

Wintersemester 2013/14

Elementare Zahlentheorie

Übungszettel 4

Aufgabe 19: Sei φ die Euler'sche φ -Funktion.

- (a) Geben Sie alle n an, für die $\varphi(n)$ ungerade ist.
- (b) Sei $n \in \mathbb{N}$ und $d \in \mathbb{N}$ ein Teiler von n. Drücken Sie die Zahl aller natürlichen Zahlen k mit $1 \le k \le n$ und $\operatorname{ggT}(k, n) = d$ durch die Euler'sche φ -Funktion aus.
- (c) Berechnen Sie $\sum_{d|n} \varphi(\frac{n}{d})$ und $\sum_{d|n} \varphi(d)$. *Hinweis:* Benützen Sie (b). (1+1+2 Punkte)

Aufgabe 20: (a) Lösen Sie das folgende System von Kongruenzen:

$$x \equiv 1 \pmod{4}$$

 $x \equiv 2 \pmod{5}$
 $x \equiv 1 \pmod{6}$

(b) Seien $k, \ell, m \in \mathbb{N}$ teilerfremd. Geben Sie ein Kriterium dafür an, dass das System

$$x \equiv a \pmod{k\ell}$$
$$x \equiv b \pmod{km}$$

eine Lösung hat. (2+2 Punkte)

Aufgabe 21: Sei p eine Primzahl.

- (a) Zeigen Sie: $\binom{p}{k}$ ist durch p teilbar, falls $1 \le k \le p-1$.
- (b) Berechnen Sie $(a+b)^p \pmod{p}$.
- (c) Beweisen Sie $a^p = a \pmod{p}$ ohne Verwendung des Satzes von Euler-Fermat mit Hilfe vollständiger Induktion und 21b. (1+1+2 Punkte)

Aufgabe 22: Sei k die Ordnung von a modulo m. Zeigen Sie:

- (a) $a^h \equiv 1 \pmod{m}$ genau dann, wenn k|h.
- (b) $a^i \equiv a^j \pmod{m}$ genau dann, wenn $i \equiv j \pmod{k}$.
- (c) Die Restklassen $[a]_m, [a^2]_m, \ldots, [a^k]_m$ sind paarweise verschieden.
- (d) $\operatorname{ord}_m(a^h) = \frac{k}{\operatorname{ggT}(h,k)}$.
- (e) $\operatorname{ord}_m(a^h) = k$ genau dann, wenn $\operatorname{ggT}(h, k) = 1$. (1+1+1+2+1 Punkte)

Abgabe bis zum 14.11.2013!