Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000 00000 000	00 000	

Tilting, cluster-tilting and $\tau\text{-tilting}$ A brief introduction

Karin M. Jacobsen

May 6 2020

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000	00	
0	000	00000	000	
		000		

Table of Contents

Introduction

Mutation Setup

Tilting Theory

Definitions Brenner-Butler Tilting Theorem

Cluster-tilting Theory

Definition and properties Mutation and cluster-tilting Sidebar: Cluster Algebras

$\tau\text{-tilting Theory}$

Definitions and properties Mutation

Mutation of quivers

Let Q be a finite, connected quiver without loops. A mutation on vertex i is done in three steps:

- For every $j \rightarrow i \rightarrow k$, add $j \rightarrow k$.
- Reverse every arrow starting or ending at *i*.
- Remove 2-cycles.

Mutation and algebras

Let R_Q be the set of relations on Q generated by compositions of two and two arrows in the 3-cycles of Q. Let Q' be obtained by a (series of) mutation(s) on Q.

It turns out that mod kQ/R_Q and mod $kQ'/R_{Q'}$ are related.

Introduction	Tilting	Cluster-tilting	au-tilting	Bibliography
00 ●	00000	0000 00000 000	00 000	

Setup

- Λ is a finite-dimensional algebra over $k = \overline{k}$.
- mod Λ is the category of finitely generated left $\Lambda\text{-modules}.$
- proj $\Lambda \subseteq \mathsf{mod}\,\Lambda$ is the full subcategory of projectives.
- For a module $M \in \text{mod } \Lambda$:
 - add M ⊆ mod Λ is the smallest subcategory closed under sums and summands containing M,
 - sub $M \subseteq \text{mod } \Lambda$ is the full subcategory of submodules of M^n .
 - fac $M \subseteq \text{mod } \Lambda$ is the full subcategory of factor modules of M^n .
 - |M| is the number indecomposable summands of M up to isomorphism.
- The Auslander-Reiten translation in mod M is denoted τ .
- All modules (that we talk about) are basic.

This talk will mainly follow [IR]

ntroduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	0000 000	0000 00000 000	00	

(classical) Tilting Theory

Idea

- Start with a nice algebra Λ
- Look at a not-so-nice algebra Γ, related to Λ
- Use Λ to understand Γ.

A (very brief) History

- 1973 Berenstein, Gelfand, Ponomarev: BGP-reflections [BGP]
- 1979 Auslander, Platzek, Reiten: APR-tilting [APR]
- 1980 Bongartz: Mutation, completion [Bon]
- 1980 Brenner, Butler: Tilting theorem [BB]
- 1982 Happel, Ringel: Further important theorems [HR]

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	0000	0000 00000 000	00	

Tilting modules

Definition

A module $T \in \text{mod } \Lambda$ is called *partial tilting* if:

1. pdim $T \leq 1$,

2.
$$Ext^{1}_{\Lambda}(T, T) = 0.$$

It is called *tilting* if in addition $|T| = |\Lambda|$.

Theorem

 ${\sf T}$ is tilting if it is partial tilting and there exists a short exact sequence

$$0 \rightarrow \Lambda \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

with $T_0, T_1 \in \text{add } T$.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000 00000 000	00 000	

Completions

Theorem [Bon]

Any partial tilting module U is a direct summand of a tilting module $T = U \oplus X$. T is called the *completion* of U. X is called the *complement* of U.

Example

The partial tilting module $S_2 \oplus I_2$ has completion $S_2 \oplus I_2 \oplus P_1$. The partial tilting module $P_3 \oplus P_1$ has completions $P_3 \oplus P_2 \oplus P_1$ and $P_3 \oplus P_1 \oplus I_1$.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000	00	
0	000	00000	000	
		000		

Completions II

A partial tilting module U with $|U| = |\Lambda| - 1$ is called an *almost complete tilting module*.

Theorem [HU],+

An almost complete tilting module has one or two completions.

Theorem [HU],+

Let U be an almost complete tilting module with complements X and Y. There exists a short exact sequence $0 \rightarrow X \xrightarrow{f} U' \xrightarrow{g} Y \rightarrow 0$

(up to interchanging X and Y) such that: f is a minimal left add U - approximation. g is a minimal right add U - approximation.

"Mutation": $T \rightarrow U \rightarrow T'$

Introduction 00 0	Tilting 0000● 000	Cluster-tilting 0000 00000 000	τ -tilting 00 000	Bibliography

Example $T = P_1 \oplus P_2 \oplus P_3$ is a tilting object. $End(T)^{op} = kQ$

 $U = P_1 \oplus P_3$ is an almost complete tilting object.

 $T' = P_1 \oplus P_3 \oplus I_1$ is a tilting object. End $(T)^{op} = kQ/\langle \alpha\beta \rangle$

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000 •00	0000 00000 000	00 000	

Torsion pairs

Definition

A torsion pair in mod Λ is a pair of full subcategories $(\mathscr{T},\mathscr{F})$ such that

•
$$\operatorname{Hom}(\mathscr{T},\mathscr{F}) = 0$$

• For all $X \in \text{mod } \Lambda$ there is a short exact sequence $0 \to T \to X \to F \to 0$ with $T \in \mathscr{T}$ and $F \in \mathscr{F}$.

 ${\mathscr T}$ is called a torsion class and ${\mathscr F}$ a torsion-free class

• $\mathscr{T}=^{\perp}\mathscr{F}$ and $\mathscr{F}=\mathscr{T}^{\perp}$ determine each other

• A torsion pair "determines" the module category

Introdu	ction
00	
0	

Tilting

Cluster-tiltin 0000 00000 000 τ -tilting

Bibliography

Brenner-Butler Tilting Theorem

The Brenner-Butler tilting theorem [BB]

Let T be a tilting module in mod Λ with $\Gamma = \text{End}(T)^{\text{op}}$. Let $\mathscr{T} = \text{fac } T$ and $\mathscr{F} = \mathscr{T}^{\perp}$. In mod Γ , let $\mathscr{Y} = \text{sub } DT$ and $\mathscr{X} =^{\perp} \mathscr{Y}$.

- $(\mathscr{T},\mathscr{F})$ is a torsion pair in mod Λ
- $(\mathscr{X}, \mathscr{Y})$ is a torsion pair in mod Γ
- There are mutually inverse equivalences:

Cluster tilting theory

- We want to mimic mutation on quivers closer.
- We would like to be able to mutate on every summand of tilting objects.
- Something called cluster algebras that looks interesting.

One way to view the "missing" mutations is that we don't have enough objects.

Solution: Add more objects!

Introduction	Tilting	Cluster-tilting
00		0000
0	000	00000

 τ -tilting

Bibliography

The cluster category

Definition [BMRRT]

Let H be a hereditary algebra. The Verdier quotient category

$$\mathscr{C}_{H} = \mathscr{D}^{b} (\operatorname{mod} H) / \tau^{-1}[1]$$

is the *cluster category* of *H*.

Generalizations for non-hereditary algebras exist. The objects of \mathscr{C}_H are the $\tau^{-1}[1]$ -orbits in $\mathscr{D}^b(\mod H)$. By abuse of notation we write X for the $\tau^{-1}[1]$ -orbit containing X. In \mathscr{C}_H , we have $X[1] \cong \tau X$ Morphisms in \mathscr{C}_H are given by

$$\operatorname{Hom}_{\mathscr{C}_H}(X,Y) = \prod_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathscr{D}^b(\operatorname{mod} H)}(\tau^{-i}X[i],Y)$$

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000 000	0000 00000 000	00 000	

$$\Lambda = kQ \\ Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

$$\operatorname{\mathsf{mod}}\nolimits\Lambda\to \mathscr{D}^b(\operatorname{\mathsf{mod}}\nolimits\Lambda) \xrightarrow{-/\tau^{-1}[1]} \mathscr{C}_\Lambda$$

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00		0000	00	
0	000	00000	000	
		000		

Important properties

- $Ob \, \mathscr{C}_{\Lambda} \cong \operatorname{mod} \Lambda \cup \operatorname{proj} \Lambda[1].$
- \mathscr{C}_{Λ} is triangulated [Kel]
- \mathscr{C}_{Λ} is 2-Calabi-Yau, Krull-Remak-Schmidt and Hom-finite

All in all this makes it an attractive source of examples.

Introduction 00 0

Tilting00000
000

Cluster-tilting

τ-tilting 00 000 Bibliography

Cluster-tilting objects

Definition [BMRRT]

An object $T \in \mathscr{C}_{\Lambda}$ is a *cluster-tilting object* if

- T is rigid, i. e. $Ext_{\mathscr{C}_{\Lambda}}(T, T) = 0.$
- add $T = \{X | \operatorname{Ext}_{\mathscr{C}_{\Lambda}}(T, X) = 0\}$

Theorem [BMRRT]

The following are equivalent

- T is cluster-tilting
- T is maximal rigid. That is, if $T \oplus X$ is rigid, then $X \in \text{add } T$.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000 000	0000 0000 000	00 000	

Mutation

Definition [BMRRT]

An object $U \in \mathscr{C}_{\Lambda}$ is called *almost cluster-tilting* if there exists some indecomposable $X \in \mathscr{C}_{\Lambda}$ such that $U \oplus X$ is cluster-tilting. We call $U \oplus X$ the *completion* of U.

Theorem [BMRRT]

Any almost cluster-tilting object has exactly two completions up to isomorphism.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00			00	
0	000	00000	000	
		000		

Example of mutation

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000 00000 000	00	

Cluster-tilting

Theorem [BMRRT]

Let Λ be a hereditary algebra with cluster category \mathscr{C}_{Λ} . Let $T \in \mathscr{C}_{\Lambda}$ be cluster-tilting. Let $\mathscr{C}_{\Lambda}/T[1]$ be the quotient category obtained by factoring out any morphism which factors through add T[1]. The following diagram commutes:

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00			00	
0	000	00000	000	
		000		

Why "clusters"?

Because Cluster Algebras!

How to make a cluster algebra[FZ1]

Fix

- A positive integer *n*,
- A function field $F = \mathbb{Q}(x_1, \cdots, x_n)$,
- A quiver Q with n vertices.

The pair $(\{x_1, \dots, x_n\}, Q)$ is the *initial seed*. For $1 \le i \le n$, define a mutation of the seed at *i* to be $(\{x'_1, \dots, x'_n\}, \mu_i(Q))$, where $x'_j = x_j$ for $j \ne i$ and $x'_i = \frac{m_1+m_2}{x_i}$, where m_1 and m_2 are monomials determined by Q. Iterate this process!

Mutation is an idempotent operation!

Introduction 00 0 **Tilting**00000
000

Cluster-tilting

τ-tilting 00 000 Bibliography

Cluster Algebras II

How to make a cluster algebra, continued

By iteration we obtain a collection of pairs (S, G)Each S is a generating set of $F = \mathbb{Q}(x_1, \dots, x_n)$, called a *cluster*. Its elements are called *cluster variables*. Each G is a quiver. We can now define the *cluster algebra*:

 $A = \langle \text{all cluster variables} \rangle \subseteq F$

Introduction 00 0

Tilting 00000 000 Cluster-tilting

 τ -tilting 00 000 Bibliography

Why cluster algebras?

Because they turned out to be very useful! [FZ2]

- Discrete dynamical systems based on rational recurrences.
- Quantum cluster algebras, Poisson geometry and Teichmüller theory.
- Grassmannians, projective configurations and their tropical analogues.
- Generalized associahedra associated with finite root systems.

...and cluster categories provide a categorification of cluster algebras.

$\tau\text{-tilting theory}$

- The combinatorics of cluster-tilting are very satisfying!
- Can we find a way to do them in the module category?
- Yes, thanks to [AIR]!

Definition

A module $T \in \text{mod } \Lambda$ is τ -rigid if $\text{Hom}_{\Lambda}(T, \tau T) = 0$. τ -tilting if it is τ -rigid and $|T| = |\Lambda|$. support τ -tilting if there exists an idempotent $e \in \Lambda$ such that T is is τ -tilting in mod $\Lambda/\langle e \rangle$.

Important properties

A module *M* is *faithful* if ann $M = \{\lambda \in \Lambda | \lambda M = 0\} = 0$

Theorem [AIR]

Tilting modules are precisely faithful (support) τ -tilting modules.

Theorem [AIR]

For a τ -rigid module, the following are equivalent:

- T is τ -tilting.
- T is maximal τ -rigid.
- If $\operatorname{Hom}_{\Lambda}(T, \tau X) = 0 = \operatorname{Hom}_{\Lambda}(X, \tau T)$, then $X \in \operatorname{add} T$.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000	00 000	
		000		

τ -tilting pairs

We got mutation at all summands in \mathscr{C}_{Λ} by adding an "extra copy" of the projectives.

Definition [AIR]

Let (X, P) be a pair of modules in mod Λ . We call (X, P) a τ -rigid pair if

- X is τ -rigid
- *P* ∈ proj Λ
- $\operatorname{Hom}_{\Lambda}(P, X) = 0$

It is support τ -tilting if we have $|X| + |P| = |\Lambda|$. It is almost complete support τ -tilting if we have $|X| + |P| = |\Lambda| - 1$.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000 00000 000	00 000	

Mutation

Theorem [AIR]

Any almost complete support $\tau\text{-tilting pair has exactly two complements.}$

Example

 $(P_1 \oplus P_2 \oplus P_3, 0)$ is support τ -tilting. $(P_2 \oplus P_3, 0)$ is almost complete support τ -tilting. $(P_2 \oplus P_3, P_1)$ is support τ -tilting.

Introduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
00	00000	0000 00000 000	00 000	

Bijections

Theorem [AIR]

There exists a bijection between

- Basic support τ -tilting Λ modules (up to isomorphism)
- Functorially finite torsion classes in mod Λ (up to isomorphism)

Theorem [AIR]

Let $T \in \mathscr{C}_{\Lambda}$ be cluster-tilting. There exists a one-to-one correspondence between cluster-tilting objects in \mathscr{C}_{Λ} and support τ -tilting pairs in mod End $_{\mathscr{C}_{\Lambda}} T$.

Introduction	Tilting	Cluster-tilting	au-tilting	Bibliography
00	00000	0000	00	

Bibliography I

- O. Iyama, and I. Reiten, Introduction to τ-tilting theory, PNAS July 8, 2014 111 (27) 9704-9711.
- T. Adachi, O. Iyama, and I. Reiten, *τ-tilting theory*, Compositio Math. **150** (2014), 415–452.
- M. Auslander, M. I. Platzeck, I. Reiten, *Coxeter functions without diagrams*, Trans. Amer. Math. Soc. 250 (1979) 1-12.
- I. N. Bernstein, I. M. Gelfand, V. A. Pomonarev, Coxeter functors and Gabriel's theorem, Russ. Math. Surv. 28 (1973), 17-32.
- K. Bongartz, *Tilted Algebras*, Proc. ICRA III (Puebla 1980), Lecture Notes in Math. No. 903, Springer-Verlag 1981, 26-38.

ntroduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
0	000	00000	000	

Bibliography II

- S. Brenner, M. C. R. Butler, *Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors*, Lecture Notes in Math. 839, Springer-Verlag (1980), 103-169.
- A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. 204 (2006), 572–618.
- S. Fomin, A. Zelevinsky, *Cluster algebras. I. Foundations*, J. Amer. Math. Soc. 15 (2002),no. 2, 497-529.
- S. Fomin, A. Zelevinsky, *Cluster algebras:Notes for the CDM-03 conference* Current Developments in Mathematics 2003 (2003), 1–34.

ntroduction	Tilting	Cluster-tilting	τ -tilting	Bibliography
20	00000	0000	00	
5	000	000	000	

Bibliography III

- D. Happel, C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- D. Happel, L. Unger Almost complete tilting modules Proc. Amer. Math. Soc.107 (1989), no. 3, 603–610.
- B. Keller, *On triangulated orbit categories*, Documenta Math. 10 (2005), 551-581.