

Sommersemester 2016

Mathematik II für Chemie

Präsenzübungen 10

Aufgabe 1: Berechnen Sie die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix},$$

wobei $0 < \varphi < 2\pi$ und $\varphi \neq \pi$. Überprüfen Sie, dass die Eigenvektoren zu verschiedenen Eigenwerten aufeinander orthogonal stehen. Warum muss das so sein?

Aufgabe 2: Was können Sie über die Eigenwerte der folgenden Matrix aussagen, ohne die Eigenwerte auszurechnen?

$$A = \begin{pmatrix} 3 & 2-i \\ 2+i & 7 \end{pmatrix}$$

Aufgabe 3: Diagonalisieren Sie die Matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix},$$

d.h. bestimmen sie eine Matrix S und eine Diagonalmatrix D so, dass $S^{-1}AS = D$ gilt.

- Aufgabe 4: Zeigen Sie, dass ähnliche Matrizen die gleiche Determinante haben. Zeigen Sie weiters, dass ähnliche Matrizen auch die gleichen Eigenwerte haben.
- Aufgabe 5: Von einer Matrix A kenne man die Eigenwerte $\lambda_1 = 2$ und $\lambda_2 = 3$. Ein Eigenvektor zum Eigenwert λ_1 sei $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und ein Eigenvektor zum Eigenwert λ_2 sei $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Wie lauet die Matrix A. Ist sie unitär? Ist sie hermitesch? *Hinweis:* Sie müssen hier quasi die Umkehrung zur Diagonalisierung durchführen.