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Recall

Let A be a finite dimensional basic algebra over a field k = k̄ . All
modules are considered basic.

Definition

M ∈ mod-A is τ -rigid if HomA(M, τM) = 0.

M is τ -tilting if additionally |M| = |A|.
M is almost-complete τ -tilting if |M| = |A| − 1, instead.

M is support-τ -tilting if there is an e = e2 ∈ A with M
τ -tilting over A/AeA.

(M,P) ∈ mod-A× projA is τ -rigid if HomA(P,M) = 0 and
M is τ -rigid.

(M,P) is support-τ -tilting if additionally |A| = |P|+ |M|.
(M,P) is almost-complete support-τ -tilting if
|A| = |P|+ |M| − 1, instead.
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Theorem ([AIR14, Theorem 2.7])

There is a bijection

sτ -tiltA←→ f-torsA

M 7−→ genM

P(T )←− [ T

which maps a support τ -tilting module T to a functorially finite
torsion class genT , and conversely, a functorially finite torsion
class T to the basic module P(T ) =

⊕k
i=1 Ti , with Ti

Ext-projective indecomposables in T (i.e. Ext1
A(Ti , T ) = 0).

Corollary

There is an induced partial order on sτ -tiltA, defined by:

M ≤ N :⇔ genM ⊂ genN.
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Theorem ([AIR14, Theorem 2.30])

Let T = X ⊕ U be a basic τ -tilting A-module which is the
Bongartz completion of U with X indecomposable. Let further

X
f−→ U ′

g−→ Y → 0

be an exact sequence with f a minimal left (addU)-approximation.
Then the following holds:

if U is not sincere, then Y = 0 and U = µ−X (T ). Therefore,
the left mutation of T is a basic support τ -tilting module
which is not τ -tilting.

if U is sincere, then Y ∈ addY1 for some indecomposable
Y1 6∈ addT . In this case µ−X (T ) = Y1 ⊕ U is a basic τ -tilting
module.
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Example: Q = 1→ 2→ 3, A = kQ.

(P1 ⊕ 1⊕ 3, 0)

(P1 ⊕ P2 ⊕ P3, 0)

(3, P1 ⊕ P2)
( 12 ⊕ 1, P3)

(0, P1 ⊕ P2 ⊕ P3)

(P1 ⊕ P2 ⊕ 2, 0) (P2 ⊕ P3, P1)

(P2 ⊕ 2, P1)

( 12 ⊕ 2, P3)

(P1 ⊕ 1
2 ⊕ 1, 0)

(P1 ⊕ 1
2 ⊕ 2, 0)

(2, P1 ⊕ P3)

(1, P2 ⊕ P3)

(1⊕ 3, P2)
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2-term silting objects

Definition

Let A be a ring. A complex P ∈ Hb(projA) is called

1 presilting if HomHb(projA)(P,P[i ]) = 0 for any i > 0, and it is
called

2 silting if it is presilting and if additionally the summands of
shifts of P generate Hb(projA).

3 P = (P i , d i ) is called two-term if P i vanishes for all i 6= 0,−1
up to chain homotopy equivalence.
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Proposition ([AI12, Theorem 2.11])

There is a partial order on silting complexes defined by

P ≥ Q :⇔ HomHb(projA)(P,Q[i ]) = 0 for all i > 0.

Lemma

A complex P is two-term if and only if A ≥ P ≥ A[1].

Jan-Paul Lerch Bijections in τ -tilting theory - a selection



Silting mutation [AI12]

Proposition

Let M = M1 ⊕ ...⊕Mn be an indecomposable decomposition of a
silting sequence M. Then for any minimal left

add(
⊕

j 6=i Mj)-approximation sequence Mi
f−→ E → M∗i → Mi [1] of

Mi there is a left mutation of M at the direct summand Mi :

µ−Mi
(M) = M∗i ⊕

⊕
j 6=i

Mj ,

.

Proposition

The Hasse quiver of silting sequences coincides with the mutation
quiver of silting sequences.
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Bijection: sτ -tiltA and 2-siltA

Theorem ([AIR14, Theorem 3.2])

Let A be a finite dimensional k-algebra. Then there is a bijection

2-siltA −→ sτ -tiltA

P 7−→ H0(P)

(P1 ⊕ P
(f 0)t−−−→ P0)←− [ (M,P),

for f a minimal projective presentation of M.

Corollary

This map in is an isomorphism of partially ordered sets. In
particular, it induces an isomorphism between the two-term silting
quiver Q(2-siltA) and the support τ -tilting quiver Q(sτ -tiltA).
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Alternatively:

Corollary

This map preserves mutation.

Sketch: Let Mi
f−→ E → M∗i → Mi [1] be a mutation sequence for

2-siltA. Taking 0-th cohomology, we get an
add(

⊕
i 6=j H0Mj)-left-approximation sequence of H0Mi .

H0f is left minimal: a morphism ϕ ∈ EndA(H0E ) with
ϕ ◦H0f = H0f extends uniquely to ϕ̃ ∈ EndHb(projA)(E ) such that
ϕ̃ ◦ f = f . Thus, by minimality of f , ϕ̃ is an isomorphism and so is
ϕ.
The converse is shown similarly.
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Example: Q = 1→ 2→ 3, A = kQ.

(P1 ⊕ 1⊕ 3, 0)

(P1 ⊕ P2 ⊕ P3, 0)

(3, P1 ⊕ P2)
( 12 ⊕ 1, P3)

(0, P1 ⊕ P2 ⊕ P3)

(P1 ⊕ P2 ⊕ 2, 0) (P2 ⊕ P3, P1)

(P2 ⊕ 2, P1)

( 12 ⊕ 2, P3)

(P1 ⊕ 1
2 ⊕ 1, 0)

(P1 ⊕ 1
2 ⊕ 2, 0)

(2, P1 ⊕ P3)

(1, P2 ⊕ P3)

(1⊕ 3, P2)
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P2 P13 ⊕ P1
(0 0 ι)

0 P123
0

P12 P3
0

P 2
3 ⊕ P2 P 2

1
0⊕ι⊕ι

P123 00

P3 P12 ⊕ P2
(0 0 ι)

P1 P23
0

P1 ⊕ P3 P 2
2

0⊕ι

P 3
3 P1 ⊕ P2

0⊕ι⊕ι

P2 ⊕ P3 P 3
1

0⊕ι⊕ι

P 2
3 P 2

1 ⊕ P2
(0 ι⊕ι)t

P13 ⊕ P3 P2
0⊕0⊕ι

P23 ⊕ P2 P1
0⊕0⊕ι

P 2
2 P3 ⊕ P1

0⊕ι
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Universal localisations and bireflective subcategories

Let A be a ring and Σ a set of morphisms in the category projA.

DΣ : = {X ∈ Mod-A|HomA(σ,X ) is surjective for all σ ∈ Σ}.

If Σ = {σ}, we just write Dσ.

Proposition ([AMV16, Proposition 3.15])

Let T ∈ mod-A. T is

τ -rigid iff there are P,Q ∈ projA and P
σ−→ Q → T → 0 such

that Dσ is a torsion class containing T (‘silting presentation’).

support-τ -tilting iff additionally Dσ = Gen(T ).
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Proof: Let P -1 σ′
−→ P0 → T → 0 with σ′ minimal.

1. HomA(M, τT ) = 0 iff HomA(σ′,M) is surjective:
HomA(M, νP) ∼= Homk(M ⊗A P∗, k) = D(M ⊗A P∗) ∼=
D HomA(P,M) ∀P ∈ projA. Recall the τ -translate
0→ τT → νP -1 → νP0. We have the commutative diagram:

0 HomA(M, τT ) HomA(M, νP -1) HomA(M, νP0)

D HomA(P -1,M) D HomA(P0,M)

∼ ∼

Dhσ
′
(M)

2. Hence, T ∈ Dσ′ iff it is τ -rigid, which is a torsion class, since σ′

is a perfect complex and thus finitely presented. Therefore,
Gen T ⊂ Dσ′ .
3. (T ,R) is support-τ -tilting iff Gen T = ⊥τT ∩ R⊥, and this
equals Dσ with σ = σ′ ⊕ R[1].
(cf. [AIR14][Corollary 2.13] and [Mar15][Proposition 7.4.2])
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Definition

Two ring epimorphism starting in A, f1 : A→ B1 and f2 : A→ B2,
are said to be in the same epiclass if there is a ring isomorphism
ρ : B1 → B2 such that f2 = ρ ◦ f1

The class of epiclasses of ring epimorphisms starting in A has an
intrinsic partial order given by

f1 ≥ f2 :⇔ ∃ring epimorphism ρ : B1 → B2 such that f2 = ρ ◦ f1.
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Bireflective and wide subcategories

Definition

A full subcategory X in Mod-A is called bireflective if the inclusion
functor admits both a left and right adjoint.
A full subcategory W is called wide if it is closed under kernels,
cokernels and extensions in the ambient category.

A subcategory X of Mod-A is bireflective if and only if it is closed
under products, coproducts, kernels and cokernels.
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Universal localisations

Definition

Let Σ be a set of morphisms in projA. Then a ring
homomorphism fΣ : A→ B is called universal localisation of A at
Σ if the following properties hold:

1 fΣ is Σ-inverting, i.e. σ ⊗A B is an isomorphism for every
σ ∈ Σ.

2 fΣ is universal Σ-inverting, i.e. every Σ-inverting ring
homomorphism f : A→ B ′ factors uniquely through fΣ.

In this case we write AΣ := B.

For any ring R and any set of maps in projR, a universal
localisation exists, see [Sch85, Theorem 4.1]. Every universal
localisation defines an epiclass of ring epimorphisms.

Jan-Paul Lerch Bijections in τ -tilting theory - a selection



Theorem ([AMV19])

There is a commutative diagram of injections (bijections if A
τ -tilting finite):

Equivalence classes of
support-τ -tilting

A-modules




Epiclasses of ring
epimorphisms A→ B

with TorA1 (B,B) = 0




Bireflective extension-
closed subcategories

of Mod-A



α

β

ε

Moreover the maps α, β and ε preserve the partial order, where
the partial order on bireflective subcategories is given by inclusion.
These will be defined in the subsequent steps.
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Proposition ([GdlP87, Theorem 1.2])

There is a bijection
Epiclasses of ring

epimorphisms
A→ B

 ε−−−−→


Bireflective

subcategories
of Mod-A


(A→ B) 7−−−−→ essIm(resBA).

Proposition ([Sch85, Theorem 4.8])

essIm
(
resBA

)
is closed under extensions iff TorA1 (B,B) = 0.

Therefore we get:

Corollary

The map ε is a bijection.
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A similar result:

Proposition ([Iya03, Theorem 1.6.1])

For a finite dimensional algebra A we have a bijection
Epiclasses of ring

epimorphisms A→ B with

TorA1 (B,B) = 0 and dim B <∞

 −−−−→


Functorially finite
wide subcategories

of mod-A


(A→ B) 7−−−−→ essIm(resBA)∩mod-A.
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Bijections in τ -tilting theory

f-wideA

fL-wideA fR-wideA

fL-sbrickA fR-sbrickA
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From sτ -tiltA to epiclasses

Proposition

For a τ -finite algebra A there is a bijection
Equivalence

classes in
sτ -tiltA

 α−−−−→


Epiclasses of ring

epimorphisms A→ B

with TorA1 (B,B) = 0

 ,

[T ]
α7−−−−→ fσ1 ,

for a minimal left Add(σ)-approximation ϕ of A[0] in Db(A)

A[0]
ϕ−→ σ0 → σ1 → A[1],

σ a silting presentation of T and fσ1 the universal localisation of A
at σ1.
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Sketch:

A[0]
ϕ−→ σ0 → σ1 → A[1] ←→ A

f−→ T0 → T1 → 0, with f
a minimal left add(T )-approximation of A.

T1 ∈ addT , thus τ -rigid.

X σ1 := {X ∈ Mod-A | HomA(σ,X ) is bijective } =
Dσ1 ∩Coker(σ1)⊥ = Gen(T ) ∩ T⊥1 .

Gen(T ) ∩ T⊥1 is extension-closed bireflective (see next Prop).

X σ1 = essIm(resBA) for some ring epimorphism A→ B with
TorA1 (B,B) = 0.

This epi is the universal localisation of A at σ1 (see e.g.
Hennings book vol. 2, chapter 2.3).
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From sτ -tiltA to bireflective subcategories

Let T be a torsion class in an Abelian category A. Then we define
the full subcategory

a(T ) := {X ∈ T | if (g : Y → X ) ∈ T , then Ker(g) ∈ T } .

For T support τ -tilting, we set

β([T ]) := a ◦ Gen(T ).
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Proposition

We have the diagram of maps
[T ] ⊂ mod-A

support-τ -
tilting class




Bireflective extension-
closed subcategories

of Mod-A

 .

{
Torsion classes
T ⊂ Mod-A

}

β=a◦Gen

Gen a

FiltGen

The map β is bijective if A is τ -tilting finite, and it preserves the
partial order. The inverse of a is given by FiltGen(−). Moreover,
the diagram in the theorem is commutative.
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Sketch:

a(T ) is a wide subcategory for T a torsion class.

a(Gen T ) = Gen(T ) ∩ T⊥1 for T1 as in the last proposition.

The RHS is closed under (co)products, thus bireflective.

a is left-inverse of FiltGen.

FiltGen is left inverse of a|Im(Gen(−)).

If T ∩mod-A ∈ f-torsA, then T = Gen T for T ∈ sτ -tiltA.

A is τ -tilting finite iff all torsion classes are functorially finite.

Then, Gen is bijective here.

The order is preserved.

Jan-Paul Lerch Bijections in τ -tilting theory - a selection



Calculation of ring epis

Given a support-τ -tilting module (T ,R), what is the associated
ring epi?
Take minimal left add(T )-approximation A→ T0 → T1 → 0.

Localise at direct sum (P
σ′
−→ Q)⊕ (R → 0) for σ′ a minimal

projective presentation of T1
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Example

P2 P1
ι

0 0

P12 0
P2 ⊕ P3 P1

ι⊕0

P123 0

P3 ⊕P2
ι P1 0

P1 ⊕ P3 P2
0⊕ι

P3 0

P2 P1
ι

P3 P1
ι

P13 0

P23 0

P2 0
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