Hyperfinite families of modules and (dimensional) expansion

Sebastian Eckert

Bielefeld University

06 January 2021

Hyperfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders	Wild al
000	0000000	000	00	00000

Outline

- 1 Hyperfiniteness and Amenability
- 2 The 2-Kronecker quiver and beyond
 - The 2-Kronecker quiver
 - Tame hereditary path algebras
 - going further
- Oigression: Some graph theory
 - Hyperfiniteness and Fragmentability
 - Expander Graphs
- 4 Dimension expanders and non-hyperfinite families
 - Dimension expanders
- 5 Wild algebras
 - Strictly wild algebras
 - Finitely controlled wild algebras

Hyperfiniteness	Kronecker and beyond
Definition	0000000

Graph Theory

Dimension expanders

Wild algebras

Hyperfiniteness and Amenability

Definition

Let k be a field, A be a finite dimensional k-algebra and let \mathcal{M} be a set of A-modules. \mathcal{M} is called **hyperfinite** provided for every $\varepsilon > 0$ there exists a number $L_{\varepsilon} > 0$ such that for every $M \in \mathcal{M}$ there exists a submodule $P \subseteq M$ such that

$$\dim_k P \ge (1-\varepsilon) \dim_k M,\tag{1}$$

and modules $N_1, N_2, \ldots N_t \in \text{mod } A$, with $\dim_k N_i \leq L_{\varepsilon}$, such that $P \cong \bigoplus_{i=1}^t N_i$.

The *k*-algebra *A* is said to be of **amenable representation type** provided the set of all finite dimensional *A*-modules (or more specific, a set which meets any isomorphism class of finite dimensional *A*-modules) is hyperfinite.

Hyperfiniteness ○●○	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras
Definition				
Motivation				

Conjecture (Elek '17)

Let k be a countable algebraically closed field and A be a finite dimensional algebra of infinite representation type over k. Then A is of tame representation type if and only if A is of amenable representation type.

Hyperfiniteness	Kronecker and beyond	Graph Theory 000	Dimension expanders	Wild algebras
Examples				
Some (no	n-)examples			

Example (finite representation type)

An algebra A of finite representation type is amenable.

Theorem (Elek '17)

Let k be a countable field. Any string algebra R is of amenable representation type.

Theorem (Elek '17)

The wild Kronecker quiver algebras are not of amenable representation type.

Hyperfiniteness	Kronecker and beyond	Graph Theory 000	Dimension expanders	Wild algebras
The 2-Kronecker quiver				
The 2-Kron	iecker quiver			

Let's make this explicit for an easy example.

Example

Let k be any field. Then the path algebra of the 2-Kronecker quiver is of amenable representation type.

Hyperfiniteness 000 Kronecker and beyond

Graph Theory

Dimension expanders

Wild algebras

The 2-Kronecker quiver

Representations of the Kronecker quiver

Question

Given any ε , can we find L_{ε} such that for all finite dimensional Kronecker-modules M there is a submodule P with dim $P \ge (1 - \varepsilon) \dim M$ which decomposes into summands of dimension bounded by L_{ε} ?

Luckily, there is an easy classification of Kronecker-modules:

$$P_n: k^n \underbrace{k^{n+1}}_{\begin{bmatrix} 0 \\ id \end{bmatrix}}^{\begin{bmatrix} id \\ 0 \end{bmatrix}} k^{n+1}, \qquad Q_n: k^{n+1} \underbrace{k^n}_{\begin{bmatrix} 0 \\ id \end{bmatrix}}^{\begin{bmatrix} id \\ 0 \end{bmatrix}} K^n, \qquad R_n(\phi, \psi): k^n \underbrace{\psi}_{\psi}^{\phi}$$

where $\forall n \in \mathbb{N}$ either

- $\phi = \mathrm{id}$ and ψ is companion matrix of power of monic irreducible over k, or
- $\psi = id$ and ϕ is given by companion matrix of polynomial λ^m .

Hyperfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras
000	000000	000	00	0000000
The 2 Kronecker quiver				

Finding a large submodule

• For the postinjective indecomposables, use the surjective map to the simple injective to find a submodule without postinjective summands.

Hyperfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras
000	000000	000	00	00000000
T 1 19 11 11	1			

Tame hereditary path algebras

Tame hereditary path algebras

Main Theorem

Let Q be an acyclic quiver of extended Dynkin type \widetilde{A}_n , \widetilde{D}_n , \widetilde{E}_6 , \widetilde{E}_7 or \widetilde{E}_8 . Let k be any field. Then the path algebra kQ of Q is of amenable representation type.

Hyperfiniteness	Kronecker and beyond ○○○○●○○	Graph Theory 000	Dimension expanders	Wild algebras
Tame hereditary path	algebras			
Sketch of	the proof			

Recall $T^{\perp} = \{Y \in \text{mod } kQ \colon \text{Hom}(T, Y) = 0 = \text{Ext}^1(T, Y)\}.$

Proposition

Let Q be a quiver of tubular type (p, q, r), where p > 1. Let the extended Dynkin quiver of type (p - 1, q, r) be amenable. If T is an inhomogeneous simple regular module belonging to a tube of rank p in Γ_{kQ} , then T^{\perp} is hyperfinite.

Kronecker quiver can serve as the base case of an induction-style argument.

- If X is some indecomposable preprojective, pick a tube T of rank p ≥ 2 (or maximal rank). Then either X ∈ S[⊥] for a regular simple S in T or we can find Y such that
 0 → Y → X → T → 0 is exact with Y ∈ S[⊥] for regular simples S, T ∈ T.
- The indecomposable regular modules are either in S[⊥], via orthogonality of the tubes or have a submodule in T[⊥] for some regular-simple T ∈ T.
- For the indecomposable postinjectives, we can do an induction on the defect, showing hyperfiniteness of the families
 N_d := {indecomposable modules of defect ≤ d}.

Hyperfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras
going further				
Going furth	ier			

Using similar methods, we can prove the same result for all finite dimensional, tame hereditary algebras.

- Tame concealed works okay.
- There are partial results for tubular canonical algebras: preprojective, postinjective and integral slope modules
- One should try and do it for clannish algebras, as Elek did it for string algebras.

Hyperfiniteness 000	Kronecker and beyond	Graph Theory ●○○	Dimension expanders	Wild algebras
Hyperfiniteness and Fr	agmentability			
Hyperfinit	eness			

Definition (Elek)

Collection \mathcal{G} of finite graphs is **hyperfinite** if $\forall \varepsilon > 0 \exists K_{\varepsilon}$ finite s.t. $\forall G \in \mathcal{G} \exists S \subset E(G) \text{ s.t. } |S| \leq \varepsilon |V(G)|$ and every connected component of $G \setminus S$ has at most K_{ε} vertices.

Example

Linear/path graphs are hyperfinite.

Theorem (Lipton-Tarjan '80)

The set of planar graphs with maximal degree at most M is hyperfinite for every $M < \infty$.

Hyperfiniteness	Kronecker and beyond	Graph Theory ○●○	Dimension expanders	Wild algebras
Hyperfiniteness and Fr	agmentability			
Fragmenta	bility			

Definition (Edwards-McDiarmid)

Class \mathcal{G} of graphs is fragmentable if $\forall \varepsilon > 0 \exists n_0, c_{\varepsilon} \in \mathbb{N}^+$ s.t. $\forall G \in \mathcal{G}$ with $n \ge n_0$ non-isolated vertices $\exists S \subset V(G)$ with $|S| \le \varepsilon n$ s.t. each connected component of $G \setminus S$ has at most c_{ε} vertices.

Corollary (Edwards-McDiarmid '94)

The following classes of graphs are fragmentable:

- trees
- graphs of genus at most γ , for any fixed $\gamma \ge 0$
- \bullet rectangular lattices of dimension at most d, for fixed d $\in \mathbb{Z}$

Hyperfiniteness	Kronecker and beyond	Graph Theory ○○●	Dimension expanders	Wild algebras
Expander Graphs				

Expander Graphs

Definition

G = (V, E) is an ε -expander if its Cheeger constant

$$h(G) := \min\left\{rac{|\partial A|}{|A|} \colon A \subseteq V, 0 < |A| \le rac{|V|}{2}
ight\} \ge arepsilon$$

for $\varepsilon > 0$, where $\partial(A)$ is the edge boundary of G. A family of (d-regular) graphs $\{G_N\}_{N\in\mathbb{S}}$ of size $|V(G_N)| = N$, $\mathbb{S} \subseteq \mathbb{N}$ infinite is a **family of expander graphs** if $\exists \varepsilon > 0$ s.t. $h(G_N) \ge \varepsilon \ \forall N \in \mathbb{S}$.

Example

The complete graph K_n on $n \ge 2$ vertices is an $\frac{n}{2}$ -expander.

Remark

The spectral gap $d - \lambda_2$ (of the spectrum of a *d*-regular graph's adjacency matrix) yields an estimate on the expansion ratio h(G).

erfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders
	0000000	000	•0

Wild algebras

Dimension expanders

Dimension expanders and non-hyperfinite families

Definition (Barak-Impagliazzo-Shpilka-Wigderson)

k a field, $d \in \mathbb{N}$, $\alpha > 0$, *V k*-vector space, and T_1, \ldots, T_d *k*-linear endomorphisms of *V*. The pair $(V, \{T_i\}_{i=1}^d)$ is an α -dimension expander of degree *d* if $\forall W \subset V$ with dim $W \leq \frac{\dim_k V}{2}$, we have dim_k $\left(W + \sum_{i=1}^d T_i(W)\right) \geq (1 + \alpha) \dim_k W$.

Proposition

k be a field, $d \in \mathbb{N}$ and $\alpha > 0$. If $\{(V_i, \{T_l^{(i)}\}_{l=1}^d)\}_{i \in I}$ is a sequence of α -dimension expanders of degree d s.t. dim V_i is unbounded, then the induced family of $k\Theta(d+1)$ -modules

$$M_i = V_i \underbrace{\begin{array}{c} T_{1}^{(i)} \\ T_{d}^{(i)} \end{array}}_{T_{d}^{(i)}} V_i \text{ is not hyperfinite.}$$

Hyperfiniteness	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras
000	0000000	000	0	00000000
Dimension expanders				

Constructing an example

Problem (Wigderson '04)

For fixed field k, fixed d, fixed α , find α -dim. expanders of degree d of arbitrarily large dimension.

Solutions

- Lubotzky-Zelmanov '08 for char k = 0
- for general k, reduction of Dvir-Shpilka '08/'11 shows that result of Bourgain '09/'13 on "monotone transformations with expansion property" solves it

Corollary

Let k a field, char k = 0. Then the wild Kronecker algebra $K\Theta(3)$ is not of amenable representation type.

Hyperfiniteness 000 Kronecker and beyond

Graph Theory

Dimension expanders

Wild algebras

Strictly wild

Strictly wild algebras are not amenable

Definition

A f.d. *k*-algebra. A is **strictly wild** if \exists orthogonal pair (X, Y) of f.d., f.p. modules, s.t. End(X), End(Y) are division rings and

 $p = \dim_{\operatorname{End}_{A}(Y)} \operatorname{Ext}^{1}_{A}(X, Y) \cdot \dim_{\operatorname{End}_{A}(X)} \operatorname{Ext}^{1}_{A}(X, Y) \geq 5.$

Theorem

Let A be a finite dimensional k-algebra. If A is strictly wild, then A is not of amenable representation type.

Hyperfiniteness		Kronecker and beyond	Graph Theory 000	Dimension expanders 00	Wild algebras
Strictly wild					
<u> </u>	~	6			

Sketch of proof

Proposition

 $k \text{ a field, } L|k \text{ finite. } A \text{ f.d. } L\text{-algebra, } B \text{ f.d. } k\text{-algebras. } \{M_i\}_{i \in I} \subseteq \text{mod } A \text{ non-hyperfinite family of modules. Let } K_1, K_2 > 0.$ If $\forall i \in I \exists \text{ additive functors } F_i : \text{ mod } A \rightarrow \text{ mod } B, G_i : \text{ mod } B \rightarrow \text{ mod } A \text{ s.t.}$

- $G_i F_i(M_i) \cong M_i$ for all $i \in I$,
- all G_i are left exact,
- $K_1 \dim_k F_i(M_i) \leq \dim_L G_i F_i(M_i)$ for all $i \in I$,
- dim_L G_i(X) ≤ K₂ dim_k X for all X ∈ mod B and i ∈ I,

then $\{F_i(M_i)\}_{i \in I}$ is non-hyperfinite family.

Lemma

Let A be a finite dimensional k-algebra and $d \ge 3$. If A is strictly wild, then there exists a finite field extension L|k and an A-L $\Theta(d)$ -bimodule M s.t. M is of finite L-dimension, projective as a $L\Theta(d)$ -module and the functor $F = M \otimes_{L\Theta(d)} -: \mod L\Theta(d) \rightarrow \mod A$ is full and faithful.

Proof of the Theorem.

The functor F above is fully faithful and has a right adjoint G. Dimension estimates work out nicely. Use the Proposition.

Hyperfiniteness 000	Kronecker and beyond	Graph Theory 000	Dimension expanders	Wild algebras
Strictly wild				

A locally wild example

Theorem

The local wild algebra $A = k \langle x_1, x_2, x_3 \rangle / M_2$, where M_2 is the ideal generated by the paths of length two, of dimension four with radical square zero, is not of amenable representation type.

Proof.

The functor $F: \mod A \to \mod k\Theta(3)$, with $F(M) = \underset{x_3 \to \cdots}{\operatorname{top} M} \xrightarrow{x_3 \to \cdots} \operatorname{rad} M$, is exact and preserves monomorphisms if we ignore simple modules.

Hyperfiniteness 000	Kronecker and beyond	Graph Theory 000	Dimension expanders	Wild algebras
Strictly wild				
A problem	?			

Here, we use that A is a radical square zero algebra. What functor should one use in general? If the (restricted) functor is not left exact, there is not much hope of preserving being a submodule.

Hyperfiniteness 000	Kronecker and beyond	Graph Theory 000	Dimension expanders	Wild algebras
Controlled wild				

Modify the definition

Definition

k a field, *A* f.d. *k*-algebra, $\mathcal{M} \subseteq \mod A$ a family of f.d. *A*-modules. \mathcal{M} is **weakly hyperfinite** if $\forall \varepsilon > 0 \exists L_{\varepsilon} > 0$ s.t. $\forall M \in \mathcal{M} \exists \theta \colon N \to M$ for some $N \in \mod A$ s.t.

$$\dim_k \ker \theta \le \varepsilon \dim M, \quad \dim_k \operatorname{coker} \theta \le \varepsilon \dim M, \quad (2)$$

and $\exists N_1, \ldots, N_t \in \mod A$ with $\dim_k N_i \leq L_{\varepsilon}$ s.t. $N \cong \bigoplus_{i=1}^t N_i$. A *k*-algebra *A* has **weak amenable representation type** if mod *A* itself is a weakly hyperfinite family.

Remark

hyperfinite \Rightarrow weakly hyperfinite

Hyperfiniteness 000 Kronecker and beyond

Graph Theory

Dimension expanders

Wild algebras

Controlled wild

Dimension expanders are good enough

Proposition

k field, $d \in \mathbb{N}$, $\alpha > 0$. If $\{(V_i, \{T_l^{(i)}\}_{l=1}^d)\}_{i \in I}$ is a sequence of α -dimension expanders of degree d s.t. dim V_i is unbounded, the induced sequence of $k\Theta(d+1)$ -modules

Hyperfiniteness 000 Kronecker and beyond

Graph Theory 000

Dimension expanders

Wild algebras

Controlled wild

Finitely controlled wild algebras are not amenable

Let k be alg. closed.

Definition

An algebra A is **(finitely) controlled wild** if for any f.d. algebra $B \exists F : \mod B \rightarrow \mod A$ faithful exact and $C \in \mod A$ s.t.

- $\operatorname{Hom}_{A}(FM, FN) = F(Hom_{B}(M, N)) \oplus \operatorname{Hom}_{A}(FM, FN)_{\mathsf{add } C}$, and
- ② Hom_A(FM, FN)_{add C} ⊆ rad End_A(FM).

Theorem

Let A be a finite dimensional k-algebra. If A is finitely controlled wild, then A is not of weakly amenable representation type.

Hyperfiniteness 000	Kronecker and beyond	Graph Theory	Dimension expanders	Wild algebras ○○○○○○●
Controlled wild				
CL	C			

Proof.

Sketch of proof

Use the functor $F: \mod k\Theta(d) \to A$ from the definition of controlled wildness. By [GP16, Theorem 4.2], $\exists G: \mod A \to \mod k\Theta(d)$ s.t. $(G \circ F)(M) \cong M$ for all $M \in \mod k\Theta(d)$. Indeed, on object this functor is given by

$$G(X) = \operatorname{Hom}_{\mathcal{A}}(F(\mathcal{K}), X) / \operatorname{Hom}_{\mathcal{A}}(F(\mathcal{K}), X)_{\mathcal{C}}$$

where $\operatorname{Hom}_{\mathcal{A}}(X, Y)_{\mathcal{C}} = \{A \text{-homs } X \to Y \text{ factoring through } \mathcal{C}\}.$ Remains to check estimates on dimensions.

Bibliography I

. Tame hereditary path algebras and amenability. Aug. 2018. arXiv: 1808.02092 [math.RT].

.(Extended) Kronecker quivers and amenability. 2020. arXiv: 2011.02040 [math.RT].

Gábor Elek. "The combinatoral cost". In: *Enseign. Math. (2)* 53.3-4 (2007), pp. 225–235. ISSN: 0013-8584; 2309-4672/e.

Gábor Elek. "Infinite dimensional representations of finite dimensional algebras and amenability". In: *Math. Ann.* 369.1 (2017), pp. 397–439. ISSN: 0025-5831. DOI: 10.1007/s00208-017-1552-0.

Keith Edwards and Colin McDiarmid. "New upper bounds on harmonious colorings". In: *J. Graph Theory* 18.3 (1994), pp. 257–267. ISSN: 0364-9024. DOI: 10.1002/jgt.3190180305.

Lorna Gregory and Mike Prest. "Representation embeddings, interpretation functors and controlled wild algebras". In: J. Lond. Math. Soc. (2) 94.3 (2016), pp. 747–766. ISSN: 0024-6107. DOI: 10.1112/jlms/jdw055.

Bibliography II

Shlomo Hoory, Nathan Linial and Avi Widgerson. "Expander graphs and their applications". In: *Bull. Am. Math. Soc., New Ser.* 43.4 (2006), pp. 439–561. ISSN: 0273-0979; 1088-9485/e.

Richard J. Lipton and Robert Endre Tarjan. "Applications of a planar separator theorem". In: *SIAM J. Comput.* 9 (1980), pp. 615–627. ISSN: 0097-5397; 1095-7111/e.

Alexander Lubotzky and Efim Zelmanov. "Dimension expanders". In: J. Algebra 319.2 (2008), pp. 730-738. ISSN: 0021-8693. DOI: 10.1016/j.jalgebra.2005.12.033.