Bijections in τ -tilting theory - a selection

Jan-Paul Lerch

13 May 2020

Jan-Paul Lerch Bijections in au-tilting theory - a selection

▶ < ∃ ▶</p>

Bijections in τ -tilting theory

Recall

Let A be a finite dimensional basic algebra over a field $k = \overline{k}$. All modules are considered basic.

Definition

- $M \in \text{mod-}A$ is τ -rigid if $\text{Hom}_A(M, \tau M) = 0$.
- *M* is τ -tilting if additionally |M| = |A|.
- *M* is almost-complete τ -tilting if |M| = |A| 1, instead.
- *M* is support- τ -tilting if there is an $e = e^2 \in A$ with *M* τ -tilting over A/AeA.
- (M, P) ∈ mod-A × proj A is τ-rigid if Hom_A(P, M) = 0 and M is τ-rigid.
- (M, P) is support- τ -tilting if additionally |A| = |P| + |M|.
- (M, P) is almost-complete support- τ -tilting if |A| = |P| + |M| 1, instead.

Theorem ([AIR14, Theorem 2.7])

There is a bijection

$$\mathrm{s} au ext{-tilt} A \longleftrightarrow \mathrm{f ext{-tors}} A$$

 $M \longmapsto \mathrm{gen} M$
 $P(\mathcal{T}) \longleftrightarrow \mathcal{T}$

which maps a support τ -tilting module T to a functorially finite torsion class gen T, and conversely, a functorially finite torsion class \mathcal{T} to the basic module $P(\mathcal{T}) = \bigoplus_{i=1}^{k} T_i$, with T_i Ext-projective indecomposables in \mathcal{T} (i.e. $\operatorname{Ext}^1_A(T_i, \mathcal{T}) = 0$).

Corollary

There is an induced partial order on $s\tau$ -tilt A, defined by:

 $M \leq N$: \Leftrightarrow gen $M \subset$ gen N.

< ロ > < 同 > < 回 > < 回 > .

Theorem ([AIR14, Theorem 2.30])

Let $T = X \oplus U$ be a basic τ -tilting A-module which is the Bongartz completion of U with X indecomposable. Let further

$$X \xrightarrow{f} U' \xrightarrow{g} Y \to 0$$

be an exact sequence with f a minimal left (add U)-approximation. Then the following holds:

- if U is not sincere, then Y = 0 and $U = \mu_X^-(T)$. Therefore, the left mutation of T is a basic support τ -tilting module which is not τ -tilting.
- if U is sincere, then Y ∈ add Y₁ for some indecomposable
 Y₁ ∉ add T. In this case μ⁻_X(T) = Y₁ ⊕ U is a basic τ-tilting module.

Example: $Q = 1 \rightarrow 2 \rightarrow 3$, A = kQ.

Let A be a ring. A complex $P \in H^b(\text{proj } A)$ is called

- presilting if Hom_{H^b(proj A)}(P, P[i]) = 0 for any i > 0, and it is called
- silting if it is presilting and if additionally the summands of shifts of P generate H^b(proj A).
- $P = (P^i, d^i)$ is called *two-term* if P^i vanishes for all $i \neq 0, -1$ up to chain homotopy equivalence.

Proposition ([Al12, Theorem 2.11])

There is a partial order on silting complexes defined by

$$P \geq Q \quad :\Leftrightarrow \quad \operatorname{Hom}_{\operatorname{H}^b(\operatorname{proj} A)}(P,Q[i]) = 0 ext{ for all } i > 0.$$

Lemma

A complex P is two-term if and only if $A \ge P \ge A[1]$.

→ < Ξ → <</p>

Proposition

Let $M = M_1 \oplus ... \oplus M_n$ be an indecomposable decomposition of a silting sequence M. Then for any minimal left $\operatorname{add}(\bigoplus_{j \neq i} M_j)$ -approximation sequence $M_i \xrightarrow{f} E \to M_i^* \to M_i[1]$ of M_i there is a left mutation of M at the direct summand M_i :

$$\mu_{M_i}^-(M) = M_i^* \oplus \bigoplus_{j \neq i} M_j,$$

Proposition

The Hasse quiver of silting sequences coincides with the mutation quiver of silting sequences.

• • = • • = •

Theorem ([AIR14, Theorem 3.2])

Let A be a finite dimensional k-algebra. Then there is a bijection

$$\begin{array}{c} 2\text{-silt} A \longrightarrow \mathrm{s}\tau\text{-tilt} A \\ P \longmapsto H^0(P) \\ (P_1 \oplus P \xrightarrow{(f \ 0)^t} P_0) \longleftrightarrow (M, P), \end{array}$$

for f a minimal projective presentation of M.

Corollary

This map in is an isomorphism of partially ordered sets. In particular, it induces an isomorphism between the two-term silting quiver $Q(2-\operatorname{silt} A)$ and the support τ -tilting quiver $Q(\operatorname{s}\tau-\operatorname{tilt} A)$.

Alternatively:

Corollary

This map preserves mutation.

Sketch: Let $M_i \xrightarrow{f} E \to M_i^* \to M_i[1]$ be a mutation sequence for 2-silt A. Taking 0-th cohomology, we get an $\operatorname{add}(\bigoplus_{i\neq j} H^0 M_j)$ -left-approximation sequence of $H^0 M_i$. $H^0 f$ is left minimal: a morphism $\varphi \in \operatorname{End}_A(H^0 E)$ with $\varphi \circ H^0 f = H^0 f$ extends uniquely to $\tilde{\varphi} \in \operatorname{End}_{H^0(\operatorname{proj} A)}(E)$ such that $\tilde{\varphi} \circ f = f$. Thus, by minimality of $f, \tilde{\varphi}$ is an isomorphism and so is φ .

The converse is shown similarly.

Example: $Q = 1 \rightarrow 2 \rightarrow 3$, A = kQ.

Universal localisations and bireflective subcategories

Let A be a ring and Σ a set of morphisms in the category $\operatorname{proj} A$.

 $\mathcal{D}_{\Sigma} := \{ X \in \operatorname{Mod} A | \operatorname{Hom}_{A}(\sigma, X) \text{ is surjective for all } \sigma \in \Sigma \}.$

If $\Sigma = \{\sigma\}$, we just write \mathcal{D}_{σ} .

Proposition ([AMV16, Proposition 3.15])

Let $T \in \text{mod-}A$. T is

- τ -rigid iff there are $P, Q \in \text{proj } A$ and $P \xrightarrow{\sigma} Q \to T \to 0$ such that \mathcal{D}_{σ} is a torsion class containing T ('silting presentation').
- support- τ -tilting iff additionally $\mathcal{D}_{\sigma} = \text{Gen}(T)$.

Proof: Let $P^{-1} \xrightarrow{\sigma'} P^0 \to T \to 0$ with σ' minimal. **1.** Hom $_{\Delta}(M, \tau T) = 0$ iff Hom $_{\Delta}(\sigma', M)$ is surjective: $\operatorname{Hom}_{A}(M, \nu P) \cong \operatorname{Hom}_{k}(M \otimes_{A} P^{*}, k) = D(M \otimes_{A} P^{*}) \cong$ $D \operatorname{Hom}_{A}(P, M) \forall P \in \operatorname{proj} A$. Recall the τ -translate $0 \rightarrow \tau T \rightarrow \nu P^{-1} \rightarrow \nu P^{0}$. We have the commutative diagram: $0 \longrightarrow \operatorname{Hom}_{A}(M, \tau T) \longrightarrow \operatorname{Hom}_{A}(M, \nu P^{-1}) \longrightarrow \operatorname{Hom}_{A}(M, \nu P^{0})$ $\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} D \operatorname{Hom}_{\mathcal{A}}(P^{-1}, M) \xrightarrow{Dh^{\sigma'}(M)} D \operatorname{Hom}_{\mathcal{A}}(P^{0}, M)$ **2.** Hence, $T \in \mathcal{D}_{\sigma'}$ iff it is τ -rigid, which is a torsion class, since σ' is a perfect complex and thus finitely presented. Therefore, Gen $T \subset D_{\sigma'}$. **3.** (T, R) is support- τ -tilting iff Gen $T = {}^{\perp}\tau T \cap R^{\perp}$, and this equals \mathcal{D}_{σ} with $\sigma = \sigma' \oplus R[1]$. (cf. [AIR14][Corollary 2.13] and [Mar15][Proposition 7.4.2])

Two ring epimorphism starting in A, $f_1 : A \to B_1$ and $f_2 : A \to B_2$, are said to be in the same *epiclass* if there is a ring isomorphism $\rho : B_1 \to B_2$ such that $f_2 = \rho \circ f_1$

The class of epiclasses of ring epimorphisms starting in A has an intrinsic partial order given by

 $f_1 \ge f_2 \iff \exists ring \ epimorphism \ \rho : B_1 \to B_2 \ such \ that \ f_2 = \rho \circ f_1.$

A full subcategory \mathcal{X} in Mod-A is called *bireflective* if the inclusion functor admits both a left and right adjoint. A full subcategory \mathcal{W} is called *wide* if it is closed under kernels, cokernels and extensions in the ambient category.

A subcategory \mathcal{X} of Mod-A is bireflective if and only if it is closed under products, coproducts, kernels and cokernels.

Let Σ be a set of morphisms in $\operatorname{proj} A$. Then a ring homomorphism $f_{\Sigma} : A \to B$ is called *universal localisation of A at* Σ if the following properties hold:

- f_Σ is Σ-inverting, i.e. σ ⊗_A B is an isomorphism for every σ ∈ Σ.
- Is universal Σ-inverting, i.e. every Σ-inverting ring homomorphism f : A → B' factors uniquely through f_Σ.

In this case we write $A_{\Sigma} := B$.

For any ring R and any set of maps in proj R, a universal localisation exists, see [Sch85, Theorem 4.1]. Every universal localisation defines an epiclass of ring epimorphisms.

伺 ト イヨト イヨト

Theorem ([AMV19])

There is a commutative diagram of injections (bijections if A τ -tilting finite):

Moreover the maps α , β and ϵ preserve the partial order, where the partial order on bireflective subcategories is given by inclusion. These will be defined in the subsequent steps.

Proposition ([GdIP87, Theorem 1.2])

There is a bijection

$$\left. \begin{array}{c} \text{Epiclasses of ring} \\ \text{epimorphisms} \\ A \to B \end{array} \right\} \xrightarrow{\epsilon} \left\{ \begin{array}{c} \text{Bireflective} \\ \text{subcategories} \\ \text{of Mod-}A \end{array} \right\} \\ (A \to B) \longmapsto \operatorname{essIm}(\operatorname{res}_{A}^{B}). \end{array} \right\}$$

Proposition ([Sch85, Theorem 4.8])

essIm (res_A^B) is closed under extensions iff $Tor_1^A(B, B) = 0$.

Therefore we get:

Corollary

The map ϵ is a bijection.

A similar result:

Bijections in τ -tilting theory

Proposition

For a τ -finite algebra A there is a bijection

$$\left\{\begin{array}{c} \text{Equivalence} \\ \text{classes in} \\ \text{s}\tau\text{-tilt } A \end{array}\right\} \xrightarrow{\alpha} \left\{\begin{array}{c} \text{Epiclasses of ring} \\ \text{epimorphisms } A \to B \\ \text{with } \operatorname{Tor}_1^A(B,B) = 0 \end{array}\right\},$$

$$[T] \xrightarrow{\alpha} f_{\sigma_1},$$

for a minimal left $Add(\sigma)$ -approximation φ of A[0] in $D^b(A)$

$$A[0] \xrightarrow{\varphi} \sigma_0 \to \sigma_1 \to A[1],$$

 σ a silting presentation of T and ${\it f}_{\sigma_1}$ the universal localisation of A at $\sigma_1.$

э

< 同 ト < 三 ト < 三 ト

Sketch:

- $A[0] \xrightarrow{\varphi} \sigma_0 \to \sigma_1 \to A[1] \longleftrightarrow A \xrightarrow{f} T_0 \to T_1 \to 0$, with f a minimal left $\operatorname{add}(T)$ -approximation of A.
- $T_1 \in \text{add } T$, thus τ -rigid.
- $\mathcal{X}_{\sigma_1} := \{X \in \text{Mod-}A \mid \text{Hom}_A(\sigma, X) \text{ is bijective }\} = \mathcal{D}_{\sigma_1} \cap \text{Coker}(\sigma_1)^{\perp} = \text{Gen}(T) \cap T_1^{\perp}.$
- Gen $(T) \cap T_1^{\perp}$ is extension-closed bireflective (see next Prop).
- $\mathcal{X}_{\sigma_1} = \operatorname{essIm}(\operatorname{res}^B_A)$ for some ring epimorphism $A \to B$ with $\operatorname{Tor}_1^A(B,B) = 0$.
- This epi is the universal localisation of A at σ_1 (see e.g. Hennings book vol. 2, chapter 2.3).

Let ${\mathcal T}$ be a torsion class in an Abelian category ${\mathcal A}.$ Then we define the full subcategory

 $\mathfrak{a}(\mathcal{T}) := \{X \in \mathcal{T} \mid \text{if } (g : Y \to X) \in \mathcal{T}, \text{ then } \operatorname{Ker}(g) \in \mathcal{T}\}.$

For T support τ -tilting, we set

 $\beta([T]) := \mathfrak{a} \circ \operatorname{Gen}(T).$

Proposition

We have the diagram of maps

The map β is bijective if A is τ -tilting finite, and it preserves the partial order. The inverse of a is given by FiltGen(–). Moreover, the diagram in the theorem is commutative.

Sketch:

- $\mathfrak{a}(\mathcal{T})$ is a wide subcategory for \mathcal{T} a torsion class.
- $\mathfrak{a}(\text{Gen }T) = \text{Gen}(T) \cap T_1^{\perp}$ for T_1 as in the last proposition.
- The RHS is closed under (co)products, thus bireflective.
- \mathfrak{a} is left-inverse of FiltGen.
- FiltGen is left inverse of $\mathfrak{a}|_{\mathrm{Im}(\mathsf{Gen}(-))}$.
- If $\mathcal{T} \cap \mathsf{mod} A \in \mathrm{f-tors} A$, then $\mathcal{T} = \mathsf{Gen} T$ for $T \in \mathrm{s}\tau$ -tilt A.
- A is τ -tilting finite iff all torsion classes are functorially finite.
- Then, Gen is bijective here.
- The order is preserved.

Given a support- τ -tilting module (T, R), what is the associated ring epi?

Take minimal left add(*T*)-approximation $A \to T_0 \to T_1 \to 0$. Localise at direct sum $(P \xrightarrow{\sigma'} Q) \oplus (R \to 0)$ for σ' a minimal projective presentation of T_1 Example

Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802

- Takahide Adachi, Osamu Iyama, and Idun Reiten, *τ-tilting theory*, Compos. Math. **150** (2014), no. 3, 415–452. MR 3187626
- Lidia Angeleri Hügel, Frederik Marks, and Jorge Vitória, Silting modules, Int. Math. Res. Not. IMRN (2016), no. 4, 1251–1284. MR 3493448
- A characterisation of τ-tilting finite algebras, Model theory of modules, algebras and categories, Contemp. Math., vol. 730, Amer. Math. Soc., Providence, RI, 2019, pp. 75–89. MR 3959610
- P. Gabriel and J. A. de la Peña, Quotients of representation-finite algebras, Comm. Algebra 15 (1987), no. 1-2, 279–307. MR 876981

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Osamu Iyama, Rejective subcategories of artin algebras and orders, arXiv:math/0311281 (2003).

- Frederik Marks, Interactions between universal localisations, ring epimorphisms and tilting modules ; wechselwirkungen zwischen universellen lokalisierungen, ringepimorphismen und kippmoduln (eng).
- A. H. Schofield, *Representation of rings over skew fields*, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853