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(39) Let A and B be commuting n x n matrices and S an invertible n x n matrix. Prove
the following formulas:

(40) Consider the linear differential equation 2’ = Az where
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(a) Find the general solution.
(b) Find the fixed points and discuss their stability.
(c) Sketch the phase diagram.

(41) Consider the linear differential equation 2'(t) = A(¢)z(t) with initial condition x () =
xo, where A(t) is assumed to be continuous for all ¢ € R. For ¢t >t let
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Hint: The series converges absolutely.
(a) Use Picard iteration to prove that its solution is given by
x(t) = B(t)zo.

(b) Prove |By;(t)] < et=1) where a = maxy, <s<¢ || A(S)]]-
¢) Show B(t) = eA—t) if A is constant.
(c)
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