Faculty of Mathematics, Bielefeld University

Optimization and Dynamics

Summer term 2007

Assignment sheet 12

- (39) Let A and B be commuting $n \times n$ matrices and S an invertible $n \times n$ matrix. Prove the following formulas:
 - (a) $(e^A)^{-1} = e^{-A}$
 - (b) $(e^{A})^{m} = e^{mA}, m \in \mathbb{Z}$
 - (c) $e^{A+B} = e^A e^B$
 - (d) $e^{SAS^{-1}} = Se^A S^{-1}$
 - (e) $\det(e^A) = e^{\operatorname{tr} A}$.

(40) Consider the linear differential equation x' = Ax where

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- (a) Find the general solution.
- (b) Find the fixed points and discuss their stability.
- (c) Sketch the phase diagram.
- (41) Consider the linear differential equation x'(t) = A(t)x(t) with initial condition $x(t_0) = x_0$, where A(t) is assumed to be continuous for all $t \in \mathbb{R}$. For $t \ge t_0$ let

$$B(t) = I + \int_{t_0}^t A(s) \, ds + \int_{t_0}^t \int_{t_0}^{s_1} A(s_1) A(s_2) \, ds_2 \, ds_1 + \dots + \int_{t_0}^t \int_{t_0}^{s_1} \dots \int_{t_0}^{s_{n-1}} A(s_1) \dots A(s_n) \, ds_n \dots \, ds_1 + \dots$$

Hint: The series converges absolutely.

(a) Use Picard iteration to prove that its solution is given by

$$x(t) = B(t)x_0.$$

- (b) Prove $|B_{ij}(t)| \le e^{a(t-t_0)}$, where $a = \max_{t_0 \le s \le t} ||A(s)||$.
- (c) Show $B(t) = e^{A(t-t_0)}$ if A is constant.

Please hand in until 29.6.2007.