

Wintersemester 2013/14

Elementare Zahlentheorie

Übungszettel 2

Aufgabe 9: Zeigen Sie:

(a) Für
$$n \in \mathbb{N}$$
 gilt $\binom{2n}{n} < 2^{2n}$.

(b) Für $n \in \mathbb{N}$ gilt $\frac{2^{2n}}{2n} \leq \binom{2n}{n}$, wobei das Gleichheitszeichen nur für n = 1 gilt.

Hinweis: Es gilt $\binom{2n}{n} > \binom{2n}{k}$ für $k \neq n$. (1+2 Punkte)

n / (k)

Aufgabe 10: Sei p eine Primzahl und sei $e_p(a) \in \mathbb{N}_0$ die größte Zahl, sodass $p^{e_p(a)}$ ein Teiler von a ist. Zeigen Sie

(a)
$$e_p\left(\binom{2n}{n}\right) = 1$$
 für $n ,$

(b)
$$e_p\left(\binom{2n}{n}\right) = 0$$
 für $\frac{2n}{3} ,$

(c)
$$e_p\left(\binom{2n}{n}\right) \le 1$$
 für $\sqrt{2n} < p$ und

(d)
$$e_p\left(\binom{2m+1}{m}\right) = 1 \text{ für } m+1 (1+1+1+1 Punkte)$$

Aufgabe 11: Seien $a, b, c \in \mathbb{N}$. Zeigen Sie mit Hilfe des Fundamentalsatzes der Arithmetik:

- (a) Falls a und b teilerfremd sind, so gilt ggT(a,bc) = ggT(a,b) ggT(a,c).
- (b) Es gilt

$$\frac{\operatorname{ggT}(a,b)\operatorname{ggT}(b,c)\operatorname{ggT}(c,a)}{\operatorname{ggT}(a,b,c)^2} = \frac{\operatorname{kgV}(a,b)\operatorname{kgV}(b,c)\operatorname{kgV}(c,a)}{\operatorname{kgV}(a,b,c)^2}$$

(2+3 Punkte)

Aufgabe 12: Zeigen Sie, dass n! für n > 1 keine k-te Potenz einer natürlichen Zahl sein kann (k > 1). (2 Punkte)

Aufgabe 13: Sei $\tau(n)$ die Zahl der (positiven) Teiler von n. Zeigen Sie, dass das Produkt aller Teiler von n durch $\sqrt{n^{\tau(n)}}$ gegeben ist. (2 Punkte)

Abgabe bis zum 31.10.2013!