

Wintersemester 2010/2011

Mathematik I für Informatik/Lineare Algebra

Übungszettel 8

Aufgabe 28: Seien W_1, W_2 Unterräume eines Vektorraums V.

- (a) Zeigen Sie, dass $W_1 + W_2$ ein Vektorraum ist.
- (b) Zeigen Sie, dass $W_1 + W_2$ der kleinste Vektorraum ist, der W_1 und W_2 enthält.
- (c) Zeigen Sie, dass $\mathcal{L}(W_1 \cup W_2) = W_1 + W_2$ gilt.
- (d) Finden Sie zwei Unterräume $W_1, W_2 \subseteq \mathbb{R}^2$, für die $W_1 + W_2 = \mathbb{R}^2$ aber $W_1 \cup W_2 \neq \mathbb{R}^2$ gilt. Ist $W_1 \cup W_2$ in diesem Fall ein Unterraum?

(1+1+1+1 Punkte)

Aufgabe 29: Sei $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + z - 2y = 0\}.$

- (a) Zeigen Sie, dass W Unterraum von \mathbb{R}^3 ist.
- (b) Geben Sie zwei verschiedene Basen von W an.
- (c) Sei $W' = \{(x, y, z) \in \mathbb{R}^3 \mid x + z 2y = -1\}$. Ist W' Unterraum von \mathbb{R}^3 ?
- (d) Sei $W'' = \{v w \mid v, w \in W'\}$. Ist W'' Unterraum von \mathbb{R}^3 ? Was fällt Ihnen auf?

(1+2+1+1 Punkte)

Aufgabe 30: Sei $V = \mathbb{R}^3$, $W_1 = \{(a, b, b) \mid a, b \in \mathbb{R}\}$, $W_2 = \{(c, -d, d) \mid c, d \in \mathbb{R}\}$. Bestimmen Sie $W_1 \cap W_2$ und $W_1 + W_2$.

(2 Punkte)

Aufgabe 31: Sei $V = W_1 \oplus W_2$ und seien B_1 und B_2 Basen von W_1 bzw. W_2 . Zeigen Sie, dass $B_1 \cup B_2$ eine Basis von V ist.

(2 Punkte)

- **Aufgabe 32*:** Sei $n \in \mathbb{N}$ fix. Für $m \in \mathbb{Z}$ sei $\langle m \rangle := \{ m + kn \mid k \in \mathbb{Z} \}$ und $G = \{ \langle m \rangle \mid m \in \{0, \dots, n-1\} \}$. Sei + definiert durch $\langle m \rangle + \langle \ell \rangle := \langle m + \ell \rangle$ für $m, \ell \in \mathbb{Z}$. Des Weiteren sei \cdot definiert durch $\langle m \rangle \cdot \langle \ell \rangle := \langle m \ell \rangle$.
 - (a) Zeigen Sie, dass $\langle m' \rangle = \langle m \rangle$ genau dann gilt, wenn ein $k \in \mathbb{Z}$ existiert mit m' = m + kn. Weisen Sie nach, dass + und \cdot wohldefiniert sind, d.h. $\langle m' + \ell' \rangle = \langle m + \ell \rangle$ und $\langle m' \ell' \rangle = \langle m \ell \rangle$, falls $\langle m \rangle = \langle m' \rangle$ und $\langle \ell \rangle = \langle \ell' \rangle$.
 - (b) Zeigen Sie, dass (G, +) eine abelsche Gruppe ist.
 - (c) Zeigen Sie: Falls n eine Primzahl ist und ℓ fix ist, so sind die n-1 Mengen $\langle m\ell \rangle$ mit $1 \leq m \leq n-1$ alle verschieden und ungleich $\langle 0 \rangle$, oder ℓ ist durch n teilbar. Schließen Sie daraus, dass es zu jedem $\ell \in \{1, \ldots, n-1\}$ ein $m \in \{1, \ldots, n-1\}$ gibt, so dass $\langle m\ell \rangle = \langle 1 \rangle$.

(bitte wenden)

- (d) Zeigen Sie, dass $(G, +, \cdot)$ ein Körper ist, falls n eine Primzahl ist. <u>Hinweis</u>: Benutzen Sie (c) zum Beweis der Existenz des multiplikativen inversen Elements.
- (e) Ist $(G, +, \cdot)$ ein Körper, falls n eine zusammengesetzte Zahl ist, wenn also $n = r \cdot s$ mit $r, s \in \mathbb{N} \setminus \{1\}$?

(1+1+1+1+1 Punkte)

Abgabe bis zum 10.12.2010!