CLASSICAL AUSLANDER CORRESPONDENCE

Auslander correspondence (Auslander, 1971, [2]). The assignment of (iso-classes) of pairs $\Phi \colon [\Lambda, {}_{\Lambda}M] \mapsto [\Gamma = \operatorname{End}_{\Lambda}(M), {}_{\Gamma}M]$

gives a self-inverse bijection between

- (1) Finite-dim. algebras Λ of finite representation-type (and module M with $\operatorname{add}(M) = \Lambda \operatorname{mod}$)
- (2) Finite dim. algebras Γ (with Γ projinj = add(M)) such that gldim $\Gamma \leq 2 \leq \operatorname{domdim}\Gamma$

Auslander's formula, (Auslander, 1965, [1]). Let \mathcal{C} be a small abelian category, then $\operatorname{mod}_1 \mathcal{C}/\operatorname{eff}(\mathcal{C}) \cong \mathcal{C}$

where $\operatorname{mod}_1 \mathcal{C}$ are (contravariant) finitely presented functors and $\operatorname{eff}(\mathcal{C})$ the subcategory represented by epimorphisms in \mathcal{C} (this is a Serre subcategory).

Auslander Corresp. for general rings, (Tachikawa, 1974,[11]). Let Γ be any ring and Γ Proj the full subcategory of projective modules in Γ Mod. The following are equivalent

- (1) Γ Proj is Grothendieck abelian.
- (2) Γ is a semi-primary QF-3 ring with gldim $\Gamma \leq 2 \leq \operatorname{domdim} \Gamma$

HIGHER CLASSICAL AUSLANDER CORRESPONDENCE

Higher Auslander correspondence (Iyama, 2007, [8]). Let $n \ge 1$. The assignment Φ gives a self-inverse bijection between

- (1) Finite-dim. algebras Λ with M an n-cluster tilting object
- (2) Finite dim. algebras Γ with Γ projinj = add(M) such that gldim $\Gamma \leq n+1 \leq \text{domdim}\Gamma$

Let R be a com. artinian ring, an R-linear Hom-finite, additive Krull-Schmidt cat. \mathcal{A} is a dualizing R-variety if the duality $D = \operatorname{Hom}_R(-, E(R/\operatorname{rad}(R)))$ restricts to a duality $D : \operatorname{mod}_1 \mathcal{A} \to \operatorname{mod}_1 \mathcal{A}^{op}$.

For dualizing R-varieties, (Iyama-Jasso, 2017, [9]). Then, the following are equivalent for a dualizing R-variety A

- (1) \mathcal{A} is *n*-abelian
- (2) There is a fully faithful functor $F: \mathcal{A} \to \mathcal{B}$ with \mathcal{B} a small abelian category which is a dualizing R-variety such that $F(\mathcal{A})$ is n-cluster tilting in \mathcal{B}
- (3) gldim $\operatorname{mod}_1 \mathcal{A} \leq n + 1 \leq \operatorname{domdim} \operatorname{mod}_1 \mathcal{A}$

Higher Auslander formula (HAF) for n-abelian categories, (Ebrahimi–Nasr-Isfahani, 2022, [6]). Let \mathcal{M} be a small n-abelian category, then $\operatorname{eff}(\mathcal{M}) = \operatorname{mod}_{epi} \mathcal{M} \subseteq \operatorname{mod}_1 \mathcal{M}$ is a Serre subcategory and

$$F: \mathcal{M} \to \operatorname{mod}_1 \mathcal{M}/\operatorname{eff}(\mathcal{M}) =: \mathcal{B}, \quad X \mapsto \operatorname{Hom}_{\mathcal{M}}(-, X)$$

is a fully faithful embedding inducing an equivalence of n-exact categories to an n-cluster-tilting subcategory in \mathcal{B} .

Higher Auslander algs. and big module categories, (Ding-Keshavarz-Zhou, 2024, [3]).

For an artin algebra Γ , TFAE to be an *n*-Auslander algebra (cf. (2) HAC, [8])

- (a) $\Gamma \operatorname{proj}^{\leq (n-1)}$ abelian, $\Gamma \operatorname{proj}^{\leq n} \cap \operatorname{inj} \subseteq \Gamma \operatorname{proj}$, $^{\perp_0}\Gamma \subseteq ^{\perp_{[1,n]}}\Gamma$ in Γ mod
- (b) $\Gamma \operatorname{Proj}^{\leq (n-1)}$ abelian, $\Gamma \operatorname{Proj}^{\leq n} \cap \operatorname{Inj} \subseteq \Gamma \operatorname{Proj}, ^{\perp_0} \Gamma \subseteq ^{\perp_{[1,n]}} \Gamma \text{ in } \Gamma \operatorname{Mod}$

AUSLANDER CORRESPONDENCE FOR EXACT CATEGORIES

Definition 0.1. A (1-)**Auslander exact category** is an exact category \mathcal{F} with enough projectives \mathcal{P} such that

- (AE1) ($^{\perp_0}\mathcal{P}$, copres(\mathcal{P})) is a torsion pair in \mathcal{F}
- (AE2) Every morphism to an object in $^{\perp_0}\mathcal{P}$ is admissible with image in $^{\perp_0}\mathcal{P}$
- (AE3) $\operatorname{Ext}^{1}(^{\perp_{0}}\mathcal{P},\mathcal{P})=0$
- (AE4) gldim $\mathcal{F} \leq 2$

For every small exact category \mathcal{E} , we can define $AE(\mathcal{E}) := \operatorname{mod}_{adm} \mathcal{E}$ to be the (contravariant) functors represented by admissible morphisms. This is a fully exact subcategroy of $\operatorname{mod}_1 \mathcal{E}$. It is Auslander exact with $^{\perp_0}\mathcal{P} = \operatorname{eff}(\mathcal{E}) = \operatorname{mod}_{defl} \mathcal{E}$ is the category of (contravariant) functors represented by deflations

Auslander's formula for exact categories (Henrard-van Roosm.-Kvamme, 2022, [7]). eff(\mathcal{E}) is a percolating subcategory of $AE(\mathcal{E})$ and

$$AE(\mathcal{E})/eff(\mathcal{E}) \cong \mathcal{E}$$

as exact categories.

Auslander correspondence for exact categories (still [7]).

 $\mathcal{E} \mapsto AE(\mathcal{E})$ is an equivalence of 2-categories.

Alternatively: This assignment together with $\mathcal{F} \mapsto \mathcal{F}/^{\perp_0}\mathcal{P}$ gives a one-to-one correspondence between small exact categories and Auslander exact categories (up to equivalence of exact categories)

HIGHER AUSLANDER CORRESPONDENCE (HAC) FOR EXACT CATEGORIES

Definition 0.2. An *n*-Auslander exact category is an exact category \mathcal{F} with enough projectives \mathcal{P} such that

- (nAE1) ($^{\perp_0}\mathcal{P}$, copres(\mathcal{P})) is a torsion pair in \mathcal{F}
- (nAE2) Every morphism to an object in $^{\perp_0}\mathcal{P}$ is admissible with image in $^{\perp_0}\mathcal{P}$
- (nAE3) Ext^{1~n}($^{\perp_0}\mathcal{P}, \mathcal{P}$) = 0
- (nAE4) gldim $\mathcal{F} \le n+1$
- (nAE5) \mathcal{P} is admissibly covariantly finite

If \mathcal{M} is an n-cluster tilting subcategory in an exact category \mathcal{E} , then $n - AE(\mathcal{M}) := \operatorname{mod}_{\mathcal{E}-adm} \mathcal{M}$ where $\mathcal{E}-adm$ refers to morphisms in \mathcal{M} which are admissible in \mathcal{E} . This is a fully exact subcategory of $\operatorname{mod}_1 \mathcal{M}$. It is n-Auslander exact, the subcategory $^{\perp_0}\mathcal{P} = \operatorname{mod}_{\mathcal{E}-defl}(\mathcal{M}) =: \operatorname{eff}(\mathcal{M})$ is the subcategory of functors represented by \mathcal{E} -deflations $M \to M'$ with M, M' in \mathcal{M} .

Higher Auslander's formula for *n*-cluster-tilting subcats. (E.-N., 2021 (arxiv), [5]). Let \mathcal{M} be *n*-cluster tilting in an exact category \mathcal{E} , then $\mathrm{eff}(\mathcal{M})$ is a percolating subcategory of $n - \mathrm{AE}(\mathcal{M})$ and

$$n - AE(\mathcal{M})/eff(\mathcal{M}) \cong \mathcal{E}$$

as exact categories.

HAC for exact categories, (also [5]). The assignments $(\mathcal{E}, \mathcal{M}) \mapsto n - AE(\mathcal{M})$ and $\mathcal{F} \mapsto \mathcal{F}/^{\perp_0}\mathcal{P}$ give mutually inverse one-to-one correspondences between

- (1) small exact categories together with an *n*-cluster tilting subcategory (up to equiv. of exact category preserving the *n*-ct subcategory) and
- (2) n-Auslander exact categories (up to equivalence of exact categories)

In the next result, we put "Auslander's formula" in quotation marks as no *quotient/localization* is established but a new construction which fulfills the wanted properties and is therefore the generalization of HAF in this situation.

Higher "Auslander's formula" for n-exact categories, Kvamme, 2025 (arxiv), [10]. Every weakly idempotent complete n-exact category \mathcal{M} is equivalent as n-exact category to an n-cluster tilting subcategory in a weakly idempotent complete exact category \mathcal{E} . Furthermore, the exact category \mathcal{E} is uniquely determined up to exact equivalence.

Remark 0.3. (1) The uniqueness is not a direct consequence of HAF for n-cluster tilting subcategories, as we also need the class of \mathcal{E} -admissible morphisms in the n-cluster tilting category to construct the ambient exact category $n - AE(\mathcal{M})/eff(\mathcal{M})$.

(2) The construction of \mathcal{E} is using the Garbiel-Quillen embedding of an n-exact category $\mathcal{M} \to \mathcal{L}(\mathcal{M})$, $X \mapsto \operatorname{Hom}(-,X)$ (cf. [4]). The essential image is n-rigid and closed under n-extensions. The ambient exact category \mathcal{E} is constructed as a fully exact category of $\mathcal{L}(\mathcal{M})$ given by first define $\mathcal{C} = \operatorname{Cores}_n^{\mathcal{L}(\mathcal{M})}(\mathcal{M})$ as the subcategory of all object with a n-coresolution in \mathcal{M} and then

$$\mathcal{E} = \{ F \in \mathcal{L}(\mathcal{M}) \colon \exists 0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to F \to 0 \text{ exact, } \operatorname{coker}(M_{i+1} \to M_i) \in \mathcal{C}, 1 \le i \le n-1 \}$$

In particular, $\mathcal{E} \subseteq \operatorname{Cores}_n^{\mathcal{L}(\mathcal{M})}(\mathcal{M}) \cap \operatorname{Res}_{\mathcal{L}(\mathcal{M})}^n(\mathcal{M})$ but the definition differs slightly from just taking this (obvious candidate) intersection.

For the uniqueness of \mathcal{E} a new universal property for these ambient categories is established.

References

- M. Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 1966, pp. 189–231.
 MR212070
- [2] ______, The representation dimension of artin algebras, 1971. Queen Mary College Mathematics Notes, republished in Selected works of Maurice Auslander. Amer. Math. Soc., Providence 1999.
- [3] Z. Ding, M. H. Keshavarz, and G. Zhou, Characterizing higher auslander (-gorenstein) algebras, 2025.
- [4] R. Ebrahimi, Gabriel-Quillen embedding for n-exact categories, Comm. Algebra 49 (2021), no. 12, 5171-5180.
 MR4328529
- [5] R. Ebrahimi and A. Nasr-Isfahani, Higher auslander correspondence for exact categories, 2021.
- [6] ______, Higher Auslander's formula, Int. Math. Res. Not. IMRN 22 (2022), 18186–18203. MR4514466
- [7] R. Henrard, S. Kvamme, and A.-C. van Roosmalen, Auslander's formula and correspondence for exact categories, Adv. Math. 401 (2022), Paper No. 108296, 65. MR4392222
- [8] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. MR2298820
- O. Iyama and G. Jasso, Higher Auslander correspondence for dualizing R-varieties, Algebr. Represent. Theory 20 (2017), no. 2, 335–354. MR3638352
- $[10]\,$ S. Kvamme, Higher extension closure and d-exact categories, 2025.
- $[11] \ \ \text{H. Tachikawa}, \ QF-3 \ rings \ and \ categories \ of \ projective \ modules, \ J. \ Algebra \ \textbf{28} \ (1974), \ 408-413. \ MR432696$