Fix a field k.

Definition

We call a set X of paths in a quiver Q gently closed if for all vertices v, arrows a, a', b, b' and paths p, q in Q the following properties hold:

- (1) $avb, a'vb' \in X \Rightarrow (a = a', b = b' \text{ or } a \neq a', b \neq b').$
- (2) $pa, aq \in X \Rightarrow paq \in X$.
- (3) $pq \in X \Rightarrow p, q \in X$.
- (4) $a \in X$.

A gentle quiver Q = (Q, P, F) is a triple consisting of

- (i) a finite quiver Q with all indegrees and outdegrees ≤ 2 and without isolated vertices,
- (ii) a gently closed set P of paths in Q, which are called *permitted*,
- (iii) a gently closed set F of paths in Q, which are called *forbidden*,

such that each path of length 2 in Q is either permitted or forbidden (but not both).

The gentle algebra defined by \mathcal{Q} is $k\mathcal{Q} = kQ/\langle F \cap Q_2 \rangle$.

Note that \mathcal{Q} is completely determined by $(Q, P \cap Q_2)$ or $(Q, F \cap Q_2)$, respectively. **Lemma.** P is a basis of $k\mathcal{Q}$. In particular, $k\mathcal{Q}$ is finite-dimensional iff $|P| < \infty$. **Example.** The centre quiver \mathcal{Q} given by

Example. The gentle quiver \mathcal{Q} given by

$$Q = a \bigcirc \bullet \bigcirc b$$

with $P = \langle ab, ba \rangle$ and $F = \langle a^2, b^2 \rangle$ yields the gentle algebra $k\mathcal{Q} = k \langle a, b \rangle / (a^2, b^2)$.

Classification of Modules etc.

Assume in this section $|P| < \infty$ so that $k\mathcal{Q}$ is finite-dimensional.

The INDECOMPOSABLE MODULES in mod kQ can be classified in terms of strings and bands. Recall Bill's talk in our Friday seminar on 15 November 2019 and see also [Cra18]. For a combinatorial classification of MORPHISMS BETWEEN STRING AND BAND MODULES

and the AUSLANDER-REITEN QUIVER of mod $k\mathcal{Q}$ see [BR87; Cra89; Kra91].

A classification of the INDECOMPOSABLE COMPLEXES in $D^b \pmod{kQ}$ and of MORPHISMS BETWEEN THEM has been worked out, too. See [BM03; ALP16; Ben19] and also [Opp17]. **Example.** The Kronecker quiver is gentle. Hence, its Auslander-Reiten quiver (and much more) can be described using string and band combinatorics. See https://www.math.uni-bielefeld.de/~jgeuenich/string-applet/?example=Kronecker#string-info.

Bardzell Resolution

Bardzell described the minimal projective bimodule resolution for the diagonal bimodule over a monomial algebra, which for gentle algebras assumes the following form:

Theorem ([Van94; Bar97]). The complex $(k\mathcal{Q} \otimes_{kQ_0} kF_{\ell} \otimes_{kQ_0} k\mathcal{Q}[-\ell], d_{\ell})$ with differentials

 $d_{\ell}(1 \otimes a_1 \cdots a_{\ell} \otimes 1) = a_1 \otimes a_2 \cdots a_{\ell} \otimes 1 + (-1)^{\ell} \otimes a_1 \cdots a_{\ell-1} \otimes a_{\ell}$

is a minimal projective resolution of $k\mathcal{Q}$ as a graded module over $(k\mathcal{Q})^e = k\mathcal{Q}^{\text{op}} \otimes_k k\mathcal{Q}$.

Koszul Duality

The dual of a gentle quiver $\mathcal{Q} = (Q, P, F)$ is the gentle quiver $\mathcal{Q}^{\text{op}} = (Q^{\text{op}}, F^{\text{op}}, P^{\text{op}})$. **Example.** With \mathcal{Q} as in the previous example, $k\mathcal{Q}^{\text{op}} \cong k[x, y]/(xy)$.

A result by Green–Zacharia for monomial algebras specializes to the following:

Theorem ([GZ94]). Gentle algebras $k\mathcal{Q}$ graded by path length are Koszul with dual $k\mathcal{Q}^{\text{op}}$. Mapping $a \in Q_1$ to the short exact sequence $0 \to \text{soc } M(a) \to M(a) \to \text{top } M(a) \to 0$, where M(a) is the string module defined by a, induces an isomorphism of graded k-algebras

$$k\mathcal{Q}^{\mathrm{op}} \xrightarrow{\cong} \operatorname{Ext}_{k\mathcal{Q}}^*(k\mathcal{Q}/\langle Q_1 \rangle, k\mathcal{Q}/\langle Q_1 \rangle) = E^*(k\mathcal{Q}).$$

Proof. Applying $-\otimes_{(kQ)^e} kQ$ to Bardzell's resolution yields the Koszul complex of kQ. \Box

In particular, $k\mathcal{Q}^{\text{op}}$ is finite-dimensional iff $k\mathcal{Q}$ has finite global dimension (see [Kva15]). **Example.** The polynomial ring k[x] and the ring of dual numbers $k[\varepsilon]/(\varepsilon^2)$ are gentle algebras, which are Koszul dual to each other.

Regularity

Recall that a k-algebra is said to be *homologically smooth* if it has a finite projective resolution as a module over its enveloping algebra by finitely generated modules. The aforementioned results yield:

Proposition ([HKK17], [LP19]). $k\mathcal{Q}$ is homologically smooth iff $|F| < \infty$. More precisely, gl.dim $k\mathcal{Q} = \operatorname{proj.dim} k\mathcal{Q}_{(k\mathcal{Q})^e} = g(\mathcal{Q})$ with $g(\mathcal{Q}) = \sup\{\ell : F_\ell \neq \emptyset\}$. Proof. Use $g(\mathcal{Q}) = \sup\{\ell : E^\ell(k\mathcal{Q}) \neq 0\} = \operatorname{gl.dim} k\mathcal{Q} \leq \operatorname{proj.dim} k\mathcal{Q}_{(k\mathcal{Q})^e} \leq g(\mathcal{Q})$. \Box Even though the global dimension of $k\mathcal{Q}$ can be infinite, still the following is true: **Theorem** ([GR05]). Finite-dimensional gentle algebras $k\mathcal{Q}$ are Gorenstein.

More precisely, inj.dim $kQ_{kQ} = inj.dim_{kQ}kQ = \ell$, if $\ell > 0$ is maximal such that there is a forbidden path p of length ℓ in Q not properly contained in any other forbidden path.

Periodicity

According to Marczinzik, a finite-dimensional k-algebra Λ is said to be *eventually periodic* if for sufficiently large n there exists some i > 0 such that we have $\Omega_{\Lambda^e}^{n+i}(\Lambda) \cong \Omega_{\Lambda^e}^n(\Lambda)$. Bardzell's resolution thus yields an answer to a question of Marczinzik:

Proposition. Finite-dimensional gentle algebras are eventually periodic.

Gradings

Let \mathcal{Q} be a gentle quiver endowed with a grading $Q_1 \to \mathbb{Z}, a \mapsto |a|$.

We view kQ_1 as a dg vector space with grading induced by $|\cdot|$ and differential d = 0. The path algebra $kQ = \bigoplus_{\ell} kQ_{\ell}$ then becomes a dg algebra with induced grading

$$|\prod a_i| = \sum_i |a_i|$$

and induced differential

$$d(\prod a_i) = \sum_i \left((\prod_{j < i} a_j) \cdot d(a_i) \cdot (\prod_{j > i} a_j) \right) = 0$$

Of course, kQ is also graded by path length and kQ_+ is a dg ideal since $d(kQ_\ell) \subseteq kQ_\ell$. This construction turns kQ into a dg algebra equipped with an additional length grading.

Remark (see also David's talk). Let A_i (i = 1, 2) be two homologically smooth graded gentle algebras and let $D(A_i)$ be their derived categories of perfect dg modules. Lekili– Polishchuk, motivated by the work of Haiden–Katzarkov–Kontsevich, associate with A_i partially wrapped Fukaya categories and deduce a sufficient criterion for $D(A_1) \simeq D(A_2)$.

Note that $D(k\mathcal{Q})$ is equivalent to $K^b(\operatorname{proj} k\mathcal{Q})$ if the grading of \mathcal{Q} is 0.

A significant part of the data appearing in this criterion for derived equivalence is provided by the (graded) Avella-Alaminos–Geiß (AG) invariant, which we will define next.

Threads

By a *trail* in a quiver we mean a subquiver t_p spanned by a path p.

A trail t_p given by a path p in a gently closed set X is called a *thread* in X if it has either of the following two properties:

- (1) t_p is not properly contained in any other trail t_q with $q \in X$.
- (2) p is the trivial path at a vertex with indegree and outdegree both ≤ 1 .

Denote by T_X the set of all threads in X.

Remark. Let $X \in \{P, F\}$. Each arrow of Q occurs in exactly one thread in X and the second condition above ensures that each vertex of Q occurs in exactly two threads in X.

Example. For \mathcal{Q} with underlying quiver

$$Q = 1 \underbrace{\stackrel{b}{\overleftarrow{}}_c a \rightarrow}_c 2$$

and $F = \langle ab, ba \rangle$ and thus $P = \langle ac, ca \rangle$ we have $T_F = \{ab = ba, c\}$ and $T_P = \{ac = ca, b\}$.

Reformulating the results from before we may conclude:

Proposition. A gentle algebra kQ is [finite dimensional / homologically smooth] iff its gentle quiver Q has no [permitted / forbidden] cyclic threads of positive length.

Boundary Components

Following [LP19], a boundary component B of a gentle quiver \mathcal{Q} is a trail t_p in $\overline{Q} = Q \amalg Q^{\text{op}}$ such that, assuming p to be chosen with pairwise distinct arrows, it is cyclic, avoids aa^{op} with $a \in \overline{Q}_1$ and alternates between forbidden and permitted threads in the sense that

$$p = \prod_{i \in \mathbb{Z}/n\mathbb{Z}} p_i$$
 with $t_{p_i} \in T_F \cup T_{P^{\text{op}}}$ and, if $n > 1$, also $t_{p_i} \in T_F \Leftrightarrow t_{p_{i+1}} \in T_{P^{\text{op}}}$.

Degree and winding number of such a boundary component B are defined as

$$n(B) := \left\lfloor \frac{n}{2} \right\rfloor$$
 and $w(B) := \sum_{i} w(t_{p_i})$

where

$$w(t_{p_i}) := \begin{cases} -(\ell(p_i) - \delta_{n>1}) + |p_i| & \text{for } t_{p_i} \in T_F, \\ -|p_i| & \text{for } t_{p_i} \in T_{P^{\text{op}}} \end{cases}$$

Example. For \mathcal{Q} as in the last example we have the following boundary components:

В	n(B)	w(B)
ab	0	-2 + ab
$(ac)^{\mathrm{op}}$	0	- ac
cb^{op}	1	c - b

AG Invariant

Definition ([LP19]). The (graded) AG invariant $\mathbb{N} \times \mathbb{N} \xrightarrow{\phi_{\mathcal{Q}}} \mathbb{N}$ of \mathcal{Q} is defined as

$$\phi_{\mathcal{Q}}(n,m) := \# \Big\{ B \text{ boundary component of } \mathcal{Q} : (n(B), n(B) - w(B)) = (n,m) \Big\}$$

For finite-dimensional ungraded gentle algebras Q, it is clear (essentially by definition) that this AG invariant ϕ_Q coincides with the invariant introduced in [AG08].

Remark (see [LP19] or wait for David's talk). $\phi_{\mathcal{Q}}$ is a derived invariant for homologically smooth \mathcal{Q} . In the ungraded setting this was already proved by Avella-Alaminos–Geiß.

References

- [ALP16] K. K. Arnesen, R. Laking, and D. Pauksztello, "Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra," J. Algebra, vol. 467, pp. 1–46, 2016, DOI: 10.1016/j.jalgebra.2016.07.019. arXiv: 1411.7644 [math.RT].
- [AG08] D. Avella-Alaminos and C. Geiß, "Combinatorial derived invariants for gentle algebras," J. Pure Appl. Algebra, vol. 212, no. 1, pp. 228–243, 2008, DOI: 10.1016/j.jpaa.2007.05.014.
- [Bar97] M. J. Bardzell, "The alternating syzygy behavior of monomial algebras," J. Algebra, vol. 188, no. 1, pp. 69–89, 1997, DOI: 10.1006/jabr.1996.6813.
- [BM03] V. Bekkert and H. A. Merklen, "Indecomposables in derived categories of gentle algebras," *Algebr. Represent. Theory*, vol. 6, no. 3, pp. 285–302, 2003, DOI: 10.1023/A:1025142023594.
- [Ben19] R. Bennett-Tennenhaus, "Functorial filtrations for homotopy categories of some generalisations of gentle algebras," version 5, 2019, arXiv: 1608.08514 [math.RT].
- [BR87] M. C. R. Butler and C. M. Ringel, "Auslander-Reiten sequences with few middle terms and applications to string algebras," *Comm. Algebra*, vol. 15, no. 1-2, pp. 145–179, 1987, DOI: 10.1080/00927878708823416.
- [Cra18] W. Crawley-Boevey, "Classification of modules for infinite-dimensional string algebras," Trans. Amer. Math. Soc., vol. 370, no. 5, pp. 3289–3313, 2018, DOI: 10.1090/tran/7032. arXiv: 1308.6410 [math.RA].
- [Cra89] W. Crawley-Boevey, "Maps between representations of zero-relation algebras," J. Algebra, vol. 126, no. 2, pp. 259–263, 1989, DOI: 10.1016/0021-8693(89)90304-9.
- [GR05] C. Geiß and I. Reiten, "Gentle algebras are Gorenstein," in *Representations of algebras and related topics*, vol. 45, Amer. Math. Soc., Providence, RI, 2005, pp. 129–133.
- [GZ94] E. L. Green and D. Zacharia, "The cohomology ring of a monomial algebra," Manuscripta Math., vol. 85, no. 1, pp. 11–23, 1994, DOI: 10.1007/BF02568180.
- [HKK17] F. Haiden, L. Katzarkov, and M. Kontsevich, "Flat surfaces and stability structures," Publ. Math. Inst. Hautes Études Sci., vol. 126, pp. 247–318, 2017, DOI: 10.1007/s10240-017-0095-y. arXiv: 1409.8611 [math.AG].
- [Kra91] H. Krause, "Maps between tree and band modules," J. Algebra, vol. 137, no. 1, pp. 186–194, 1991, DOI: 10.1016/0021-8693(91)90088-P.
- [Kva15] S. Kvamme, Necessary and sufficient conditions, BIREP Summer School on Koszul Duality, 2015, Online: https://www.math.uni-bielefeld.de/birep/activities/summer2015/ notes/Kvamme.pdf.
- [LP19] Y. Lekili and A. Polishchuk, "Derived equivalences of gentle algebras via Fukaya categories," version 5, 2019, arXiv: 1801.06370 [math.SG].
- [Opp17] S. Opper, Classification of indecomposable objects in the bounded derived category of a gentle algebra, BIREP Summer School on Gentle Algebras, 2017, Online: https://www.math.unibielefeld.de/birep/activities/summer2017/summer-school-2017.pdf#section.10.
- [Van94] M. Van den Bergh, "Noncommutative homology of some three-dimensional quantum spaces," in Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), vol. 8, 1994, pp. 213–230, DOI: 10.1007/BF00960862.