

Wintersemester 2015/16

Mathematik I für Chemie

Freiwilliges Übungsblatt 14

Aufgabe 73: Gegeben sei das Anfangswertproblem

$$y''(x) + 4y'(x) + 13y(x) = 0$$
, $y(0) = 1$, $y'(0) = 3$.

Berechnen Sie die Lösung y(x) und skizzieren Sie diese für $x \geq -1$.

Aufgabe 74: Sei $f(x,y) = x^3y + x^2(y-1)$. Berechnen Sie $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial y \partial x}$ und $\frac{\partial^2 f}{\partial x^2}$.

Aufgabe 75: Sei $r(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. Berechnen Sie alle ersten und zweiten Ableitungen.

Aufgabe 76: Sei $f(r,\varphi) = \frac{r^2}{4}\sin(4\varphi)$. Berechnen Sie alle ersten und zweiten Ableitungen.

Aufgabe 77: Sei $f(x_1, x_2, \dots x_n) = \frac{1}{\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}}$ für $x \neq (0, \dots, 0)$. Berechnen Sie alle ersten Ableitungen für $x \neq (0, \dots, 0)$.

Aufgabe 78*: Finden Sie eine Partikulärlösung der folgenden inhomogenen linearen Differentialgleichung:

$$y''(x) + y(x) = \sin(x).$$

Skizzieren Sie die Lösung.

Hinweis: Die allgemeine Lösung des homogenen Problems lautet $y(x) = c_1 \cos(x) + c_2 \sin(x)$. Da die Methode der Variation der Konstanten hier ziemlich aufwendig ist, machen Sie den Ansatz $y(x) = (k_1x + c_1)\cos(x) + (k_2x + c_2)\sin(x)$. Könnte man diesen Ansatz noch vereinfachen?