

Sommersemester 2011

Mathematik II für NWI/Lineare Algebra

Übungszettel 3

Aufgabe 11: Sei A eine $n \times n$ -Matrix, und $x \in \mathbb{C}^n$ ein Eigenvektor zum Eigenwert λ . Zeigen Sie

(a) Sx ist Eigenvektor von SAS^{-1} . Wie lautet der entsprechende Eigenwert?

(1 Punkt)

- Die Matrix B vertausche mit A. Zeigen Sie, dass auch Bx ein Eigenvektor von A ist (zu welchem Eigenwert?). (1 Punkt)
- Ist A reell, so ist auch der komplex konjugierte Wert $\bar{\lambda}$ ein Eigenwert von A. Wie lautet ein entsprechender Eigenvektor? (1 Punkt)
- (d)* Ist A reell, so sind die geometrischen Vielfachheiten von λ und $\bar{\lambda}$ gleich. (2 Zusatzpunkte)
- (e)* Ist A reell, so sind die algebraischen Vielfachheiten von λ und $\bar{\lambda}$ gleich.

(2 Zusatzpunkte)

Aufgabe 12: Eine reelle orthogonale $n \times n$ -Matrix heißt Spiegelung, wenn sie nur die Eigenwerte ± 1 besitzt und der Eigenwert -1 die algebraische Vielfachheit 1 besitzt.

Zeigen Sie, dass
$$A = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix} \text{ eine Spiegelung ist. Diagonalisieren Sie } A.$$

$$\left[\underbrace{Hinweis:} \sin \varphi = 2 \sin(\frac{\varphi}{2}) \cos(\frac{\varphi}{2}), \quad 1 + \cos \varphi = 2 \cos^2(\frac{\varphi}{2}), \quad 1 - \cos \varphi = 2 \sin^2(\frac{\varphi}{2}) \right] \tag{4 Punkte}$$

- **Aufgabe 13:** (a) Sei $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Berechnen Sie die Eigenwerte von M, M^2 und M^3 . Wie lauten ihre geometrischen Vielfachheiten? Was fällt auf? (4 Punkte)
 - (b) Eine Matrix N heißt nilpotent, falls ein $s \in \mathbb{N}$ existiert, sodass $N^s = \mathbf{0}$ ist. Dabei sei $\mathbf{0} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$ die Nullmatrix. Zeigen Sie, dass N nur den Eigenwert $\lambda = 0$ (1 Punkt)
 - (c)* Sei N eine $n \times n$ -Matrix, für die $N^n \neq \mathbf{0}$ gilt. Kann N nilpotent sein? [Hinweis: Betrachten Sie die Bildräume von N^k , d. h. $\operatorname{im}(N^k) = \{N^k x | x \in \mathbb{C}^n\}$, (bzw. deren Kerne) und ihre Dimensionen. (2 Zusatzpunkte)

Aufgabe 14: Bestimmen Sie die Eigenwerte von A und ihre Vielfachheiten:

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & -3 & -2 \\ 0 & 1 & 0 \end{pmatrix}.$$
 (3 Punkte)

(bitte wenden)

- **Aufgabe 15:** Gilt $xA=\lambda x$ für $x\in\mathbb{C}^n\backslash\{0\}$, so heißt x linksseitiger Eigenvektor zum (linksseitigen) Eigenwert λ . Zeigen Sie:
 - (a) Ist x Eigenvektor von A, so ist x^T linksseitiger Eigenvektor von A^T . (1 Punkt)
 - (b) Finden Sie eine Bedingung für die Eigenwerte einer reellen orthogonalen Matrix A. [<u>Hinweis:</u> Betrachten Sie $\bar{x}^T A^T A x$, beachten Sie $\bar{x}^T x > 0$, falls $x \neq 0$, und verwenden Sie 11(c).] (2 **Punkte**)