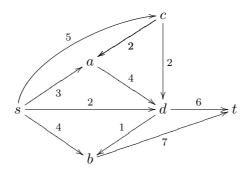


Wintersemester 2016/17

Diskrete Mathematik

Freiwilliges Übungsblatt 14

Aufgabe 64*: Wir betrachten das folgende Netzwerk:



- (a) Wie viele verschiedene Schnitte gibt es?
- (b) Verwenden Sie den Algorithmus von Ford–Fulkerson, um einen maximalen Fluss zu bestimmen. Starten Sie mit dem Fluss $f \equiv 0$.
- (c) Welcher Schnitt hat die minimale Kapazität?

Aufgabe 65*: Sei G = (V, E) ein (einfacher) Graph, und seien $a, b \in V$ zwei verschiedene Vertices. Zwei Pfade von a nach b heißen kantendisjunkt, wenn sie keine Kante gemeinsam haben. Eine Teilmenge E' der Kantenmenge E heißt eine a und b trennende Kantenmenge, falls im Graph $G' = (V, E \setminus E')$ kein Pfad von a nach b existiert; mit anderen Worten: Entfernt man alle in E' enthaltenen Kanten, so kappt man alle "Verbindungen" von a nach b.

Zeigen Sie mit Hilfe des max-flow-min-cut Theorems, dass die minimale Mächtigkeit einer a und b trennenden Kantenmenge gleich der maximalen Anzahl kantendisjunkter Pfade von a nach b ist. Hinweis: Machen Sie aus dem Graphen ein Netzwerk mit geeigneten Kapazitäten.

Ehemalige Klausuraufgaben

Aufgabe 66*: Lösen Sie das folgende System von Kongruenzen:

$$x \equiv 3 \pmod{2}$$

 $x \equiv 2 \pmod{3}$
 $x \equiv 7 \pmod{11}$.

Aufgabe 67*: Zeigen Sie, dass $n^5 - n$ für jede ungerade Zahl n durch 40 teilbar ist. Hinweis: Schreiben Sie 40 = pq als Produkt und zeigen Sie $p \mid n^5 - n$ und $q \mid n^5 - n$.

(bitte wenden)

Aufgabe 68*: Betrachten Sie den Graphen G = (V, E) mit $V = \{1, ..., n\}$ und leerer Kantenmenge E.

- (a) Wie viele Zusammenhangskomponenten hat G?
- (b) Wie viele Teilgraphen mit 3 Vertices gibt es?

 ${\bf Aufgabe~69^*:~} {\bf Beantworten~Sie~die~folgenden~Fragen~(mit~Begründung!)}.$

- (a) Besitzt die Kongurenz $12x \equiv 30 \pmod{40}$ eine Lösung?
- (b) Wie viele inkongruente Lösungen besitzt die Kongurenz $12x \equiv 24 \pmod{30}$?