# Connections for sheaves on weighted projective lines 

Andrew Hubery<br>Universität Bielefeld

18 December 2020

A review of some results of Crawley-Boevey in his/our proof of the Deligne-Simson Problem.

## Connections

Given a manifold $\mathcal{M}$ over $\mathbb{R}$, one would like some way to relate the local geometry at different points. There are two approaches to this problem.

Let $E \rightarrow \mathcal{M}$ be a vector bundle.

## Parallel Transport

Given a curve $\gamma:[0,1] \rightarrow \mathcal{M}$, prescribe how to translate a vector $v=v_{0} \in E_{\gamma(0)}$ along the path $\gamma$, obtaining vectors $v_{t} \in E_{\gamma(t)}$.
Covariant Derivative
Given a tangent vector $X \in T_{\chi} \mathcal{M}$, specify the derivative along $X$, analogous to the directional derivative in Euclidean geometry.

## Connections



Figure: Parallel transport of tangent vectors around a closed curve on the sphere

## Connections

We can go between these two ideas.
Given a notion of parallel transport, we can define the derivative $\nabla_{X}(\sigma)$ of a section $\sigma \in \Gamma(E, \mathcal{M})$ along the tangent vector $X$ of a curve $\gamma:[0,1] \rightarrow \mathcal{M}$ at $\gamma(0)$, by first transporting $\sigma(\gamma(t)) \in E_{\gamma(t)}$ back to $E_{\gamma(0)}$ and then taking the usual limit.
Given a covariant derivative and a curve $\gamma$, a sequence of vectors $v_{t} \in E_{\gamma(t)}$ are parallel along $\gamma$ provided the derivative at each point along the tangent vector is zero.

## Connections

Koszul gave the modern formulation in terms of a connection.
This is an $\mathbb{R}$-linear map

$$
\nabla: E \rightarrow T^{*} \mathcal{M} \otimes E
$$

satisfying

$$
\nabla(f \sigma)=f \nabla(\sigma)+d f \otimes \sigma, \quad f \in \mathcal{C}^{\infty}(\mathcal{M}), \quad \sigma \in \Gamma(E)
$$

The directional derivative is given by evaluation

$$
\nabla_{X}: \Gamma(E) \rightarrow \Gamma(E), \quad \sigma \mapsto \nabla(\sigma)(X)
$$

## Sheaves on $\mathbb{P}^{1}$

We use the affine cover

$$
\mathcal{U}^{+}=\mathbb{P}^{1}-\{\infty\} \quad \text { and } \quad \mathcal{U}^{-}=\mathbb{P}^{1}-\{0\}
$$

A coherent sheaf is then a triple $\left(M^{+}, M^{-} ; \theta\right)$ consisting of

- a finitely generated $k[s]$-module $M^{+}$
- a finitely generated $k\left[s^{-}\right]$-module $M^{-}$
- a $k\left[s, s^{-}\right]$-isomorphism $\theta: k\left[s, s^{-}\right] \otimes M^{-} \xrightarrow{\sim} k\left[s, s^{-}\right] \otimes M^{+}$.

We call $M^{ \pm}$the charts and $\theta$ the glue.

## Sheaves on $\mathbb{P}^{1}$

## Examples

- $\mathcal{O}(m)$ has charts $k\left[s^{ \pm}\right]$and glue given by multiplication by $s^{m}$. These are indecomposable and locally free.
- Given $\sigma \in k[x, y]$ homogeneous, set $\sigma^{+}=\sigma(s, 1)$ and $\sigma^{-}=\sigma\left(1, s^{-}\right)$. Then $S_{\sigma}$ has charts $k\left[s^{ \pm}\right] / \sigma^{ \pm}$and glue the identity map. These are torsion, and indecomposable provided $\sigma$ is a power of an irreducible polynomial.
- Given a sheaf $M=\left(M^{ \pm} ; \theta\right)$, its $d$-th shift is $M(d)=\left(M^{ \pm} ; s^{d} \theta\right)$.


## Sheaves on $\mathbb{P}^{1}$

A morphism $f: M \rightarrow N$ consists of $k\left[s^{ \pm}\right]$linear maps $f^{ \pm}: M^{ \pm} \rightarrow N^{ \pm}$compatible with the glue

$$
\begin{array}{ccc}
k\left[s, s^{-}\right] \otimes M^{-} & \xrightarrow{1 \otimes f^{-}} & k\left[s, s^{-}\right] \otimes N^{-} \\
\underset{\downarrow}{\downarrow} & \searrow & \downarrow \phi \\
k\left[s, s^{-}\right] \otimes M^{+} \\
\underset{1 \otimes f^{+}}{ } & k\left[s, s^{-}\right] \otimes N^{+}
\end{array}
$$

The category coh $\mathbb{P}^{1}$ is $k$-linear, hereditary abelian, with finite dimensional hom and ext spaces.

## Grothendieck group

The Grothendieck group of coh $\mathbb{P}^{1}$ is $\mathbb{Z}^{2}$, where

$$
[\mathcal{O}(m)]=(1, m) \quad \text { and } \quad\left[S_{\sigma}\right]=(0, \operatorname{deg} \sigma)
$$

In general we write

$$
[M]=(\operatorname{rank} M, \operatorname{deg} M)
$$

The Euler form is given by
$\{M, N\}=\operatorname{dim} \operatorname{Hom}(M, N)-\operatorname{dim} \operatorname{Ext}^{1}(M, N)$

$$
=(\operatorname{rank} M)(\operatorname{rank} N)+(\operatorname{rank} M)(\operatorname{deg} N)-(\operatorname{deg} M)(\operatorname{rank} N)
$$

## Serre duality

Let $M, N \in \operatorname{coh} \mathbb{P}^{1}$ with $N$ locally free. An extension

$$
\eta: 0 \rightarrow M(-2) \rightarrow E \rightarrow N \rightarrow 0
$$

is split on both charts, so $E$ has charts $E^{ \pm}=N^{ \pm} \oplus M^{ \pm}$, and glue

$$
\left(\begin{array}{cc}
\phi & 0 \\
\gamma \phi & \theta
\end{array}\right), \quad \gamma: k\left[s, s^{-}\right] \otimes N^{+} \rightarrow k\left[s, s^{-}\right] \otimes M^{+} .
$$

If $f: M \rightarrow N$, then $f^{+} \gamma \in \operatorname{End}\left(k\left[s, s^{-}\right] \otimes N^{+}\right)$, so has trace $\operatorname{tr}\left(f^{+} \gamma\right) \in k\left[s, s^{-}\right]$. Write restr$\left(f^{+} \gamma\right)$ for the coefficient of $s^{-}$.
We define

$$
\begin{gathered}
\langle-,-\rangle: \operatorname{Hom}(M, N) \times \operatorname{Ext}^{1}(N, M(-2)) \rightarrow k \\
\langle f, \eta\rangle:=-\operatorname{restr}\left(f^{+} \gamma\right)
\end{gathered}
$$

## Serre duality

The pairing $\langle-,-\rangle$ extends to a non-degenerate, bifunctorial and shift-invariant pairing on coh $\mathbb{P}^{1}$.

Given a pair of sheaves $M, N$, there exists a locally free $N_{0}$ with $\operatorname{Ext}^{1}\left(N_{0}, M(-2)\right)=0$ mapping onto $N$. The kernel $N_{1}$ is again locally free, and every $\eta \in \operatorname{Ext}^{1}(N, M(-2))$ is the pushout along some $g: N_{1} \rightarrow M(-2)$.


Given $f: M \rightarrow N$ we define

$$
\langle f, \eta\rangle=\langle f, g \varepsilon\rangle=\langle f g, \varepsilon\rangle=\left\langle\operatorname{id}_{N_{0}}, \varepsilon f g\right\rangle .
$$

## Serre duality

## Example

There is a short exact sequence

$$
\eta: \quad 0 \longrightarrow \mathcal{O}(-2) \xrightarrow{\binom{x}{y}} \mathcal{O}(-1)^{2} \xrightarrow{(y,-x)} \mathcal{O} \longrightarrow 0
$$

Taking appropriate splittings on the charts, the glue is given by

$$
\left(\begin{array}{cc}
1 & 0 \\
-s^{-} & s^{-2}
\end{array}\right) .
$$

Thus

$$
\langle 1, \eta\rangle=1
$$

## Connections

A connection on $M$ is a $k$-linear map

$$
\nabla: M \rightarrow M(-2)
$$

satisfying the Leibniz rule.
Explicitly, we have $k$-linear maps on charts

$$
\nabla^{ \pm}: M^{ \pm} \rightarrow M^{ \pm}
$$

satisfying

- $\nabla^{+} \theta=s^{-2} \theta \nabla^{-}$
- $\nabla^{+}(f m)=f \nabla^{+}(m)+\frac{d f}{d s} m, f \in k[s]$
- $\nabla^{-}(f m)=f \nabla^{-}(m)-\frac{d f}{d s^{-}} m, f \in k\left[s^{-}\right]$.


## Connections

Atiyah defined $A(M)$ to be the sheaf having charts $M^{ \pm} \oplus M^{ \pm}$with twisted $k\left[s^{ \pm}\right]$-action

$$
f \cdot\left(m, m^{\prime}\right)=\left(f m, f m^{\prime} \pm \frac{d f}{d s^{ \pm}} m\right)
$$

and glue

$$
\left(\begin{array}{cc}
\theta & 0 \\
0 & s^{-2} \theta
\end{array}\right) .
$$

There is a functorial exact sequence

$$
\alpha(M): 0 \longrightarrow M(-2) \xrightarrow{\binom{0}{1}} A(M) \xrightarrow{(1,0)} M \longrightarrow 0
$$

and connections on $M$ are in bijection with sections via $\nabla \mapsto\binom{1}{\nabla}$.

## Connections

Atiyah's construction does not commute with the shift

$$
A(M)(1) \not \approx A(M(1))
$$

We are led to the following.
Given scalars $\lambda, \mu$, define $A_{\lambda, \mu}(M)$ to be the sheaf having charts $M^{ \pm} \oplus M^{ \pm}$with twisted $k\left[s^{ \pm}\right]$-action

$$
f \cdot\left(m, m^{\prime}\right)=\left(f m, f m^{\prime} \pm \lambda \frac{d f}{d s^{ \pm}} m\right)
$$

and glue

$$
\left(\begin{array}{cc}
\theta & 0 \\
-\mu s^{-} \theta & s^{-2} \theta
\end{array}\right)
$$

Again there is a functorial exact sequence

$$
\alpha_{\lambda, \mu}(M): 0 \longrightarrow M(-2) \xrightarrow{\binom{0}{1}} A_{\lambda, \mu}(M) \xrightarrow{(1,0)} M \longrightarrow 0
$$

## Connections

We have

$$
A(M)=A_{1,0}(M) \quad \text { and } \quad A_{\lambda, \mu}(M)(1)=A_{\lambda, \mu-\lambda}(M(1)) .
$$

Also, $\alpha_{t \lambda, t \mu}(M)$ is the pushout $t \alpha_{\lambda, \mu}(M)$ for $t \in k$.
Let $k$ be algebraically closed and $M \in \operatorname{coh} \mathbb{P}^{1}$ indecomposable.
Then

$$
\left\langle f, \alpha_{\lambda, \mu}(M)\right\rangle=(\lambda \operatorname{deg} M+\mu \operatorname{rank} M) \bar{f}
$$

where $\bar{f} \in \operatorname{End}(M) / J \operatorname{End}(M) \cong k$.
Thus $\alpha_{\lambda, \mu}(M)$ admits a section if and only if

$$
\lambda \operatorname{deg} M+\mu \operatorname{rank} M=0
$$

In particular, $M$ admits a connection if and only if $\operatorname{deg} M=0$, so $M \cong \mathcal{O}$.

## Sheaves on $\mathbb{X}$

Fix distinct points $p_{1}, \ldots, p_{r} \in \mathbb{P}^{1}$ (of degree 1 ) with positive integer weights $w_{1}, \ldots, w_{r}$.

Geigle and Lenzing introduced a category coh $\mathbb{X}$, which is again $k$-linear, hereditary abelian, with finite dimension hom and ext spaces, and Serre duality.
We can describe objects in coh $\mathbb{X}$ in terms of periodic functors $\mathbb{Z}^{r} \rightarrow \operatorname{coh} \mathbb{P}^{1}$.

Fix (linear) homogeneous $\sigma_{i} \in k[x, y]$ representing the $p_{i}$.

## Sheaves on $\mathbb{X}$

A functor $M: \mathbb{Z}^{r} \rightarrow \operatorname{coh} \mathbb{P}^{1}$ consists of

- sheaves $M_{d} \in \operatorname{coh} \mathbb{P}^{1}$ for each $d \in \mathbb{Z}^{r}$
- a unique morphism $\phi_{d, e}: M_{d} \rightarrow M_{d+e}$ for all $d, e$ with $e \geq 0$

We say that $M$ is periodic provided

$$
\begin{gathered}
M_{d+w_{i} x_{i}}=M_{d}(1), \quad \phi_{d+w_{i} x_{i}, e}=\phi_{d, e} \\
\phi_{d, w_{i} x_{i}}=\sigma_{i}: M_{d} \rightarrow M_{d}(1)
\end{gathered}
$$

A morphism (nat. transf.) $\psi: M \rightarrow N$ is periodic provided

$$
\psi_{d+w_{i} x_{i}}=\psi_{d}
$$

coh $\mathbb{X}$ is the category of periodic functors and morphims.

## Sheaves on $\mathbb{X}$

This construction is over-specified.
The forgetful functor sending a periodic functor to its restrictions to the co-ordinate axes is fully-faithful and exact.
In other words, it is enough to give a sheaf

$$
M_{0} \in \operatorname{coh} \mathbb{P}^{1}
$$

and an $r$-tuple of periodic functors

$$
M_{i}: \mathbb{Z} \rightarrow \operatorname{coh} \mathbb{P}^{1} \quad \text { with } M_{i, 0}=M_{0}
$$

## Recollement

The exact functor

$$
\pi: \operatorname{coh} \mathbb{X} \rightarrow \operatorname{coh} \mathbb{P}^{1}, \quad M \mapsto M_{0}
$$

determines a recollement

$$
\mathcal{C} \stackrel{y}{\rightleftarrows} \operatorname{coh} \mathbb{X} \underset{\pi_{*}}{\stackrel{\pi_{!}}{\rightleftarrows}} \operatorname{coh} \mathbb{P}^{1}
$$

The category $\mathcal{C}$ is equivalent to modules over the union of linearly oriented $\mathbb{A}_{w_{i}-1}$.

Moreover, the functors $\pi_{!}$and $\pi_{*}$ are exact.

## Examples of sheaves

The sheaf $\pi_{!} M$ has $M$ in position $a x_{i}$ for all $0 \leq a<w_{i}$, with the equality maps between them.
For $r=2$ with weights $w_{1}=3, w_{2}=2$ we can draw the restriction of a periodic sheaf to the box $\left[0,3 x_{1}\right] \times\left[0,2 x_{2}\right] \subset \mathbb{Z}^{2}$. Then $\pi_{!} M$ can be drawn as


The structure sheaf on $\mathbb{X}$ is $\mathcal{O}=\mathcal{O}_{\mathbb{X}}=\pi_{!} \mathcal{O}_{\mathbb{P}^{1}}$.

## Examples of sheaves

The shift $M(d)$ is given by $M(d)_{e}=M_{d+e}$. For example here is $\pi_{!} M\left(x_{1}\right)$ for $w_{1}=3$ and $w_{2}=2$ as before


We have $M\left(w_{i} x_{i}\right)=M(1)$, so the shift group is

$$
\mathbb{L}=\left(\mathbb{Z} c \oplus \mathbb{Z}^{r}\right) /\left(\left\{w_{i} x_{i}-c\right\}\right)
$$

## Examples of sheaves

Up to scalars there is a unique map $\mathcal{O}(d) \rightarrow \mathcal{O}\left(d+x_{i}\right)$.
In particular, we have an essentially unique non-split sequence

$$
0 \rightarrow \mathcal{O}\left((a-1) x_{i}\right) \rightarrow \mathcal{O}\left(a x_{i}\right) \rightarrow S_{i a} \rightarrow 0
$$

and the $S_{i a}$ are simple torsion sheaves.
For $r=1$ and $w_{1}=3$ we have


## Standard presentation

Every sheaf $M$ is the cokernel of a functorial morphism

$$
\bigoplus_{i, a}\left(\pi_{!} M_{a x_{i}}\right)\left(-(a+1) x_{i}\right) \longrightarrow\left(\pi_{!} M_{0}\right) \oplus \bigoplus_{i, a}\left(\pi_{!} M_{a x_{i}}\left(-a x_{i}\right)\right)
$$

(We can also describe the kernel using recollements.)

## Grothendieck group

Using the recollement we obtain

$$
K_{0}(\operatorname{coh} \mathbb{X})=K_{0}\left(\mathbb{P}^{1}\right) \oplus \bigoplus_{i} K_{0}\left(\mathbb{A}_{w_{i}-1}\right)
$$

having basis

- $[\mathcal{O}]$
- $\partial=[\mathcal{O}(1)]-[\mathcal{O}]=[\pi!S]$ for any torsion sheaf $S \in \operatorname{coh} \mathbb{P}^{1}$ of degree one
- the simple torsion sheaves $\left[S_{i a}\right]$ for $0<a<w_{i}$.


## Grothendieck group

We have

$$
[M]=\left(\operatorname{deg} M_{0}\right) \partial+\underline{\operatorname{dim}} M
$$

where

$$
\underline{\operatorname{dim}} M=\left(\operatorname{rank} M_{0}\right)[\mathcal{O}]+\sum_{i, a}\left(\operatorname{deg} M_{\left(w_{i}-a\right) x_{i}}-\operatorname{deg} M_{0}\right)\left[S_{i a}\right] .
$$

## Grothendieck group

With respect to this basis the Euler form is given by
$\{M, N\}=\operatorname{dim} \operatorname{Hom}(M, N)-\operatorname{dim} \operatorname{Ext}^{1}(M, N)$

$$
=\{\underline{\operatorname{dim}} M, \underline{\operatorname{dim}} N\}+\left(\operatorname{rank} M_{0}\right)\left(\operatorname{deg} N_{0}\right)-\left(\operatorname{deg} M_{0}\right)\left(\operatorname{rank} N_{0}\right) .
$$

Here $\{\underline{\operatorname{dim}} M, \underline{\operatorname{dim}} N\}$ is the usual Euler form for the star-shaped quiver


## Serre duality

We set $\omega=-2 c+\sum_{i}\left(w_{i}-1\right) x_{i}$ in $\mathbb{L}$.
Recall the standard epimorphism

$$
\pi_{!} M_{0} \oplus \bigoplus_{i, a} \pi_{!} M_{a x_{i}}\left(-a x_{i}\right) \rightarrow M
$$

Applying Hom $(-, N)$ gives an injection

$$
\operatorname{Hom}_{\mathbb{X}}(M, N) \longmapsto \operatorname{Hom}_{\mathbb{P}^{1}}\left(M_{0}, N_{0}\right) \oplus \bigoplus_{i, a} \operatorname{Hom}_{\mathbb{P}^{1}}\left(M_{a x_{i}}, N_{a x_{i}}\right) .
$$

Similarly, since $\pi_{!} M(\omega)=\pi_{*} M(-2)$, we have a surjection
$\operatorname{Ext}_{\mathbb{P}^{1}}^{1}\left(N_{0}, M_{0}(-2)\right) \oplus \bigoplus_{i, a} \operatorname{Ext}_{\mathbb{P}^{1}}^{1}\left(N_{a x_{i}}, M_{a x_{i}}(-2)\right) \rightarrow \operatorname{Ext}_{\mathbb{X}}^{1}(N, M(\omega))$.

## Serre duality

We can now lift Serre duality on coh $\mathbb{P}^{1}$ to coh $\mathbb{X}$.
Given $\eta \in \operatorname{Ext}^{1}(N, M(\omega))$, write it as the image of $\left(\eta_{0}, \eta_{\text {ia }}\right)$ under the epimorphism

$$
\operatorname{Ext}^{1}\left(N_{0}, M_{0}(-2)\right) \oplus \bigoplus_{i, a} \operatorname{Ext}^{1}\left(N_{a x_{i}}, M_{a x_{i}}(-2)\right) \rightarrow \operatorname{Ext}^{1}(N, M(\omega))
$$

Then

$$
\begin{gathered}
\langle-,-\rangle_{\mathbb{X}}: \operatorname{Hom}(M, N) \times \operatorname{Ext}^{1}(N, M(\omega)) \rightarrow k, \\
\langle f, \eta\rangle_{\mathbb{X}}=\left\langle f_{0}, \eta_{0}\right\rangle_{\mathbb{P}^{1}}+\sum_{i, a}\left\langle f_{i a}, \eta_{i a}\right\rangle_{\mathbb{P}^{1}}
\end{gathered}
$$

is a non-degenerate, bifunctorial and shift invariant pairing on $\operatorname{coh} \mathbb{X}$.

## Connections

We fix a map $\zeta: K_{0}(\operatorname{coh} \mathbb{X}) \rightarrow k$, say with

- $\zeta\left(\left[S_{i a}\right]\right)=\zeta_{i a}$
- $\zeta([\mathcal{O}])=\mu$
- $\zeta(\partial)=\lambda-\sum_{i a} \zeta_{i a}$.

We can then take the image $\beta_{\zeta}(M) \in \operatorname{Ext}^{1}(M, M(\omega))$ of the tuple of extensions

$$
\left(\alpha_{\lambda, \mu}\left(M_{0}\right), \alpha_{\zeta_{i a}, 0}\left(M_{i a}\right)\right)
$$

coming from the generalised Atiyah sequences in coh $\mathbb{P}^{1}$.

## Connections

Let $k$ be algebraically closed and $M \in \operatorname{coh} \mathbb{X}$ indecomposable.
Then

$$
\left\langle f, \beta_{\zeta}(M)\right\rangle=\bar{f} \cdot \zeta([M])
$$

where $\bar{f} \in \operatorname{End}(M) / J \operatorname{End}(M) \cong k$.

## Connections

For $\lambda=1$ Crawley-Boevey gave an explicit construction of the functorial sequence $\beta_{\zeta}(M)$.
He then defined a $\zeta$-connection on $M$ to be a $k$-linear map

$$
\nabla: M \rightarrow M(\omega)
$$

yielding a section $\binom{1}{\nabla}$ of $\beta_{\zeta}(M)$.
Thus an indecomposable $M \in \operatorname{coh} \mathbb{X}$ admits a $\zeta$-connection if and only if

$$
\zeta([M])=0 .
$$

## Connections

In fact, this is all backwards. Bill constructed $\beta_{\zeta}(M)$ directly, but using a different language for coh $\mathbb{X}$. It was my task to rewrite this in the language of periodic functors.
I then showed that $b_{\zeta}(M)$ is the image of the tuple of generalised Atiyah sequences, and hence could compute the Serre pairing.

## Parabolic bundles

Let $M \in \operatorname{coh} \mathbb{X}$ be locally free.
We have an exact commutative diagram


Thus $M_{i, 0}$ is the fibre of the sheaf $M_{0}$ at the point $p_{i}$.
The quotients $M_{i, a}$ all lie in add $S_{i} \cong \bmod k$, and we obtain a flag of subspaces

$$
M_{i, 0} \supseteq M_{i, 1} \supseteq \cdots M_{i, w_{i}-1} \supseteq M_{i, w_{i}}=0
$$

## Parabolic bundles

Let $M$ be locally free.
A connection $\nabla_{0}$ on $M_{0}$ induces an endomorphism of each fibre $M_{i, 0}$.
There is a bijection between $\zeta$-connections on $M$ and connections $\nabla_{0}$ on $M_{0}$ such that

$$
\left(\nabla_{0}-\zeta_{i a}\right)\left(M_{i, a-1}\right) \subseteq M_{i, a} \quad \text { for all } i, a
$$

This is where the name $\zeta$-connection comes from.

