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Definition

Hyperfiniteness and Amenability

Definition

Let k be a field, A be a finite dimensional k-algebra and let M be
a set of A-modules. M is called hyperfinite provided for every

€ > 0 there exists a number L. > 0 such that for every M € M
there exists a submodule P C M such that

dimy P > (1 — &) dimy M, (1)

and modules Ny, No, ... Ny € mod A, with dim, N; < L., such that
P=®i, N

The k-algebra A is said to be of amenable representation type
provided the set of all finite dimensional A-modules (or more
specific, a set which meets any isomorphism class of finite
dimensional A-modules) is hyperfinite.
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Definition

Motivation

Conjecture (Elek '17)

Let k be a countable algebraically closed field and A be a finite
dimensional algebra of infinite representation type over k. Then A
is of tame representation type if and only if A is of amenable
representation type.
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Examples

Some (non-)examples

Example (finite representation type)

An algebra A of finite representation type is amenable.

Theorem (Elek '17)

Let k be a countable field. Any string algebra R is of amenable
representation type.

Theorem (Elek '17)

The wild Kronecker quiver algebras are not of amenable
representation type.
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The 2-Kronecker quiver

The 2-Kronecker quiver

Let's make this explicit for an easy example.

Example

Let k be any field. Then the path algebra of the 2-Kronecker
quiver is of amenable representation type.
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The 2-Kronecker quiver

Representations of the Kronecker quiver

Question

Given any ¢, can we find L. such that for all finite dimensional
Kronecker-modules M there is a submodule P with

dim P > (1 — €) dim M which decomposes into summands of dimension
bounded by L.7

Luckily, there is an easy classification of Kronecker-modules:

[%6'] [id o] ¢

Pn: k" kL, Qn: k" k", Ra(¢,): k" k",

where V' n € N either
@ ¢ =id and v is companion matrix of power of monic irreducible over k, or

@ ¢ =id and ¢ is given by companion matrix of polynomial A\™.
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The 2-Kronecker quiver

Finding a large submodule

for Pp:
€n—2 €En—1 €n

ffl f /63 f/e“ f AN A,

fé fn—2 fn—l fn fn—i—l

for regular indecomposables
€1 €2 €3 €4 €5 €n—5 €n—4 €n-3 €p—2 €pn_1__ €y

PO D e B PO ]

\
f f 3 fa fs < < foos _fooa fo3 fho<fis1 1

@ For the postinjective indecomposables, use the surjective map
to the simple injective to find a submodule without

postinjective summands.
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Tame hereditary path algebras

Tame hereditary path algebras
|
2
Es 1—2—3—2—1
1 E 1—2—3—4—3—2—1

1 E 2—4—6—5—4—3—2—1

Let Q be an acyclic quiver of extended Dynkin type A, Dy, Es, Ez
or Eg. Let k be any field. Then the path algebra kQ of @ is of
amenable representation type.
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Tame hereditary path algebras

Sketch of the proof

Recall T+ ={Y € mod k@: Hom(T,Y)=0=Ext}(T,Y)}.

Proposition

Let Q be a quiver of tubular type (p,q,r), where p > 1. Let the
extended Dynkin quiver of type (p — 1, q,r) be amenable. If T is
an inhomogeneous simple regular module belonging to a tube of
rank p in T g, then T+ is hyperfinite.

Q ‘ D, Es E Es
(ml ‘ P; q) (2,2,”*2) (25373) (2737 4) (25375)

Kronecker quiver can serve as the base case of an induction-style argument.
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Tame hereditary path algebras

Sketch of the proof

o If X is some indecomposable preprojective, pick a tube T of
rank p > 2 (or maximal rank). Then either X € St for a
regular simple S in T or we can find Y such that
0—Y —= X—= T —0is exact with Y € S for regular
simples S, T € T.

@ The indecomposable regular modules are either in S+, via
orthogonality of the tubes or have a submodule in T+ for
some regular-simple T € T.

@ For the indecomposable postinjectives, we can do an induction
on the defect, showing hyperfiniteness of the families
Ny := {indecomposable modules of defect < d}.
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going further

Going further

Using similar methods, we can prove the same result for all finite
dimensional, tame hereditary algebras.
@ Tame concealed works okay.

@ There are partial results for tubular canonical algebras:
preprojective, postinjective and integral slope modules

@ One should try and do it for clannish algebras, as Elek did it
for string algebras.
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Hyperfiniteness and Fragmentability

Hyperfiniteness

Definition (Elek)

Collection G of finite graphs is hyperfinite if Ve > 0 JK. finite s.t.
VG € G 3S C E(G) s.t. |S| <e|V(G)| and every connected
component of G\ S has at most K; vertices.

Example

Linear/path graphs are hyperfinite.

Theorem (Lipton-Tarjan '80)

The set of planar graphs with maximal degree at most M is
hyperfinite for every M < oo.
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Hyperfiniteness and Fragmentability

Fragmentability

Definition (Edwards-McDiarmid)

Class G of graphs is fragmentable if Ve > 0 3ng, c. € NT s.t.

VG € G with n > ng non-isolated vertices 35 C V/(G) with

|S| < ens.t. each connected component of G\ S has at most ¢,
vertices.

Corollary (Edwards-McDiarmid '94)

The following classes of graphs are fragmentable:

o trees
@ graphs of genus at most vy, for any fixed v > 0

@ rectangular lattices of dimension at most d, for fixed d € Z
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Expander Graphs

Expander Graphs

G = (V,E) is an e-expander if its Cheeger constant

A vV
h(G) = min{|fA|‘:Ag V,0 < |A]| §|2‘} >e

for e > 0, where 9(A) is the edge boundary of G. A family of
(d-regular) graphs { Gy} nes of size |V(Gn)| = N, S C N infinite is
a family of expander graphs if 3= > 0 s.t. h(Gy) > VN € S.

Example

The complete graph K, on n > 2 vertices is an 7-expander.

Remark

The spectral gap d — A2 (of the spectrum of a d-regular graph’s
adjacency matrix) yields an estimate on the expansion ratio h(G).
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Dimension expanders

Dimension expanders and non-hyperfinite families

Definition (Barak-Impagliazzo-Shpilka-Wigderson)

k a field, d € N, o > 0, V k-vector space, and T1,..., Ty k-linear
endomorphisms of V. The pair (V,{T;}¢_;) is an a-dimension
expander of degree d if VW C V with dim W < %, we have

dimic (W + L, T{W)) > (1+ o) dim W.

Proposition

k be a field, d € N and o > 0. If {(V;, {T}9_)}ies is a
sequence of a-dimension expanders of degree d s.t. dim V; is
unbounded, then the induced family of k©(d + 1)-modules
M; :@v is not hyperfinite.

(i)
T
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Dimension expanders

Constructing an example

Problem (Wigderson '04)

For fixed field k, fixed d, fixed «, find a-dim. expanders of degree
d of arbitrarily large dimension.

Solutions

@ Lubotzky-Zelmanov '08 for chark =0

@ for general k, reduction of Dvir-Shpilka '08/'11 shows that result of
Bourgain '09/'13 on “monotone transformations with expansion
property” solves it

Corollary

Let k a field, char k = 0. Then the wild Kronecker algebra KO(3)
is not of amenable representation type.
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Strictly wild algebras are not amenable

A f.d. k-algebra. A is strictly wild if 3 orthogonal pair (X, Y) of
f.d., f.p. modules, s.t. End(X), End(Y’) are division rings and
p = dimpaq,(v) Exta(X, Y) - dimgag,x) Exta(X, Y) > 5.

Theorem

Let A be a finite dimensional k-algebra. If A is strictly wild, then A
is not of amenable representation type.
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Strictly wild

Sketch of proof

Proposition
k a field, L|k finite. A f.d. L-algebra, B f.d. k-algebras. {M;};c; C mod A non-hyperfinite family of modules. Let
Ki, Ko > 0. IfVi € | 3 additive functors F;: mod A — mod B, G;: mod B — mod A s.t.
@ GiFi(M;) = M foralli €I,
@ all G; are left exact,
@ Ky dimy Fi(M;) < dim; GiF;(M;) for all i € I,
@ dim; G;(X) < Ky dimy X for all X € mod B and i € I,
then {F;(M;)};c, is non-hyperfinite family.

Lemma

Let A be a finite dimensional k-algebra and d > 3. If A is strictly wild, then there exists a finite field extension L|k
and an A-LO(d)-bimodule M s.t. M is of finite L-dimension, projective as a LO(d)-module and the functor
F=M®jg(g) —: modLO(d) — mod A is full and faithful.

Proof of the Theorem.

The functor F above is fully faithful and has a right adjoint G. Dimension estimates work out nicely. Use the
Proposition.
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Strictly wild

A locally wild example

Theorem

The local wild algebra A = k (x1,x2,x3) /Mo, where My is the ideal
generated by the paths of length two, of dimension four with
radical square zero, is not of amenable representation type.

Proof.

xq—

The functor F: mod A — mod k©(3), with F(M):m@radm, is
S~
exact and preserves monomorphisms if we ignore simple

modules. [
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Strictly wild

A problem?

Here, we use that A is a radical square zero algebra.

What functor should one use in general?
If the (restricted) functor is not left exact, there is not much hope

of preserving being a submodule.
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Controlled wild

Modify the definition

Definition

k a field, A f.d. k-algebra, M C mod A a family of f.d.
A-modules. M is weakly hyperfinite if Ve > 03L. > 0 s.t.
VM e M 30: N — M for some N € mod A s.t.

dimi ker§ < edim M, dimy coker < edim M, (2)

and 3Ny, ..., N; € mod A with dimy N; < L. s.t. N2 Pt N,
A k-algebra A has weak amenable representation type if mod A
itself is a weakly hyperfinite family.

Remark
hyperfinite = weakly hyperfinite
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Controlled wild

Dimension expanders are good enough

Proposition

k field, d € N, a > 0. If {(V;, {T,(i)}le)};e/ is a sequence of
«a-dimension expanders of degree d s.t. dim V; is unbounded, the

induced sequence of k©(d + 1)-modules
id

M; =V; : V; is not weakly hyperfinite.
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Controlled wild

Finitely controlled wild algebras are not amenable

Let k be alg. closed.
An algebra A is (finitely) controlled wild if for any f.d. algebra B
JF : mod B — mod A faithful exact and C € mod A s.t.
o HOIHA(FM, FN) = F(HomB(M, N)) D HOHIA(FM, FN)add C
and
@ Homa(FM, FN)a44 ¢ € rad Enda(FM).

Let A be a finite dimensional k-algebra. If A is finitely controlled
wild, then A is not of weakly amenable representation type.
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Controlled wild

Sketch of proof

Proof.

Use the functor F: mod k©(d) — A from the definition of
controlled wildness. By [GP16, Theorem 4.2],

3G: mod A — mod kO(d) s.t. (Go F)(M) = M for all

M € mod k©(d). Indeed, on objecs this functor is given by

G(x) = Homa(F(K): X) 4 (F(K). Xe.

where Homa(X, Y)c = {A-homs X — Y factoring through C}.
Remains to check estimates on dimensions. ]
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