

Wintersemester 2016/17

Diskrete Mathematik

Übungsblatt 7

- **Aufgabe 30:** Betrachten Sie den euklidischen Algorithmus $r_{-1} = a$, $r_0 = b$, $r_{k-2} = q_k r_{k-1} + r_k$ für zwei ganze Zahlen a, b mit 0 < |b| < |a| wie in der Vorlesung in zwei verschiedenen Varianten.
 - (a) Bestimmen Sie den größten gemeinsamen Teiler von 611 und 252, zuerst mit der Variante mit $0 \le r_k < r_{k-1}$.
 - (b) Bestimmen Sie den größten gemeinsamen Teiler von 611 und 252, nun mit der Variante mit $-\frac{|r_{k-1}|}{2} < r_k \le \frac{|r_{k-1}|}{2}$.
 - (c) Zur Erinnerung: die Fibonacci-Zahlen sind definiert durch $f_{n+1} = f_n + f_{n-1}, f_1 = f_2 = 1$. Geben Sie den euklidischen Algorithmus für $a = f_{m+1}, b = f_m$ explizit an, d.h. geben Sie q_k und r_k für alle k an.
 - (d) Betrachten Sie nun den euklidischen Algorithmus für zwei beliebige natürliche Zahlen a und b, zuerst die Variante mit $-\frac{|r_{k-1}|}{2} < r_k \le \frac{|r_{k-1}|}{2}$. Zeigen Sie, dass der euklidische Algorithmus nach spätestens $\lceil \log_2 |b| \rceil + 1$ Schritten terminiert, d.h. es existiert ein $k \le \lceil \log_2 |b| \rceil + 1$ so, dass $r_k = 0$ gilt.
 - Hinweis: Hier bedeutet [x] die größte ganze Zahl kleiner gleich x.
 - (e) Betrachten Sie im Folgenden die Variante mit $0 \le r_k < r_{k-1}$. Zeigen Sie, dass hier nicht mehr als $2[\log_2 |b|] + 1$ Schritte notwendig sind. Hinweis: Vergleichen Sie die einzelnen Schritte der beiden Varianten.
 - (f) Geben Sie das kleinste Paar (lexikographische Ordnung) zweier Zahlen an, für das der euklidische Algorithmus (in der Variante $0 \le r_k < r_{k-1}$) nach 5 Schritten stoppt. (1+1+2+1+2+1 Punkte)
- **Aufgabe 31:** Betrachten Sie den euklidischen Algorithmus $r_{-1} = a$, $r_0 = b$, $r_{k-2} = q_k r_{k-1} + r_k$ für zwei ganze Zahlen a, b mit 0 < |b| < |a|. Die Folgen m_k und n_k seien rekursiv durch

$$m_k = m_{k-2} - q_k m_{k-1}$$
 $m_{-1} = 1, m_0 = 0$
 $n_k = n_{k-2} - q_k n_{k-1}$ $n_{-1} = 0, n_0 = 1$

gegeben.

- (a) Zeigen Sie, dass $r_k = m_k a + n_k b$ für $-1 \le k \le \ell 1$ gilt, wobei ℓ die kleinste Zahl ist, für die $r_\ell = 0$ gilt.
- (b) Gilt die Gleichung auch noch für $k = \ell$? (3+1 Punkte)
- **Aufgabe 32:** Bestimmen Sie den größten gemeinsamen Teiler der Polynome $x^4 4x^2 4x 1$ und $x^4 x^3 5x^2 + 3x + 2$ mit Hilfe des euklidischen Algorithmus. (4 **Punkte**)

Abgabe bis zum 8.12.2016!