z)2 . (45)

Proof: Equations (41) and (42) lead to

φ(z) =
∑

k≥0

∑

`≥k

1

` + 1
p`z

k =
∑

`≥0

1

` + 1
p`

∑

k≤`

zk =
∑

`≥0

1

` + 1
p`

1− z`+1

1− z

=
1

1− z

∑

`≥0

p`

1− z`+1

` + 1
=

1

1− z

∫ 1

z

ψ(ζ) dζ

(46)

and, due to absolute convergence of the series involved,

R1(ψ)(z) =
∑

k≥0

R1(p)kz
k =

∑

k≥0

zk

k∑

`=0

π`πk−` =
∑

`≥0

π`z
`
∑

k≥`

πk−`z
k−` = φ(z)2 . (47)

¤

The following lemma states that the radius of convergence of ψ does not decrease under
the random UC dynamics. Thus, it is ensured that, if ρ(ψ) > 1, also R1(ψ) may be
described by an expansion at z = 1, i.e., by coefficients a.

Lemma 7. The radius of convergence of R1(ψ) is ρ(R1(ψ)) ≥ ρ(ψ).

Proof: As 1/ρ(ψ) = lim supk→∞ k
√

pk =: x ≤ 1 and limk→∞
k
√

k + 1 = 1, there is a
constant C > 0 with pk ≤ C(k + 1)xk for all k. Note the identity

n∑
j=0

(1 + min{i, j, n− i, n− j}) = (i + 1)(n− i + 1) (48)

for i ≤ n, which follows from an elementary calculation. Then (38) implies

R1(p)i ≤ C2
∑

k,`≥0
k+`≥i

xk+`(1 + min{k, `, i, k + `− i})

= C2
∑
n≥i

xn

n∑
j=0

(1 + min{i, j, n− i, n− j})

= C2(i + 1)xi
∑

`≥0

(` + 1) x` =

(
C

1− x

)2

(i + 1) xi .

(49)

Accordingly, lim supk→∞
k
√R1(p)k ≤ x ≤ 1, which proves the claim. ¤
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These results enable us to derive the following expression for the coefficients a, using
the expansion of (28):

R1(ψ)(z) =

[
1

z − 1

∫ z

1

ψ(ζ) dζ

]2

=

[∑

k≥0

ak(z − 1)k

]2

=
∑

k≥0

(
k∑

n=0

anak−n

)
(z − 1)k .

(50)
So it is natural to define the induced recombinator

R̃1(a)k =
1

k + 1

k∑
n=0

anak−n ≥ 0 , (51)

for which we have

Lemma 8. The recombinator R̃1 given by (51) maps each space Xα,δ into itself and is
continuous with respect to the metric d from (31).

Proof: Let α, δ > 0 be given and a, b ∈ Xα,δ. Trivially, R̃1(a)0 = 1 and R̃1(a)1 = α.
For k ≥ 2, R̃1(a)k = 1

k+1

∑
`≤k a` ak−` ≤ δk. This proves the first statement. For the

continuity, note first that every R̃1(a)k with k ≥ 2 is continuous as a mapping from Xα,δ

to [0, δk]. Now, let ε > 0 be given. Choose n large enough so that
∑

k>n(2γ)k < ε/2,
where γ is the parameter introduced in Definition 3. Then, there is an η > 0 such that∑n

k=2(γ/δ)k|R̃1(a)k − R̃1(b)k| < ε/2 for a, b ∈ Xα,δ with d(a, b) < η. Thus, for such a
and b,

d(R̃1(a), R̃1(b)) ≤
n∑

k=0

(γ

δ

)k

|R̃1(a)k − R̃1(b)k|+
∑

k>n

(2γ)k < ε , (52)

which proves the claim. ¤

Note that the fixed point equation on the level of the coefficients a is always satisfied for
a0 and a1. If k > 1, one obtains the recursion

ak =
1

k − 1

k−1∑
n=1

anak−n , (53)

which shows that at most one fixed point with given mean can exist.
Let us now consider the discrete time case first. Analogously to (6), define the co-

efficients belonging to p(t) as a(t) = a(p(t)), which are assumed to exist. It is clear
from (27), (50), and (51) that a(t + 1) = R̃1(a(t)). We then have the following two
propositions.

Proposition 11. Assume a(0) to exist. Then, in discrete time, limt→∞ ak(t) = αk, for
all k ≥ 0.

This result indicates that a weaker condition than the one of Theorem 3 may be sufficient
for convergence of p(t).
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Proof: Clearly, a0(t) ≡ 1, a1(t) ≡ α. Furthermore, by the assumption and (50), the
coefficients ak(t) exist for all k, t ∈ N0. Now, assume that the claim holds for all k ≤ n
with some n and let k = n + 1. According to the properties of lim sup and lim inf, we
have

lim sup
t→∞

ak(t+1) ≤ 1

k + 1

k∑

`=0

lim sup
t→∞

(
a`(t)ak−`(t)

)
=

k − 1

k + 1
αk +

2

k + 1
lim sup

t→∞
ak(t) (54)

and analogously with ≥ for lim inf. This leads to

k − 1

k + 1
lim sup

t→∞
ak(t) ≤ k − 1

k + 1
αk ≤ k − 1

k + 1
lim inf

t→∞
ak(t) , (55)

from which the claim follows for all k ≤ n + 1 and, by induction over n, for all k ≥ 0. ¤

Proposition 12. The recombinator R̃1, acting on Xα,δ, is a strict contraction with re-
spect to the metric d from (31), i.e., there is a C < 1 such that

d(R̃1(a), R̃1(b)) ≤ C d(a, b) (56)

for all a, b ∈ Xα,δ.

Proof: First consider, for k ≥ 2, without using the special choice of the dk,

d(R̃1(a), R̃1(b)) =
∑

k≥2

dk
1

k + 1

∣∣∣
k∑

`=0

(a` ak−` − b` bk−`)
∣∣∣

=
∑

k≥2

dk
1

k + 1

∣∣∣
k∑

`=0

(a` − b`)(ak−` + bk−`)
∣∣∣

≤
∑

k≥2

dk
2

k + 1

k∑

`=2

δk−`|a` − b`| =
∑

`≥2

d`|a` − b`|
∑

k≥`

2

k + 1
δk−` dk

d`

.

(57)

With the choice dk = (γ/δ)k, where we had γ < 1
3
, we can find, for ` ≥ 2, an upper bound

for the inner sum,

∑

k≥`

2

k + 1
δk−` dk

d`

≤ 2

3

∑

k≥`

γk−` =
2

3− 3γ
=: C < 1 , (58)

which, together with (57), proves the claim. ¤

Together with Banach’s fixed point theorem (compare [Ree80, Thm. V.18]), the two
propositions imply that a(t) converges to (1, α, α2, . . .) with respect to the metric d, and
that convergence is exponentially fast.

In continuous time, we consider the time derivative of a(t) := a(p(t)), which is, by
(29),

d
dt

a(t) = d
dt

a
(
p(t)

)
= a

(R1(p(t))− p(t)
)

= R̃1(a(t))− a(t) . (59)

The following lemma ensures, together with [Ama90, Thm. 7.6 and Rem. 7.10(b)], that
this initial value problem has a unique solution for all a(0) = a0 ∈ Xα,δ.
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Lemma 9. Consider the Banach space Hγ/δ from (32), with some 0 < γ < 1
3
, and its

open subset Y = {x ∈ Hγ/δ : |xk| < (2δ)k}. Then, the recombinator R̃1 from (51) maps
Y into itself, satisfies a global Lipschitz condition, and is bounded on Y. Furthermore, it
is infinitely differentiable, R̃1 ∈ C∞(Y, Y ).

Proof: For x ∈ Y, one has |xk| < (2δ)k, hence |R̃1(x)k| < (2δ)k with a similar argument
as in the proof of Lemma 8. Consequently, R̃1(Y ) ⊂ Y. So let x,y ∈ Y. Then, similarly
to the proof of Proposition 12, one shows the Lipschitz condition

‖R̃1(x) − R̃1(y)‖ ≤
∑

`≥0

(γ

δ

)`

|x` − y`|
∑

k≥`

2

k + 1
(2γ)k−` ≤ 2

1− 2γ
‖x − y‖ (60)

and, since ‖x‖ < 1/(1− 2γ) in Y, the boundedness,

‖R̃1(x)‖ ≤ 1

1− 2γ
‖x‖ <

1

(1− 2γ)2
. (61)

With respect to differentiability, consider, for sufficiently small h ∈ Y,

R̃1(x + h)k = R̃1(x)k +
2

k + 1

k∑

`=0

xk−` h` + R̃1(h)k . (62)

Since

‖R̃1(h)‖ ≤
∑

k≥0

(γ

δ

)k 1

k + 1

k∑

`=0

|hk−`| |h`| =
∑

`≥0

(γ

δ

)`

|h`|
∑

k≥`

(γ

δ

)k−` |hk−`|
k + 1

≤ ‖h‖2 ,

(63)
it is clear that R̃1 is differentiable with linear (and thus continuous) derivative, whose
Jacobi matrix is explicitly R̃′

1(x)k` = ∂
∂x`
R̃1(x)k = 2

k+1
xk−` if k ≥ ` and zero otherwise,

so R̃1 ∈ C1(Y, Y ). It is now trivial to show that R̃1 ∈ C2(Y, Y ) with constant second
derivative and thus R̃1 ∈ C∞(Y, Y ). ¤

Proposition 13. If a0 ∈ Xα,δ for some α, δ, then a(t) ∈ Xα,δ for all t ≥ 0 and
limt→∞ d(a(t),α) = 0 with α = (1, α, α2, α3, . . .).

Proof: The first statement follows from [Mar76, Thm. VI.2.1] (see also [Ama90, Thm.
16.5]) since, due to the convexity of Xα,δ, we have a+t(R̃(a)−a) ∈ Xα,δ for every a ∈ Xα,δ

and t ∈ [0, 1], hence a subtangent condition is satisfied. For the second statement, observe
that R̃1(α) = α. We now show that

L(a0) = d(a0,α) (64)

is a Lyapunov function, cf. Definition 1. With the notation of Lemma 9, note that the
compact metric space Xα,δ is contained in the open subset Y of the Banach space Hγ/δ.
The continuity of L is obvious. Now, let a0 ∈ Xα,δ be given. By Lemma 9 and [Ama90,
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Thm. 9.5 and Rem. 9.6(b)], the solution a(t) of (59) is infinitely differentiable. Thus, for
t ∈ [0, 1],

L(a(t))− L(a0) = ‖a0 + t(R̃1(a0)− a0) + O(t)−α‖ − ‖a0 −α‖
≤ t

(‖R̃1(a0)− R̃1(α)‖ − ‖a0 −α‖) + O(t) ,
(65)

where O(t) is the usual Landau symbol and represents some function that vanishes faster
than t as t → 0. From this, by the strict contraction property of R̃1 (Proposition 12),
the Lyapunov property (13) follows, with equality if and only if a0 = α. Since Xα,δ is
compact, the claim follows from Theorem 1. ¤

We are now able to give the previously postponed

Proof of Theorem 3: It follows from Proposition 6 that a(0) = a(p(0)) ∈ Xα,δ with
α = 1

2
m and some δ. In discrete time, according to Propositions 11 and 12 and Banach’s

fixed point theorem (compare [Ree80, Thm. V.18]), a(t) → α = (1, α, α2, . . .) with
respect to the metric d. Letting x = m/(m + 2) and inserting (40) into (29) yields

ak =
∑

`≥k

`!

(`− k)!(k + 1)!
(1− x)2(` + 1)x` = (1− x)2

∑

`≥k

(
` + 1

k + 1

)
x` =

(
x

1− x

)k

= αk .

(66)
The claim now follows from Lemma 5. Similarly, in continuous time, the claim follows
from Proposition 13. ¤

Let us finally note

Proposition 14. For the dynamics described by (59), the fixed point α from Proposition
13 is exponentially stable.

Proof: Let a0 ∈ Xα,δ be arbitrary. The Lyapunov function from the proof of Proposi-
tion 13 satisfies, as a consequence of (65) and Proposition 12,

L̇(a0) ≤ d(R̃1(a0), R̃1(α))− d(a0,α) ≤ −(1− C) d(a0,α) , (67)

with 0 < C < 1. From this, together with (64) and [Ama90, Thm. 18.7], the claim
follows. ¤

Furthermore, in a UC model introduced by Takahata [Tak81], for which

Tij,k` = δi+j,k+`
1

k + ` + 1
,

the recombinator R̃1 appears for the coefficients b(p)k = (k+1) a(p)k, where b(p)1 is the
mean copy number m. The above results then imply, under the appropriate condition on
p(0), that b(t) → (1,m, m2, . . .) as t →∞ both in discrete and in continuous time. This
corresponds to convergence of p(t) to the fixed point p with pk = 1

m+1
( m

m+1
)k.
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6 The intermediate parameter regime

In this section, q may take any value in [0, 1]. With respect to reversibility of fixed points,
one finds

Proposition 15. For intermediate parameter values q ∈ ]0, 1[, any fixed point p ∈ M+
1

of the recombinator Rq, given by (2) and (8), satisfies pk > 0 for all k ≥ 0 (unless it is
the trivial fixed point p = (1, 0, 0, . . .) we excluded). None of these extra fixed points is
reversible.

Proof: Let a non-trivial fixed point p be given and choose any n > 0 with pn > 0.

Observe that T
(q)
n+1 n−1,nn > 0 for 0 < q < 1 and hence

pn±1 = Rq(p)n±1 =
∑

j,k,`≥0

T
(q)
n±1 j,k` pk p` ≥ T

(q)
n+1 n−1,nn pn pn > 0 . (68)

The first statement follows by induction. For the second statement, evaluate the re-
versibility condition (17) for all combinations of i, j, k, ` with i + j = k + ` ≤ 4. This
leads to four independent equations. Three of them can be transformed to the recursion

pk =
(k + 1)q

2(k − 1) + 2q

p1

p0

pk−1 , k ∈ {2, 3, 4} , (69)

from which one derives explicit equations for all pk with k ∈ {2, 3, 4} in terms of p0 and
p1. Inserting the one for p2 into the remaining equation yields another equation for p4 in
terms of p0 and p1, which contradicts the first one for all q ∈ ]0, 1[, as is easily verified. ¤

So, non-trivial fixed points for 0 < q < 1 are not reversible, and thus much more difficult
to determine. Our most general result so far is

Theorem 4. If p(0) ∈ Pα,δ for some α, δ, then p(t) ∈ Pα,δ for all times t ∈ N0,
respectively t ∈ R≥0, and Rq has a fixed point in Pα,δ.

The proof is based on the fact that Rq is, in a certain sense, monotonic in the parameter
q. This is stated in

Proposition 16. Assume a(p) ∈ Xα,δ for some α, δ. Then, with respect to the partial
order introduced before Proposition 7, a(Rq(p)) ≤ a(Rq′(p)) for all 0 ≤ q ≤ q′ ≤ 1. In
particular, a(Rq(p)) ∈ Xα,δ for all 0 ≤ q ≤ 1.

To show this, we need three rather technical lemmas. The first one collects formal con-
ditions on the difference of two distributions T

(q)
ij,k` with different parameter values (but

j = k + `− i and the same fixed k, `). These are then verified in our case.

Lemma 10. Let the numbers xi ∈ R (0 ≤ i ≤ r with some r ∈ N0) satisfy the following
three conditions:

r∑
i=0

xi = 0 . (70)

xr−i = xi for all 0 ≤ i ≤ r. (71)

There is an integer n such that

{
xi ≥ 0 for 0 ≤ i ≤ n,

xi < 0 for n < i ≤ b r
2
c. (72)
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Further, let fi ∈ R (0 ≤ i ≤ r) be given with

0 ≤ f1 − f0 ≤ f2 − f1 ≤ . . . ≤ fr − fr−1 . (73)

Then we have
r∑

i=0

fixi ≥ 0 . (74)

Proof: Let us first consider the trivial cases. If xi ≡ 0, everything is clear, so let xi 6≡ 0.
If r ≤ 1 then xi ≡ 0, so let r ≥ 2, and thus n ≤ r

2
− 1. Define x r

2
= f r

2
= 0 for odd r.

Then we can write

r∑
i=0

fixi =
n∑

i=0

(fi + fr−i) xi +

d r
2
e−1∑

i=n+1

(fi + fr−i) xi + f r
2
x r

2
. (75)

Further, for r − i ≥ i, due to (73),

fi + fr−i = fi−1 + fr−i+1 + (fi − fi−1)− (fr−i+1 − fr−i) ≤ fi−1 + fr−i+1 . (76)

Now, define C :=
∑n

i=0 xi = −∑d r
2
e−1

i=n+1 xi − 1
2
x r

2
> 0, and the claim follows with (75),

since r − n ≥ n + 1 by assumption:
r∑

i=0

fixi ≥ C [fn + fr−n − fn+1 − fr−n−1] = C [(fr−n − fr−n−1)− (fn+1 − fn)] ≥ 0 . (77)

¤

Lemma 11. Let j ∈ N0 be fixed and fi = (i)j, i ∈ N0, where (i)j is the falling factorial,

which equals 1 for j = 0 and i(i − 1) · · · (i − j + 1) for j > 0, hence i!
(i−j)!

for i ≥ j.

Then condition (73) is satisfied.

Proof: For j = 0, condition (73) is trivially true. Otherwise, each fi is a polynomial
of degree j in i with zeros {0, 1, . . . , j − 1}, thus 0 = f1 − f0 = . . . = fj−1 − fj−2.
Then, for i ≥ j − 1, the polynomial and all its derivatives are increasing functions since
limi→∞ fi = ∞. Therefore, for i ≥ j − 1, we have 0 ≤ fi+1− fi ≤ fi+2− fi+1. Hence (73)
holds. ¤

Lemma 12. For 0 ≤ q ≤ q′ ≤ 1 and all k, `, letting r = k + ` and xi = T
(q′)
ik` − T

(q)
ik`

makes (70)–(72) true (where T
(q)
ik` = T

(q)
ij,k` with j = k + `− i).

Proof: The validity of (70) and (71) is clear from the normalization (3) and the sym-

metry of the T
(q)
ik` . For (72), let k ≤ ` without loss of generality. In the trivial cases q = q′

or k = 0, choose n = b r
2
c. Otherwise, observe that xi = T

(q′)
ik` − T

(q)
ik` < 0 for k ≤ i ≤ b r

2
c,

since C
(q′)
k` < C

(q)
k` , and x0 > 0. For 0 ≤ i ≤ k, consider

yi =
xi

T
(q)
ik`

+ 1 =
C

(q′)
k`

C
(q)
k`

(
q′

q

)k−i

. (78)

Here, the first factor is less than 1, the second is equal to 1 for k = i, greater than 1 for
0 ≤ k < i, and strictly decreasing with i. Since xi ≥ 0 if and only if yi ≥ 1, there is an
index n with the properties needed. ¤
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Proof of Proposition 16: Lemmas 10–12 imply, for all k, `, j ∈ N0 with k + ` ≥ j,

k+∑̀
i=j

i!
(i−j)!

T
(q)
ik` ≤

k+∑̀
i=j

i!
(i−j)!

T
(q′)
ik` . (79)

Then, since T
(q)
ik` = 0 for i > k + `,

a(Rq(p))j = 1
(j+1)!

∑
i≥j

i!
(i−j)!

Rq(p)i = 1
(j+1)!

∑
i≥j

i!
(i−j)!

∑

k,`≥0

T
(q)
ik` pkp`

= 1
(j+1)!

∑

k,`≥0

pkp`

∑
i≥j

i!
(i−j)!

T
(q)
ik` ≤ 1

(j+1)!

∑

k,`≥0

pkp`

∑
i≥j

i!
(i−j)!

T
(q′)
ik`

= a(Rq′(p))j .

(80)

From this, together with Lemma 8, the claim follows. ¤

Proof of Theorem 4: According to Proposition 16, Rq maps Pα,δ into itself, and
thus, in discrete time, p(t) ∈ Pα,δ for every t ∈ N0. The analogous statement is true
for continuous time t ∈ R≥0. To see this, consider Pα,δ as a closed subset of `1. Recall
that Rq − 1 is globally Lipschitz on `1 by Proposition 1. Moreover, for any p ∈ Pα,δ and
t ∈ [0, 1], Proposition 7 tells us that

p + t(Rq(p)− p) = (1− t)p + tRq(p) ∈ Pα,δ . (81)

This implies the positive invariance of Pα,δ by [Mar76, Thm. VI.2.1] (see also [Ama90,
Thm. 16.5]). The existence of a fixed point once again follows from the Leray–Schauder–
Tychonov theorem [Ree80, Thm. V.19]. ¤

It is plausible that, given the mean copy number m, never more than one fixed point
for Rq exists. Due to the global convergence results at q = 0 and q = 1, any non-
uniqueness in the vicinity of these parameter values could only come from a bifurcation,
not from an independent source. Numerical investigations indicate that no bifurcation is
present, but this needs to be analyzed further.

Furthermore, the Lipschitz constant for R̃q can be expected to be continuous in the
parameter q, hence to remain strictly less than 1 on the sets Xα,δ in the neighborhood of
q = 1. So, at least locally, the contraction property should be preserved. Nevertheless,
we do not expand on this here since it seems possible to use a rather different approach
[Hofa], which has been used for similar problems in game theory, to establish a slightly
weaker type of convergence result for all 0 < q < 1, and probably even on the larger
compact set M+

1,m,C from Lemma 2.

7 Some remarks

We have seen in the preceding sections that, definitely for the extreme cases q = 0 and
q = 1 and presumably for the intermediate values as well, the deterministic dynamics
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converges to a unique equilibrium solution in both discrete and continuous time. This cor-
responds to the case of infinite populations. With respect to biological relevance, however,
we add some arguments that it is reasonable to expect this to be a good description for
large but finite populations as well, i.e., for the underlying (multitype) branching process.
For the mutation–selection models of Chapter I, the results by Ethier and Kurtz [Eth86,
Thm. 11.2.1] and the generalization [Ath72, Thm. V.7.2] of the Kesten–Stigum theorem
[Kes66, Kur97] guaranteed that in the infinite population limit the relative genotype fre-
quencies of the branching process converge almost surely to the deterministic solution
(if the population does not go to extinction). These results, however, depend on the
finiteness of the genotype space. Since for the UC models considered here the equilib-
rium distributions are exponentially small for large copy numbers (owing to Theorem
4 also for q ∈ ]0, 1[), one can expect these systems to behave very much like ones with
finitely many genotypes. This is also supported by several simulations. Nevertheless, this
questions deserves further attention.
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Summary and outlook

This thesis was concerned with two model classes of population genetics, one describ-
ing the balance of mutation and selection, the other modeling unequal crossover events
occuring during recombination. The results will now be summarized and discussed.

With respect to mutation–selection models, the farthest-reaching results were ob-
tained for models with a large but finite set of genotypes. These were presented in
Chapter I. After an introduction of the model in its deterministic description (Section
2.1), the underlying branching process was considered (Section 2.2). The equilibrium
distribution of the backward process, termed the ancestral distribution, shows up when
the matrix governing the forward process, H, is symmetrized by a similarity transform to
H̃ = SHS−1, with a diagonal matrix S (Section 2.3); this is always possible if classes of
genotypes sharing the same fitness can be ordered linearly and if mutation only connects
neighboring classes, an assumption made for the rest of the chapter. The ancestral distri-
bution determines the response of the mean fitness of the equilibrium population, given by
the largest eigenvalue of H, to changes in the reproduction rates; it is further connected
to a quantity G, termed mutational loss, which is defined as the difference of ancestral
and population mean fitness in equilibrium and describes the loss in reproduction rate
the population experiences due to mutation (Section 2.5).

The central result is a simple maximum principle (Theorem 1 in Section 3.1) for
the mean fitness. Since similarity transforms leave the spectrum invariant, this is also
given by the largest eigenvalue of the symmetrized matrix H̃, which can be expressed by
Rayleigh’s principle. In the limit of an infinite number of mutation classes, in which the
set of genotypes densely fills a compact interval, the huge space over which Rayleigh’s
coefficient is maximized, namely all possible ancestral distributions, effectively reduces
to the above-mentioned compact interval of all possible ancestral genotypes in the limit
(Section 3.4). Here, the matrix H, being the sum of a diagonal matrix R holding the
reproduction rates and a Markov generator M describing mutation, are replaced by the
fitness function r and a function g connected to the mutational loss G (Proposition 1 and
Section 3.5). Technically, for every finite system, upper and lower bounds were derived,
which were shown to converge towards each other in the mutation class limit. The same
expression directly follows for two further limiting cases (discussed in Section 2.6), the
linear case and unidirectional mutation (Sections 3.2 and 3.3). On this basis, explicit
expressions for means and variances of fitness and genotype were gained (Theorem 2 and
Section 3.6), which are exact in the mutation class limit and in the linear case.

The maximum principle turned out to be an excellent basis to characterize thresh-
old behavior in the equilibrium population when mutation rates are varied relative to
the fitness values (Section 4). Since the observation of the so-called error threshold in
the quasispecies model with the sharply peaked fitness landscape [Eig71], such behavior
has been the object of a controversial debate, leading to a handful of sometimes incom-
patible definitions. These included a kink in the population mean fitness, the loss of
the wildtype from the population, complete mutational degradation, and a jump in the
population mean fitness. Now, for the first time in a reasonably large model class, ana-
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lytical methods could be applied to this problem. The mutation class limit, considered
for technical simplification in Sections 2 and 3, turned out to be a necessity for a strin-
gent mathematical definition of the four threshold types just described (Definitions 1–4
in Sections 4.1–4.4), analogously to the thermodynamic limit for the definition of phase
transitions in physics. In each case a complete characterization could be given (Theorems
3–6).

It was then a natural next step to ask whether similar results, in particular the derivation
of a simple scalar maximum principle, could be achieved for models with a continuous
set of genotypes, so-called continuum-of-alleles (COA) models. Some first answers to this
question were given in Chapter II. The first investigation was on the connection of COA
models to the models with discrete genotypes. Although the limiting genotype set in
the mutation class limit of the discrete model class of Chapter I is a continuous interval,
there is no well-defined limit model since the mutant distributions become trivial in the
limit. However, under some biologically reasonable assumptions, a COA model may be
approximated arbitrarily well by models with discrete genotypes, which justifies numerical
analyses of continuous models and allows to transfer results. This was shown in Section 2,
the main result being Theorem 3 for a compact genotype interval, respectively Theorem 6
for an unbounded interval. Technically, they are generalizations of two standard methods
of approximation theory, the Nyström and the Galerkin method, to the COA operators,
which are non-compact due to the multiplication part describing reproduction. This
problem was solved by considering equivalent compact operators as described in [Bür88,
Bür00].

Some first steps towards a simple maximum principle were then taken in Section
3. The necessary ingredients in the discrete case were (i) the possibility to symmetrize
the system by a similarity transform with a diagonal matrix, which made the ancestral
distribution show up, (ii) the derivation of upper and lower bounds for the mean fitness,
and (iii) the existence of a limit in which both bounds converge towards each other. It
was rather straightforward to generalize the first point and to characterize all mutation
kernels lending themselves to a (global) symmetrization (Proposition 8). The derivation
of an upper bound was then very similar to the discrete case (Theorem 7). Establishing a
lower bound was technically much more complex, but basically followed the same plan as
for discrete genotypes. It was not necessary to require global symmetrizability, though,
but an alternative condition of some kind of approximate local symmetrizability sufficed
(Proposition 9, Theorem 8). This could not yet be shown to lead to a useful upper
bound, which, however, is very plausible to be true if one considers the natural candidate
for an analog of the mutation class limit, namely a limit of ever narrower and higher
mutant distributions (Section 3.3). As a consequence, intuitively speaking, the ancestral
distribution gets sharper and sharper, approaching a delta distribution in the generic
case. Thus, local considerations can be expected to be sufficient. But a rigorous proof
for a simple maximum principle could, so far, only be given for global symmetrizability
and a restricted case (Equation (132)). Numerical comparison indeed corroborated the
conjecture that local symmetrizability is sufficient for the existence of a simple maximum
principle (Section 3.4).
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In this context, recent work by Garske and Grimm [Gar] should be mentioned, who
derived a maximum principle for a model with discrete genotypes given as sequences
over a four-letter alphabet (representing the four nucleotides). This hints at the general
possibility of establishing a simple maximum principle whenever the three ingredients
from above are given. It seems furthermore feasible in the near future to treat both
discrete and continuous genotype spaces in a unified framework, using the formalism set
up in Section 1 of Chapter I.

In Chapter III, a model class for unequal crossover (UC) was treated, which was recently
introduced by Shpak and Atteson [Shp02], building on existing models. The authors
derived, for two limiting cases, the fixed points of the dynamics, which are uniquely
determined by the mean copy number of repeated units under consideration. They fur-
ther conjectured that any initial distribution, possibly under some mild extra conditions,
should converge to the appropriate fixed point—presumably also in the intermediate pa-
rameter regime, where alignments with ‘overhangs’ of the shorter sequence are possible
(in contrast to the first limiting case of internal UC) but penalized (as opposed to the
second limiting case of random UC). The inherent nonlinearity of the operator describing
the UC process, however, makes it a difficult task to prove these conjectures.

In the two limiting cases, this has been possible, for dynamics in both discrete and
continuous time, by means of Lyapunov functions and consideration of compact invariant
subsets (Theorems 2 and 3). In the intermediate regime, some kind of monotonicity could
be shown (Proposition 16), which, unfortunately, is only strong enough to conclude the
existence of fixed points (Theorem 4), but not their uniqueness. This remains for future
work.

The ultimate aim, of course, is to be able to treat models describing multiple evolutionary
factors. To this end, exactly solvable models like those considered in this thesis, which—
as a rule of thumb—means that they incorporate two, or at most three processes, may be
used as starting points for approximate analyses of additional processes, e.g., by means
of perturbation theory or numerics. Thus, in spite of their obvious limitations, they form
the basis for a better understanding of biological evolution.
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Notation index

Chapter I

1: identity matrix, 3
a: ancestral frequencies, 8
G: mutational loss, 11
g: mutational loss function, 14
γ: overall reproduction rate, 22
H = R + M , 3
κ: mutation asymmetry parameter, 3
L, l: mutation load, 9
λmax: largest eigenvalue of H , 4
M : mutation matrix, 3
mij: mutation rate from j to i, 2
µ: overall mutation rate, 3, 24
N : number of mutation classes, 2
p: population frequencies, 2
Q: matrix of backward process, 7
Ri, ri: reproduction rate of i, 2
R: reproduction matrix, 3
r: fitness function, 11
Rmax, rmax: maximal possible fitness, 9
s±k : mutational effects at k, 9
T : time evolution matrix, 3
U±

k , u±k : (genomic) mutation rates of k, 2
u±: mutation functions, 11
V , v: variance, 9
Xi, xi: mutational distance of i, 9
z: relative reproductive success, 8

Chapter II

‖.‖p: norm of Lp, 36
‖.‖∞: supremum norm, 37.


pq: norm of Hpq(I), 35
cc−→: collectively compact convergence, 38
x ∧ y = min{x, y}, 60
1J : characteristic function of set J , 40
A = T − U , 34
a: equilibrium ancestral density, 56
αn,k: quadrature weights of Qn, 38

C(I): continuous, bounded functions on I,
37

D(T ): domain of operator T , 34
g: mutational loss function, 63
H = −A = U − T , 55
H̃ = SHS−1: symmetrized operator, 55
Hpq(I): Banach space of Hille–Tamarkin

operators from Lq(I) to Lp(I), 35
|J |: Lebesgue measure of J , 35
Jz = [z − η/2, z + η/2], 57
Kα = U(T + α)−1, 34
kα: kernel of Kα, 34
k(x, .) : y 7→ k(x, y), 35
L1(I): Banach space of Lebesgue integrable

functions on I, 34
Lp(I) = {f : |f |p ∈ L1(I)}, 37
L∞(I): Banach space of essentially bounded

functions on I, 36
λ: equilibrium mean fitness, 33
Nn: number of quadrature points of Qn, 38
Nn = {1, . . . , Nn}, 38
p: equilibrium genotype density, 33
Pz: projection L∞(I) → L∞(Jz), 58
Q : f 7→ ∫

I
f(x) dx, 38

Qn: quadrature rules, 38
r: reproduction rates, 33
ρ(A): spectral radius of operator A, 36
ρ(M ): spectral radius of matrix M , 40
S: multiplication operator, see H̃
T : multiplication part of A, 34
tn,k: quadrature points of Qn, 38
U : kernel part of A, 34
u: mutation kernel, 33
u1: total mutation rates, 33
ũ: symmetrized mutation kernel, 55
w = u1 − r, 34
w0 = maxx∈I w(x), 58
X: generic Banach space, 34
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NOTATION INDEX

Chapter III

a ≤ b ⇔ ak ≤ bk for all k ∈ N0, 77
x ∨ y = max{x, y}, 69
x ∧ y = min{x, y}, 69
a(p): coefficients belonging to p, 75
C∞(X, X): infinitely differentiable func-

tions from X to X, 83
`1(N0): absolutely summable sequences, 67
M+

1 (X): probability measures on X, 67
M+

1,m,C : probability measures with mean m
and r-th moment bounded by C, 73

M+
r (X): positive measures on X with mass

r, 68
Pα,δ = {p ∈M+

1 : a(p) ∈ Xα,δ}, 77
ρ(ψ): radius of convergence of power series

ψ, 75
Tij,k`: probability of (k`) → (ij) at a UC

event, 67
Xα,δ = {a : a0 = 1, a1 = α, 0 ≤ ak ≤ δk},

75
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Subject index

accuracy, 22
a.e., see almost every(where)
affine transformation, 62
alignment,

imperfect, 69
perfect, 69

almost every(where), 36
almost sure, see convergence, almost sure
ancestral

average, 10
distribution, 6, 8, 13, 56
frequencies, see ancestral distribution

anti-symmetric function, 55
approximation property, 45, 46
asymptotic behavior, 7

backward process, see time-reversed process
Banach

algebra, 48
space, 34, 47

biallelic model, 3, 8, 9, 12, 24
bilinear form, 47
birth rate, 2
branching process, 4

multitype, 4

Cauchy’s integral formula, 78
Cauchy–Schwarz inequality, 37
characteristic function, 40, 46
circulant matrix, 61
clone, 5
COA model, see continuum-of-alleles model
collectively compact

convergence, see convergence, collec-
tively compact

sequence, 38, 43
compact convergence, see convergence,

compact
conditional expectations, 6, 46
conjugate exponent, 35
continuum-of-alleles model, 13, 33

contraction, 82
convergence

almost sure, 5
collectively compact, 38–40
compact, 77, 78
in distribution, 73
in total variation, 40, 41, 52, 71
pointwise, 45, 46, 71
vague, 71
weak, 40, 71
weak-∗, 71

convergent quadrature, 38
convex set, 76
convolution, 79
counting measure, 1
covered, ε-optimally, 46
critical mutation rate, 24
crossover, unequal, see UC

de l’Hospital’s rule, 27
death rate, 2
degradation threshold, 29
densely defined, 34
descent, line of, see line of descent
detailed balance, 71
diagonal sequence, 76
diploid, 1
discontinuity, 12, 13, 15
discretization,

complete, 38, 39
partial, 38

dominance, 1, 9
dual system, 47

eigenvalue
equation, 13, 34, 38, 40, 44, 47, 49
largest, 4

environmental effects, 1
epistasis, 19

vanishing, 12
equilibrium point, 68
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ergodicity, 7
error threshold, 24, 26
essentially bounded, 36
excess offspring, 11
expectation value, 73
extinction, 7
extremum condition, 18

falling factorial, 86
finite rank, 36, 40, 45–47
Fisher’s Fundamental Theorem, 9
fitness

additive, 8
function, 3, 11, 13
landscape, 3
Malthusian, 2
monotonic, 3
threshold, 26

fixed point, 68, 69
convergence to, 69, 72, 79
for internal UC, 72
for random UC, 79
for UC, 85
trivial, 69
uniqueness, 69

Fujiyama model, 12, 19
function, 1

Galerkin method, 44
Γ-distribution, 54
genealogical relationships, 4
generating function, 75, 77, 80
generations,

overlapping, 1, 68
subsequent, 1, 7, 68

generator, infinitesimal, see infinitesimal
generator

genome, 1
genotype

class, 2
density, equilibrium, 33

graphical construction, 15, 16
growth rate, local, 19

Hölder’s inequality, 37, 73
Haar measure, 1

Hadamard’s formula, 75
Haldane’s principle, 17
Hamming

class, 3
distance, 3, 9
graph, 2

haploid, 1
Hille–Tamarkin

norm, 35, 61
operator, 35, 36, 48, 61

homogeneity, 5

infinite-sites limit, 13
infinitesimal generator, 5
initial condition, 70
initial value problem, 70, 82
instant mixing, 68
integrable

uniformly, see uniformly integrable
internal UC, 71
irreducible

kernel operator, 35
matrix, 3

joint distribution, 4
for parents/offspring, 6

jump, 15

kernel operator, 34

Landau symbol, 84
large deviation theory, 21
Lebesgue

integrable, 34
measure, 1, 35

limiting model for mutation class limit, 13
line of descent, 5–8
linear case, 12
linear response, 10
Lipschitz condition, 70, 83
locally bounded, 77
locally compact space, 1
loss of the wildtype, 25
lower bound, 19
Lyapunov function, 70, 71, 73, 83

strict, 70, 71
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Malthusian fitness, see fitness, Malthusian
Markov

chain, 4, 6, 7
generator, 3, 7
property, 5

Markov’s inequality, 73
master sequence, 28
maximal element, 77
maximum principle, 14
mean fitness, 2, 13
metric, 75
Minkowski’s inequality, 74
mixing, 68
moment, 72, 75

centered, 73
multilocus model, 3
multiplication operator, 34
mutant, 3
mutation

asymmetry parameter, 8
class limit, 12, 55, 61
equilibrium, 25
function, 11, 13

for biallelic model, 12
load, 9, 17
matrix, 3
probability, 2
rate, 2, 24, 33

advantageous, 3
deleterious, 3
total, 2, 33

scheme, 2
symmetric, 15
threshold, 24
unidirectional, see unidirectional muta-

tion
weak, 12

mutation–selection
balance, 4, 8, 15
equilibrium, see mutation–selection

balance
model, 1

mutational
degradation, 25
distance, 9

per class, 11
effect, 9, 12, 21

population mean of, 15, 22
flow, 11
loss, 11, 21, 63

function, 14, 21, 63

ε-net, 45
nucleotide, 3
numerical

integration, 38
stability, 68

Nyström method, 38

observable, 9
operator

norm, 39
notation, 34

orbital derivative, 70
overhang, 69

partial order, 77, 85
partition, 39, 40
Perron–Frobenius

eigenvalue, 13
eigenvector, 7, 8, 13

pointwise convergence, see convergence,
pointwise

population
average, 9
frequencies, 13
size, 4

positive
function, 36
matrix, 4, 40
operator, 35
semigroup, 5

positive homogeneous function, 68
power compact, 34
power method, 22
probability

density, 1
measure, 1, 67
space, 73

process,
backward, see time-reversed process
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critical, 7
forward, 6
time-reversed, see time-reversed process

projection, 44, 46, 58
method, see Galerkin method

purine, 3
pyrimidine, 3

quadrature, 38
distorted, 42
points, 38
rule, 38
weights, 38

quantum statistical mechanics, 10
quasispecies model, 4, 24

radius of convergence, 75, 80
random UC, 78
random variable, 4, 73, 74
random-walk mutation model, 62
Rayleigh’s principle, 15, 19
recombination event

for internal UC, 73
for random UC, 79

recombinator, 67
for generating functions, 75
for internal UC, 71
for random UC, 78
for the coefficients ak, 81

reference genotype, 3
relative reproductive success, 6–8
relatively compact, 38
representation of probability measure, 75
reproduction rate, 2, 33
restriction of an operator, 58
reversible, 72, 78, 85

sampling, 12, 36
scale invariance, 22
scaling, 12
selection

directional, 15
stabilizing, 15

sensitivity, 10
sharply peaked fitness landscape, 24, 26

single-step mutation model, 2, 8, 11, 13, 15,
24

spectral radius, 35, 36, 40, 60
stability, numerical, see numerical stability
stationarity, 7
statistical mechanics, 10, 13, 102
step function, 46
stepwise mutation model, 12, 13
submatrices, 19
subtangent condition, 74
success, relative reproductive, see relative

reproductive success
supremum norm, 37
symmetric

function, 55
zeros, 55

symmetrizable,
globally, 57
locally, 57, 59

theorem
Banach’s fixed point, 82, 84
Birkhoff’s ergodic, 10
monodromy, 76
of B. Levi, 41
of Banach–Steinhaus, 41, 43, 45
of Jentzsch, 35, 43, 52
of Leray–Schauder–Tychonov, 71, 77,

87
of monotone convergence, 41
of Perron–Frobenius, 4, 35, 40
of Prohorov, 71, 73
of representability by power series, 76
of Vitali, 77, 78

thermodynamic limit, 13, 24
Thompson’s trick, 4
threshold phenomena, 24
tight set, 71
time

absolute, 5
continuous, 1, 68
discrete, 1, 68
increment, 5
rescaling of, 68

time-reversed process, 6, 7
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Toeplitz matrix, 61
total variation

convergence in, see convergence in total
variation

norm, 40, 67
trait, 1

values, 13
triangle inequality, 60
truncation selection, 12

UC, 67
internal, see internal UC
random, see random UC

unequal crossover, see UC
unidirectional mutation, 3, 12
uniformly integrable, 73, 74

vague, see convergence, vague
variance

of distance from wildtype, 15
of fitness, 9, 15

equilibrium, 9
von Mises iteration, 22

weak, see convergence, weak
weak-∗, see convergence, weak-∗
wildtype, 2, 3

position, 25
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26.3.1996 Diplom-Vorprüfung (Note “sehr gut”)
6/1996–7/1999 Stipendiat der Studienstiftung des deutschen Volkes
9/1996–5/1997 University of Massachusetts, Amherst, USA (Auslandsaufenthalt)
10/1998 Beginn der Diplomarbeit “Effiziente Simulation periodischer und

nichtperiodischer Ising-Modelle am kritischen Punkt” bei PD Dr.
Michael Baake am Institut für Theoretische Physik, Universität
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