

Wintersemester 2015/16

Mathematik I für Chemie

Präsenzübungen 11

Aufgabe 1: Berechnen Sie die folgenden unbestimmten Integrale:

- (a) $\int \sin(x-1) dx$,
- (b) $\int e^{2x} dx$,
- (c) $\int x \cos(2x) dx$,
- (d) $\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$,
- (e) $\int \frac{\ln(x)}{x} dx$,

Aufgabe 2: Zeigen Sie, dass für jede auf ganz \mathbb{R} (oder einem geeigneten Intervall) Riemannintegrierbare Funktion f für beliebiges $t \in \mathbb{R}$ gilt:

$$\int_{a}^{b} f(x+t) dx = \int_{a+t}^{b+t} f(y) dy.$$

Aufgabe 3: Berechnen Sie die folgenden bestimmten Integrale:

- (a) $\int_{0}^{1} \frac{x}{\sqrt{2-x}} dx,$
- (b) $\int_{0}^{\pi/2} \sin(x)(\cos(x))^3 dx$.

Aufgabe 4: Sei f(x) eine gerade Funktion, d.h. eine Funktion, für die f(-x) = f(x) gilt. Zeigen Sie, dass für beliebiges $a \ge 0$ gilt:

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$