Connections for sheaves on weighted projective lines

Andrew Hubery

Universität Bielefeld

18 December 2020

A review of some results of Crawley-Boevey in his/our proof of the Deligne-Simson Problem.

Given a manifold \mathcal{M} over \mathbb{R} , one would like some way to relate the local geometry at different points. There are two approaches to this problem.

Let $E \to \mathcal{M}$ be a vector bundle.

Parallel Transport

Given a curve $\gamma : [0,1] \to \mathcal{M}$, prescribe how to translate a vector $v = v_0 \in E_{\gamma(0)}$ along the path γ , obtaining vectors $v_t \in E_{\gamma(t)}$.

Covariant Derivative

Given a tangent vector $X \in T_x \mathcal{M}$, specify the derivative along X, analogous to the directional derivative in Euclidean geometry.

Figure: Parallel transport of tangent vectors around a closed curve on the sphere

We can go between these two ideas.

Given a notion of parallel transport, we can define the derivative $\nabla_X(\sigma)$ of a section $\sigma \in \Gamma(E, \mathcal{M})$ along the tangent vector X of a curve $\gamma \colon [0, 1] \to \mathcal{M}$ at $\gamma(0)$, by first transporting $\sigma(\gamma(t)) \in E_{\gamma(t)}$ back to $E_{\gamma(0)}$ and then taking the usual limit.

Given a covariant derivative and a curve γ , a sequence of vectors $v_t \in E_{\gamma(t)}$ are parallel along γ provided the derivative at each point along the tangent vector is zero.

Koszul gave the modern formulation in terms of a connection. This is an $\mathbb{R}\text{-linear}$ map

$$abla : E o T^*\mathcal{M} \otimes E$$

satisfying

$$abla(f\sigma) = f \nabla(\sigma) + df \otimes \sigma, \quad f \in \mathcal{C}^{\infty}(\mathcal{M}), \quad \sigma \in \Gamma(E).$$

The directional derivative is given by evaluation

$$abla_X \colon \Gamma(E) o \Gamma(E), \quad \sigma \mapsto
abla(\sigma)(X).$$

Sheaves on \mathbb{P}^1

We use the affine cover

$$\mathcal{U}^+ = \mathbb{P}^1 - \{\infty\}$$
 and $\mathcal{U}^- = \mathbb{P}^1 - \{0\}.$

A coherent sheaf is then a triple $(M^+, M^-; \theta)$ consisting of

- a finitely generated k[s]-module M^+
- a finitely generated $k[s^-]$ -module M^-
- ▶ a $k[s, s^{-}]$ -isomorphism θ : $k[s, s^{-}] \otimes M^{-} \xrightarrow{\sim} k[s, s^{-}] \otimes M^{+}$.

We call M^{\pm} the **charts** and θ the **glue**.

Sheaves on \mathbb{P}^1

Examples

- \$\mathcal{O}(m)\$ has charts \$k[s^{\pm }]\$ and glue given by multiplication by \$s^m\$. These are indecomposable and locally free.
- Given σ ∈ k[x, y] homogeneous, set σ⁺ = σ(s, 1) and σ⁻ = σ(1, s⁻). Then S_σ has charts k[s[±]]/σ[±] and glue the identity map. These are torsion, and indecomposable provided σ is a power of an irreducible polynomial.
- Given a sheaf M = (M[±]; θ), its d-th shift is M(d) = (M[±]; s^dθ).

Sheaves on \mathbb{P}^1

A morphism $f: M \to N$ consists of $k[s^{\pm}]$ linear maps $f^{\pm}: M^{\pm} \to N^{\pm}$ compatible with the glue

$$k[s, s^{-}] \otimes M^{-} \xrightarrow{1 \otimes f^{-}} k[s, s^{-}] \otimes N^{-}$$

$$\downarrow^{\theta} \qquad \bigcirc \qquad \qquad \downarrow^{\phi}$$

$$k[s, s^{-}] \otimes M^{+} \xrightarrow{1 \otimes f^{+}} k[s, s^{-}] \otimes N^{+}$$

The category $\operatorname{coh} \mathbb{P}^1$ is *k*-linear, hereditary abelian, with finite dimensional hom and ext spaces.

The Grothendieck group of coh \mathbb{P}^1 is $\mathbb{Z}^2,$ where

$$[\mathcal{O}(m)] = (1, m)$$
 and $[S_{\sigma}] = (0, \deg \sigma).$

In general we write

$$[M] = (\operatorname{rank} M, \deg M).$$

The Euler form is given by

$$\{M, N\} = \dim \operatorname{Hom}(M, N) - \dim \operatorname{Ext}^{1}(M, N)$$

= (rank M)(rank N) + (rank M)(deg N) - (deg M)(rank N).

Let $M, N \in \operatorname{coh} \mathbb{P}^1$ with N locally free. An extension

$$\eta \colon 0 \to M(-2) \to E \to N \to 0$$

is split on both charts, so *E* has charts $E^{\pm} = N^{\pm} \oplus M^{\pm}$, and glue

$$\begin{pmatrix} \phi & 0 \\ \gamma \phi & \theta \end{pmatrix}, \quad \gamma \colon k[s, s^{-}] \otimes \mathsf{N}^{+} \to k[s, s^{-}] \otimes \mathsf{M}^{+}$$

If $f: M \to N$, then $f^+\gamma \in \text{End}(k[s, s^-] \otimes N^+)$, so has trace $\operatorname{tr}(f^+\gamma) \in k[s, s^-]$. Write restr $(f^+\gamma)$ for the coefficient of s^- . We define

$$\langle -, -
angle \colon \mathsf{Hom}(M, N) imes \mathsf{Ext}^1(N, M(-2)) o k$$

 $\langle f, \eta
angle \coloneqq -\mathsf{restr}(f^+\gamma).$

The pairing $\langle -, - \rangle$ extends to a non-degenerate, bifunctorial and shift-invariant pairing on coh \mathbb{P}^1 .

Given a pair of sheaves M, N, there exists a locally free N_0 with $\operatorname{Ext}^1(N_0, M(-2)) = 0$ mapping onto N. The kernel N_1 is again locally free, and every $\eta \in \operatorname{Ext}^1(N, M(-2))$ is the pushout along some $g: N_1 \to M(-2)$.

Given $f: M \to N$ we define

$$\langle f, \eta \rangle = \langle f, g \varepsilon \rangle = \langle fg, \varepsilon \rangle = \langle \mathrm{id}_{N_0}, \varepsilon fg \rangle.$$

Example

There is a short exact sequence

$$\eta: 0 \longrightarrow \mathcal{O}(-2) \xrightarrow{\binom{x}{y}} \mathcal{O}(-1)^2 \xrightarrow{(y,-x)} \mathcal{O} \longrightarrow 0$$

Taking appropriate splittings on the charts, the glue is given by

$$\begin{pmatrix} 1 & 0 \\ -s^- & s^{-2} \end{pmatrix}.$$

Thus

$$\langle 1,\eta\rangle=1.$$

A connection on M is a k-linear map

$$\nabla \colon M \to M(-2)$$

satisfying the Leibniz rule.

Explicitly, we have k-linear maps on charts

$$\nabla^{\pm} \colon M^{\pm} \to M^{\pm}$$

satisfying

Atiyah defined A(M) to be the sheaf having charts $M^{\pm} \oplus M^{\pm}$ with twisted $k[s^{\pm}]$ -action

$$f \cdot (m, m') = (fm, fm' \pm \frac{df}{ds^{\pm}}m)$$

and glue

$$egin{pmatrix} heta & 0 \ 0 & s^{-2} heta \end{pmatrix}$$
 .

There is a functorial exact sequence

$$\alpha(M): 0 \longrightarrow M(-2) \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} A(M) \xrightarrow{(1,0)} M \longrightarrow 0$$

and connections on M are in bijection with sections via $\nabla \mapsto \begin{pmatrix} 1 \\ \nabla \end{pmatrix}$.

Atiyah's construction does not commute with the shift

 $A(M)(1) \ncong A(M(1)).$

We are led to the following.

Given scalars λ, μ , define $A_{\lambda,\mu}(M)$ to be the sheaf having charts $M^{\pm} \oplus M^{\pm}$ with twisted $k[s^{\pm}]$ -action

$$f \cdot (m, m') = (fm, fm' \pm \lambda \frac{df}{ds^{\pm}}m)$$

and glue

$$\begin{pmatrix} \theta & 0 \\ -\mu s^- \theta & s^{-2} \theta \end{pmatrix}.$$

Again there is a functorial exact sequence

$$\alpha_{\lambda,\mu}(M): 0 \longrightarrow M(-2) \xrightarrow{\binom{0}{1}} A_{\lambda,\mu}(M) \xrightarrow{(1,0)} M \longrightarrow 0$$

We have

$$A(M) = A_{1,0}(M) \quad ext{and} \quad A_{\lambda,\mu}(M)(1) = A_{\lambda,\mu-\lambda}(M(1)).$$

Also, $\alpha_{t\lambda,t\mu}(M)$ is the pushout $t\alpha_{\lambda,\mu}(M)$ for $t \in k$. Let k be algebraically closed and $M \in \operatorname{coh} \mathbb{P}^1$ indecomposable. Then

$$\langle f, \alpha_{\lambda,\mu}(M) \rangle = (\lambda \deg M + \mu \operatorname{rank} M) \overline{f},$$

where $\overline{f} \in \operatorname{End}(M)/J\operatorname{End}(M) \cong k$.

Thus $\alpha_{\lambda,\mu}(M)$ admits a section if and only if

$$\lambda \deg M + \mu \operatorname{rank} M = 0.$$

In particular, M admits a connection if and only if deg M = 0, so $M \cong \mathcal{O}$.

Fix distinct points $p_1, \ldots, p_r \in \mathbb{P}^1$ (of degree 1) with positive integer weights w_1, \ldots, w_r .

Geigle and Lenzing introduced a category coh X, which is again k-linear, hereditary abelian, with finite dimension hom and ext spaces, and Serre duality.

We can describe objects in $\operatorname{coh}\mathbb{X}$ in terms of periodic functors $\mathbb{Z}^r\to\operatorname{coh}\mathbb{P}^1.$

Fix (linear) homogeneous $\sigma_i \in k[x, y]$ representing the p_i .

Sheaves on $\ensuremath{\mathbb{X}}$

A functor $M \colon \mathbb{Z}^r \to \operatorname{coh} \mathbb{P}^1$ consists of

- sheaves $M_d \in \operatorname{coh} \mathbb{P}^1$ for each $d \in \mathbb{Z}^r$
- ▶ a unique morphism $\phi_{d,e} \colon M_d \to M_{d+e}$ for all d, e with $e \ge 0$

We say that *M* is **periodic** provided

$$egin{aligned} &\mathcal{M}_{d+w_ix_i}=\mathcal{M}_d(1), & \phi_{d+w_ix_i,e}=\phi_{d,e} \ & \phi_{d,w_ix_i}=\sigma_i\colon \mathcal{M}_d o \mathcal{M}_d(1). \end{aligned}$$

A morphism (nat. transf.) $\psi \colon M \to N$ is **periodic** provided

$$\psi_{d+w_ix_i}=\psi_d.$$

 $\operatorname{coh} \mathbb{X}$ is the category of periodic functors and morphims.

This construction is over-specified.

The forgetful functor sending a periodic functor to its restrictions to the co-ordinate axes is fully-faithful and exact.

In other words, it is enough to give a sheaf

 $M_0 \in \operatorname{coh} \mathbb{P}^1$

and an *r*-tuple of periodic functors

 $M_i: \mathbb{Z} \to \operatorname{coh} \mathbb{P}^1$ with $M_{i,0} = M_0$.

Recollement

The exact functor

$$\pi$$
: coh $\mathbb{X} \to \operatorname{coh} \mathbb{P}^1$, $M \mapsto M_0$,

determines a recollement

$$\mathcal{C} \xleftarrow{\pi_{!}} \operatorname{coh} \mathbb{X} \xleftarrow{\pi_{!}} \operatorname{coh} \mathbb{P}^{1}$$

The category C is equivalent to modules over the union of linearly oriented \mathbb{A}_{w_i-1} .

Moreover, the functors π_1 and π_* are exact.

Examples of sheaves

The sheaf $\pi_! M$ has M in position ax_i for all $0 \le a < w_i$, with the equality maps between them.

For r = 2 with weights $w_1 = 3$, $w_2 = 2$ we can draw the restriction of a periodic sheaf to the box $[0, 3x_1] \times [0, 2x_2] \subset \mathbb{Z}^2$. Then $\pi_! M$ can be drawn as

The structure sheaf on \mathbb{X} is $\mathcal{O} = \mathcal{O}_{\mathbb{X}} = \pi_! \mathcal{O}_{\mathbb{P}^1}$.

Examples of sheaves

The shift M(d) is given by $M(d)_e = M_{d+e}$. For example here is $\pi_! M(x_1)$ for $w_1 = 3$ and $w_2 = 2$ as before

We have $M(w_i x_i) = M(1)$, so the shift group is

$$\mathbb{L} = (\mathbb{Z}c \oplus \mathbb{Z}^r)/(\{w_ix_i - c\}).$$

Examples of sheaves

Up to scalars there is a unique map $\mathcal{O}(d) \rightarrow \mathcal{O}(d + x_i)$. In particular, we have an essentially unique non-split sequence

$$0 \rightarrow \mathcal{O}((a-1)x_i) \rightarrow \mathcal{O}(ax_i) \rightarrow S_{ia} \rightarrow 0,$$

and the S_{ia} are simple torsion sheaves.

For r = 1 and $w_1 = 3$ we have

Standard presentation

Every sheaf M is the cokernel of a functorial morphism

$$\bigoplus_{i,a} (\pi_! M_{ax_i})(-(a+1)x_i) \longrightarrow (\pi_! M_0) \oplus \bigoplus_{i,a} (\pi_! M_{ax_i}(-ax_i))$$

(We can also describe the kernel using recollements.)

Using the recollement we obtain

$$\mathcal{K}_0(\operatorname{coh} \mathbb{X}) = \mathcal{K}_0(\mathbb{P}^1) \oplus \bigoplus_i \mathcal{K}_0(\mathbb{A}_{w_i-1}),$$

having basis

- ► [*O*]
- ► $\partial = [\mathcal{O}(1)] [\mathcal{O}] = [\pi_! S]$ for any torsion sheaf $S \in \operatorname{coh} \mathbb{P}^1$ of degree one
- the simple torsion sheaves $[S_{ia}]$ for $0 < a < w_i$.

We have

$$[M] = (\deg M_0)\partial + \underline{\dim} M$$

where

$$\operatorname{\underline{dim}} M = (\operatorname{rank} M_0)[\mathcal{O}] + \sum_{i,a} \big(\deg M_{(w_i - a) \times_i} - \deg M_0 \big)[S_{ia}].$$

With respect to this basis the Euler form is given by

$$\{M, N\} = \dim \operatorname{Hom}(M, N) - \dim \operatorname{Ext}^{1}(M, N)$$

= $\{\underline{\dim} M, \underline{\dim} N\} + (\operatorname{rank} M_{0})(\deg N_{0}) - (\deg M_{0})(\operatorname{rank} N_{0}).$

Here $\{\underline{\dim} M, \underline{\dim} N\}$ is the usual Euler form for the star-shaped quiver

We set
$$\omega = -2c + \sum_{i} (w_i - 1) x_i$$
 in \mathbb{L} .

Recall the standard epimorphism

$$\pi_! M_0 \oplus \bigoplus_{i,a} \pi_! M_{ax_i}(-ax_i) \twoheadrightarrow M.$$

Applying Hom(-, N) gives an injection

$$\operatorname{Hom}_{\mathbb{X}}(M,N) \rightarrowtail \operatorname{Hom}_{\mathbb{P}^1}(M_0,N_0) \oplus \bigoplus_{i,a} \operatorname{Hom}_{\mathbb{P}^1}(M_{ax_i},N_{ax_i}).$$

Similarly, since $\pi_1 M(\omega) = \pi_* M(-2)$, we have a surjection

$$\mathsf{Ext}^{1}_{\mathbb{P}^{1}}(N_{0}, M_{0}(-2)) \oplus \bigoplus_{i, a} \mathsf{Ext}^{1}_{\mathbb{P}^{1}}(N_{a \times_{i}}, M_{a \times_{i}}(-2)) \twoheadrightarrow \mathsf{Ext}^{1}_{\mathbb{X}}(N, M(\omega)).$$

We can now lift Serre duality on $\operatorname{coh} \mathbb{P}^1$ to $\operatorname{coh} \mathbb{X}$.

Given $\eta \in \text{Ext}^1(N, M(\omega))$, write it as the image of (η_0, η_{ia}) under the epimorphism

$$\operatorname{Ext}^{1}(N_{0}, M_{0}(-2)) \oplus \bigoplus_{i,a} \operatorname{Ext}^{1}(N_{ax_{i}}, M_{ax_{i}}(-2)) \twoheadrightarrow \operatorname{Ext}^{1}(N, M(\omega))$$

Then

$$\langle -, - \rangle_{\mathbb{X}} \colon \operatorname{Hom}(M, N) \times \operatorname{Ext}^{1}(N, M(\omega)) \to k,$$

 $\langle f, \eta \rangle_{\mathbb{X}} = \langle f_{0}, \eta_{0} \rangle_{\mathbb{P}^{1}} + \sum_{i,a} \langle f_{ia}, \eta_{ia} \rangle_{\mathbb{P}^{1}},$

is a non-degenerate, bifunctorial and shift invariant pairing on $\mathsf{coh}\,\mathbb{X}.$

We fix a map $\zeta \colon K_0(\operatorname{coh} \mathbb{X}) \to k$, say with

$$\zeta([S_{ia}]) = \zeta_{ia}$$

$$\zeta([\mathcal{O}]) = \mu$$

$$\zeta(\partial) = \lambda - \sum_{ia} \zeta_{ia}.$$

We can then take the image $\beta_{\zeta}(M) \in \operatorname{Ext}^1(M, M(\omega))$ of the tuple of extensions

$$(\alpha_{\lambda,\mu}(M_0), \alpha_{\zeta_{ia},0}(M_{ia}))$$

coming from the generalised Atiyah sequences in $\operatorname{coh} \mathbb{P}^1$.

Let k be algebraically closed and $M \in \operatorname{coh} \mathbb{X}$ indecomposable. Then

$$\langle f, \beta_{\zeta}(M) \rangle = \overline{f} \cdot \zeta([M])$$

where $\overline{f} \in \operatorname{End}(M)/J\operatorname{End}(M) \cong k$.

For $\lambda = 1$ Crawley-Boevey gave an explicit construction of the functorial sequence $\beta_{\zeta}(M)$.

He then defined a ζ -connection on M to be a k-linear map

 $\nabla \colon M \to M(\omega)$

yielding a section $\begin{pmatrix} 1 \\ \nabla \end{pmatrix}$ of $\beta_{\zeta}(M)$.

Thus an indecomposable $M \in \operatorname{coh} \mathbb{X}$ admits a ζ -connection if and only if

$$\zeta([M])=0.$$

In fact, this is all backwards. Bill constructed $\beta_{\zeta}(M)$ directly, but using a different language for coh X. It was my task to rewrite this in the language of periodic functors.

I then showed that $b_{\zeta}(M)$ is the image of the tuple of generalised Atiyah sequences, and hence could compute the Serre pairing.

Parabolic bundles

Let $M \in \operatorname{coh} X$ be locally free.

We have an exact commutative diagram

Thus $M_{i,0}$ is the fibre of the sheaf M_0 at the point p_i .

The quotients $M_{i,a}$ all lie in add $S_i \cong \text{mod} k$, and we obtain a flag of subspaces

$$M_{i,0} \supseteq M_{i,1} \supseteq \cdots M_{i,w_i-1} \supseteq M_{i,w_i} = 0.$$

Let M be locally free.

A connection ∇_0 on M_0 induces an endomorphism of each fibre $M_{i,0}$.

There is a bijection between $\zeta\text{-connections}$ on M and connections ∇_0 on M_0 such that

$$(\nabla_0 - \zeta_{ia})(M_{i,a-1}) \subseteq M_{i,a}$$
 for all i, a .

This is where the name ζ -connection comes from.