

Wintersemester 2016/17

Diskrete Mathematik

Präsenzübungen 9

- **Aufgabe 1:** (a) Bestimmen Sie für $a \in \{0, ..., 6\}$ die kleinste natürliche Zahl n = n(a), so dass $a^n \equiv 1 \pmod{7}$ gilt. Gibt es für jedes a so ein n(a)?
 - (b) Bestimmen Sie analog für $a \in \{0, ..., 9\}$ die kleinste natürliche Zahl n = n(a), so dass $a^n \equiv 1 \pmod{10}$ gilt. Für welche a existiert so ein n(a)?
 - (c) Stellen Sie eine Vermutung auf, für welche a ein $n \in \mathbb{N}$ existiert, so dass $a^n \equiv 1 \pmod{b}$ gilt. Wie groß kann n(a) (für ein gegebenes b) höchstens sein? Hinweis: Sie müssen hier nur Vermutungen angeben, diese aber nicht beweisen - das machen wir in der Vorlesung. Ein paar Begründungen schaden aber auch nicht. :-)
- **Aufgabe 2:** Bestimmen Sie durch Ausprobieren, ob die folgenden Kongruenzen eine oder mehrere Lösungen besitzen:
 - (a) $3x \equiv 2 \pmod{5}$
 - (b) $3x \equiv 2 \pmod{6}$
 - (c) $4x \equiv 2 \pmod{6}$
 - (d) $5x \equiv 7 \pmod{8}$

Stellen Sie auch hier eine Vermutung auf, wann die Kongruenz $ax \equiv b \pmod{c}$ eine Lösung hat und wann nicht.

Aufgabe 3: (ehemalige Klausuraufgabe) Seien f_n die Fibonacci-Zahlen. Zeigen Sie mit Hilfe vollständiger Induktion:

$$\sum_{i=0}^{n} f_i = f_{n+2} - 1.$$

- **Aufgabe 4*:** (ehemalige Klausuraufgabe (Bonusaufgabe)) Sei μ die Möbiusfunktion, φ die Euler'sche φ -Funktion und u(n) = 1 für alle n. Berechnen Sie $\mu * \varphi * u$.
- **Aufgabe 5:** (ehemalige Klausuraufgabe) Berechnen Sie die erzeugende Funktion für die folgende Rekursion.

$$a_n = a_{n-1} + a_{n-2} \text{ für } n \ge 2$$

$$a_0 = 2$$

$$a_1 = 3.$$