

Sommersemester 2013

Analytische Zahlentheorie

Übungszettel 2

Aufgabe 5: Seien f und g arithmetische Funktionen. Zeigen Sie:

- (a) Sind f und g multiplikativ, dann ist auch f * g multiplikativ.
- (b) Sind f und f * g multiplikativ, dann ist g multiplikativ.
- (c) Ist f multiplikativ, dann ist auch f^{-1} multiplikativ.
- (d) Sei $f \cdot g$ definiert durch $(f \cdot g)(n) := f(n)g(n)$. Untersuchen Sie die Eigenschaften von $f \cdot g$ in Abhängigkeit derer von f und g. (1+1+1+1 **Punkte**)

Aufgabe 6: Untersuchen Sie, ob die folgenden Funktionen (vollständig) multiplikativ sind:

- (a) $\sigma_k(n)$
- (b) die Liouville-Funktion λ , definiert durch

$$\lambda(n) = \begin{cases} 1, & n = 1\\ (-1)^{\ell_1 + \dots + \ell_r}, & \text{falls } n = p_1^{\ell_1} \cdot \dots \cdot p_r^{\ell_r}. \end{cases}$$

(c) $2^{\nu(n)}$, wobei $\nu(n)$ die Anzahl der verschiedenen Primfaktoren von n ist.

(1+1+1 Punkte)

Aufgabe 7: Sei φ die Euler-Funktion. Zeigen Sie:

- (a) $\varphi(n)=n\prod_{p\mid n}(1-\frac{1}{p}).$ (Hinweis: Verwenden Sie die Multiplikativität von φ und die Formel $\varphi=\mu*N.$)
- (b) $\prod_{p|n} (1 \frac{1}{p}) = \sum_{d|n} \frac{\mu(d)}{d}$.
- (c) Es gilt: $\varphi(mn) = \varphi(m)\varphi(n)\frac{d}{\varphi(d)}$ mit $d = \operatorname{ggT}(m,n)$.
- (d) Wenn m|n, dann $\varphi(m)|\varphi(n)$.
- (e) Bestimmen Sie alle ganzen Zahlen, so dass
 - $\varphi(n) = 2$
 - $\varphi(n) = 4$
 - $\varphi(n) = \varphi(2n)$
 - $\varphi(n) = \frac{n}{2}$.

(1+1+1+1+1 Punkte)

Aufgabe 8: Berechnen Sie die (formalen) Dirichlet–Reihen und Euler–Produkte für folgende arithmetische Funktionen:

- (a) die Liouville-Funktion λ , siehe Aufgabe 6.
- (b) $2^{\nu(n)}$, wobei $\nu(n)$ die Anzahl der verschiedenen Primfaktoren von n ist.
- (c) $2^{\nu(n)}\lambda(n)$. (1+1+1 Punkte)

Abgabe bis zum 22.04.2013!