Faculty of Mathematics, Bielefeld University

Optimization and Dynamics

Summer term 2007

Assignment sheet 7

(25) Consider the linear dynamical system $x_{n+1} = ax_n$ for a > 1.

- (a) Is there any stable orbit?
- (b) Has f sensitive dependence on initial conditions in \mathbb{R} ?
- (c) Is there a dense orbit on \mathbb{R} ? On \mathbb{R}^+ ?
- (d) Is f topologically transitive?
- (26) Consider the dynamical system defined by the map

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x < \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} \le x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Sketch the graph.
- (b) Find the fixed points and the eventually fixed points.
- (c) Show that every $x \in [0, 1)$ can be written as

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},\tag{1}$$

where the sequence $\{a_n\}$ is defined recursively by

$$a_1 = [2x]$$

$$a_n = \left[2^n \left(x - \sum_{m=1}^{n-1} \frac{a_m}{2^m}\right)\right].$$
(2)

Here [z] denotes the greatest integer n such that $n \leq z$. Show that $a_n \in \{0, 1\}$ for all $n \in \mathbb{N}$. Show that $a_n = b_n$ for x given by

$$x = \sum_{n=1}^{\infty} \frac{b_n}{2^n},$$

if $b_n \in \{0, 1\}$ and $b_n = 0$ for an infinite number of n. Let us write

$$x = .a_1 a_2 a_3 \ldots := \sum_{n=1}^{\infty} \frac{a_n}{2^n}$$

in the following. Note that this leads to no ambiguity since $a_n \in \{0, 1\}$.

- (d) Use the expansion (1) to calculate f(x) and $f^n(x)$.
- (e) Use the results of (d) to prove that every orbit $O^+(x)$ with $x \in [0, 1)$ is unstable.
- (f) Show that f has sensitive dependence on initial conditions
- (g) Consider the point x given by the sequence $\{a_n\}$

 $x = .0 \ 1 \ 00 \ 01 \ 10 \ 11 \ 000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111 \ 0000 \ \dots$

Show that $O^+(x)$ is dense in [0, 1].

- (h) Show that f is topologically transitive on X. Hint: Show that in any open interval $U \subseteq [0,1)$ there is a point $y \in U$ that is mapped on some given point $x \in [0,1)$ after sufficiently many iterations of f.
- (i) Show that there are periodic points of all periods (find appropriate sequences $\{a_n\}$). Is it possible to apply Sarkovskii's theorem here?
- (j) Is f chaotic on [0, 1]?