Summer School on Gentle Algebras

Christof's Talks

BIREP

14–18 August 2017

To edit these notes please go to:

https://www.overleaf.com/10715945xrwjfvwffgtj

Please feel free to correct mistakes and to add/modify whatever seems reasonable.

Contents

1	Classification of Indecomposable Representations via Bimodule Problems I $~$	2
2	Classification of Indecomposable Representations via Bimodule Problems II $\ . \ .$	6
3	Strategy of Proof	9

1 Classification of Finite-Dimensional Indecomposable Representations of Gentle Algebras via Bimodule Problems I

Wednesday 16th 11:15 – Christof Geiß (Mexico City, Mexico)

History.

• Gelfand problem, 1974: Classify indecomposables for

$$\bullet \underbrace{\overbrace{b_1}^{a_1}}_{b_2} \bullet \underbrace{\overbrace{b_2}^{a_2}}_{b_2} \bullet$$

with relation $b_1a_1 - b_2a_2$ (not special biserial).

- Kiev school:
 - Nazarova–Roiter, 1974: self-reproducing systems
 - Bondarenko, 1992: bundles of semichains
- Bangming Deng, 1995: Ph.D. thesis under Gabriel
- Crawley-Boevey, 1989: using functorial filtrations (clans)

Recall 1.1 (Bimodule problem). Let \mathcal{A} be an additive (Krull-Schmidt) k-category. For an \mathcal{A} - \mathcal{A} bimodule, *i.e.* a k-linear functor

$$M: \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow k \operatorname{-mod},$$

we have a category $\operatorname{Rep}(M)$ with:

- objects: (X,m) with $X \in \mathcal{A}$ and $m \in M(X,X)$
- $\operatorname{Hom}((X,m),(Y,n)) = \{\varphi \in \mathcal{A}(X,Y) \,|\, M(X,\varphi) \cdot m = M(\varphi,Y) \cdot n \text{ in } M(X,Y)\}$

Remark 1.2 (Special case). $\underline{M} = (M_1^+, M_1^-, \dots, M_n^+, M_n^-)$ functors $\mathcal{A} \to k$ - mod $\rightsquigarrow M = \bigoplus_{i=1}^n \operatorname{Hom}_k(M_i^+, M_i^-)$ is a special kind of \mathcal{A} - \mathcal{A} -bimodule. $\rightsquigarrow \operatorname{Rep}(\underline{M})$ has objects $(X, (f_1, \dots, f_n))$ with $X \in \mathcal{A}$ and $f_i \in \operatorname{Hom}_k(M_i^+(X), M_i^-(X))$.

This kind of bimodule problem is called a *tangle*.

Example 1.3. Let $\mathcal{A} = (A \operatorname{-mod}) \times (k \operatorname{-mod}), M^- = \operatorname{Hom}_A(X, -)$ for some $X \in A \operatorname{-mod}$ and $M^+ = \operatorname{id}_{k \operatorname{-mod}} \longrightarrow \operatorname{rep}(\underline{M}) \cong A[X] \operatorname{-mod}$ (one-point extension)

Bundles of Chains

Let S_i^{ε} $(i = 1, ..., n, \varepsilon = \pm)$ be finite linearly ordered sets:

Let $S := \bigcup_{i,\varepsilon} S_i^{\varepsilon}$ with the obvious poset structure. Let \sim be an equivalence relation on S such that each equivalence class has 1 or 2 elements.

Let $\mathcal{A} = \operatorname{add} \mathcal{S}$ be the k-category where \mathcal{S} has

- as objects the equivalence classes S/\sim ,
- rad $\mathcal{S}(a,b) = \bigoplus_{X \in a, Y \in b, x > y} k(x|y),$
- and obvious compositions.

Example 1.4.

where $p \sim r, q \sim v, s \sim t, u \sim z, x \sim y$. Morphisms in the radical of S

$$\begin{array}{cccc} \{p,r\} & \stackrel{c}{\longrightarrow} \{s,t\} & & \{w\} \\ b (\downarrow a & \downarrow d & \downarrow f \\ \{q,v\} & \longleftarrow \{u,z\} & & \{x,y\} & \bigcirc g \end{array}$$

with relations ab, dc, be, g^2 .

Each chain S_i^ε gives rise to a (uniserial) module M_i^ε with

$$M_i^{\varepsilon}(a) = \bigoplus_{x \in a \cap S_i^{\varepsilon}} k\underline{x}$$

We are interested in

$$\operatorname{Rep}\left(\bigoplus_{i=1}^{n} \operatorname{Hom}_{k}(M_{i}^{+}, M_{i}^{-})\right)$$

Example 1.5. In Example 1.4 this can be visualized as a matrix problem:

Coupling between: $t \leftrightarrow s, r \leftrightarrow p, q \leftrightarrow v, u \leftrightarrow z, y \leftrightarrow x$

The aim of the Kiev school was to produce normal forms for this kind of problems.

Let $kQ/\langle \rho \rangle$ be a gentle algebra with ρ a set of paths of length 2. We need polarizations $\sigma, \tau : Q_1, \to \{+, -\}$ with:

- s(a) = s(b) and $a \neq b \Rightarrow \sigma(a) \neq \sigma(b)$
- t(a) = t(b) and $a \neq b \Rightarrow \tau(a) \neq \tau(b)$
- $cb \in \rho \Rightarrow \tau(c) = \sigma(b)$

Now:

- $Q_0 = \{1, 2, \dots, n\}$
- $S = \{i^{\varepsilon} \mid i = 1, ..., n, \varepsilon = +, -\} \cup \{a^{\varepsilon} \mid a \in Q_1, \varepsilon = +, -\}$

• $S_i^{\varepsilon} = \{i^{\varepsilon}\} \cup \{a^+ \mid a \in Q_1, s(a) = i, \sigma(a) = \varepsilon\} \cup \{b^- \mid b \in Q_1, t(b) = i, \tau(b) = \varepsilon\}$ $\Rightarrow |S_i^{\varepsilon}| \in \{1, 2, 3\}$

> a^+ \lor i^{ε} \lor b^-

With equivalence relation: $a^+ \sim a^-$

Example 1.6.

$$e \subset 1 \xrightarrow[b]{a} 2$$

with relations e^2 and ba. Then S looks as follows:

2 Classification of Finite-Dimensional Indecomposable Representations of Gentle Algebras via Bimodule Problems II

Thursday 17th 11:15 – Christof Geiß (Mexico City, Mexico)

Recall 2.1.

- bundles of chains: disjoint linearly ordered sets $S_1^+, S_1^-, \ldots, S_n^+, S_n^-$
- equivalence relation $\sim \text{ on } S = \bigcup_{i,\varepsilon} S_i^{\varepsilon}$ with each class containing at most 2 elements
- define a k-category S such that
 - $\operatorname{obj} \mathcal{S} = S / \sim$
 - $-\operatorname{rad}\mathcal{S}=\operatorname{rad}kS$
 - $-\mathcal{A} = \operatorname{add} \mathcal{S}$
- objects in \mathcal{A} : $X = \bigoplus_{a \in S} a \otimes_k V_a$
- $M_i^{\varepsilon} : \mathcal{A} \to k \text{-} \text{mod functors coming from the } S_i^{\varepsilon}$
- $M_i^{\varepsilon}(X) = \bigoplus_{x \in S_i^{\varepsilon}} V_{\tilde{x}}$ where \tilde{x} is the equivalence class of x
- $\operatorname{rep}(M(S, \sim)): (X, f_1, \ldots, f_n) \text{ with } f_i \in \operatorname{Hom}_k(M_i^+(X), M_i^-(X))$
- $kQ/\langle \rho \rangle$ gentle algebra where ρ contains only paths of length 2:
 - polarization $\sigma, \tau: Q_1 \to \{+, -\}$
 - $-S_{i}^{\varepsilon} = \{i^{\varepsilon}\} \cup \{a^{+} \mid a \in Q_{1}, s(a) = i, \sigma(a) = \varepsilon\} \cup \{b^{-} \mid b \in Q_{1}, t(b) = i, \tau(b) = \varepsilon\}$
 - each S_i^{ε} is a chain of length ≤ 3
 - length-3 chains: $a^+ > i^{\varepsilon} > a^-$

Proposition 2.2. With (S, \sim) as just defined for a gentle algebra $A = kQ/\langle \rho \rangle$ we have an equivalence

$$F: \operatorname{rep}_{\boldsymbol{b}}(M(S, \sim)) \xrightarrow{\simeq} A \operatorname{-mod}$$

where **b** means:

• $(X, f_{\bullet}) \in \operatorname{rep}(M(S, \sim))$ such that f_i is bijective for all i.

Proof (sketch). Let $(X, f_{\bullet}) \in \operatorname{rep}_b(M(S, \sim))$, then $F(X, f_{\bullet})_i := M_i^+(X)$ for all $i \in Q_0$.

Recall that for $a \in Q_1$ we have $a^+ \sim a^-$ in S. If s(a) = i, t(a) = j, $a^+ \in S_i^{\varepsilon}$, $a^- \in S_j^{\eta}$, then we have a canonical isomorphism

$$(M_i^{\varepsilon}/\operatorname{rad} M_i^{\varepsilon})(X) \xrightarrow{\xi_X^a} \operatorname{soc} M_j^{\eta}$$

coming from $a^+ \sim a^-$.

Now we have to distinguish four cases to define $F(X, f_{\bullet})(a)$:

•
$$(\varepsilon, \eta) = (+, +)$$
:
 $M_i^+(X) \to (M_i^+/\operatorname{rad} M_i^+)(X) \xrightarrow{\xi_X^a} \operatorname{soc} M_j^+(X) \hookrightarrow M_j^+(X)$

•
$$(\varepsilon, \eta) = (+, -)$$
:
 $M_i^+(X) \to (M_i^+/\operatorname{rad} M_i^+)(X) \xrightarrow{\xi_X^a} \operatorname{soc} M_j^-(X) \xrightarrow{f_j} M_j^+(X)$

•
$$(\varepsilon, \eta) = (-, -)$$
 and $(\varepsilon, \eta) = (-, +)$: similar

г	-	-	-	ı
L				
L				
				I

Strings and Bands for (S, \sim) Bundle of Chains

We may assume that (S, \sim) is complete, i.e. each equivalence class contains exactly two elements.

We can define an involution $(-)^{\sim}$ on S such that for each $x \in S$ we have $\overline{x} = \{x, x^{\sim}\}$.

$$\widehat{S} = \bigcup_{i=1}^{n} (S_i^+ \times S_i^-) \ \cup \ \bigcup_{i=1}^{n} (S_i^- \times S_i^+) \ \subseteq \ S \times S$$

Definition 2.3. A string for (S, \sim) is a sequence of elements $\underline{s} = (s_1, s_2, \ldots, s_\ell)$ of S such that $(s_i^{\sim}, s_{i+1}) \in \widehat{S}$ for $i = 1, 2, \ldots, \ell - 1$. A band is an infinite periodic string.

Remark 2.4. If \underline{s} is a string, then so is $\underline{s}^{\sim} = (s_{\ell}^{\sim}, s_{\ell-1}^{\sim}, \dots, s_1^{\sim})$. If \underline{b} is a band, then so are \underline{b}^{\sim} and $\underline{b}[1]$.

Definition 2.5. Define for each string $\underline{s} = (s_1, \ldots, s_\ell)$ a representation $(X_{\underline{s}}, f_{\underline{s},1}, \ldots, f_{\underline{s},n})$ of $M = M(S, \sim)$

$$X_{\underline{s}} := \bigoplus_{i=1}^{\ell} \{s_i, s_i^{\sim}\} \in \mathcal{A}$$

where $\{s_i, s_i^{\sim}\} \in \text{obj} \mathcal{S}$. Observe

$$M_{j}^{\varepsilon}(X_{\underline{s}}) = \bigoplus_{\substack{i=1\\s_{i}\in S_{j}^{\varepsilon}}}^{\ell} ks_{i} \oplus \bigoplus_{\substack{i=1\\s_{i}^{\sim}\in S_{j}^{\varepsilon}}}^{\ell} ks_{i}^{\sim}.$$

with structure maps

$$f_{\underline{s},i} = \sum_{\substack{r=1\\s_r^{\sim} \in S_i^+ \dot{\cup} S_i^-}}^{\ell-1} f_{\underline{s},i,r}$$

where

$$f_{\underline{s},i,r}: M_i^+(X) \to M_i^-(X)$$

is defined as follows:

(1) If $s_r^{\sim} \in S_i^+$, we have a direct summand ks_r^{\sim} of $M_i^+(X_{\underline{s}})$ and a direct summand ks_{r+1} of $M_i^-(X_{\underline{s}})$. \rightsquigarrow Compose projection and inclusion:

$$f_{\underline{s},i,r}: M_i^+(X) \twoheadrightarrow ks_r^{\sim} \xrightarrow{1} ks_{r+1} \hookrightarrow M_i^-(X) \,.$$

(2) If $s_r^{\sim} \in S_i^-$, then $s_{r+1} \in S_i^+$ and we can define:

$$f_{\underline{s},i,r}: M_i^+(X_{\underline{s}}) \twoheadrightarrow ks_{r+1}^{\sim} \xrightarrow{1} ks_r^{\sim} \hookrightarrow M_i^-(X_{\underline{s}}) \,.$$

Example 2.6. $\underline{s} = ptuyzq$:

$$\begin{array}{c} - & + \\ & p \\ t \longleftarrow r & f_{\underline{s},1,1} \\ u \longleftarrow s & f_{\underline{s},1,2} \\ \vdots \\ z \longleftarrow y & f_{\underline{s},2,3} \\ z \longleftarrow x & f_{\underline{s},2,4} \\ \vdots \\ u \longleftarrow q & f_{\underline{s},1,5} \\ v \end{array}$$

Theorem 2.7 (well-known?). Let S be a set of strings such that for each string \underline{s} we have that $|\{\underline{s}, \underline{s}^{\sim}\} \cap S| = 1$. Let \mathcal{B} be a system of representatives of the bands. Then the

$$\left(X_{\underline{s}}, f_{\underline{s}}, \bullet\right)$$
 and $\left(Y_{\underline{b},n}, f_{\underline{b},n,p,\bullet}\right)$

with $\underline{b} \in \mathcal{B}$, $n \in \mathbb{N}_+$, $p \in \mathcal{P} =$ "monic irreducible polynomials in $k[X] \setminus \{X\}$ " give a complete list of the indecomposable representations of $M = M(S, \sim)$.

3 Strategy of Proof of Theorem 2.7

Friday 18th 11:15 – Christof Geiß (Mexico City, Mexico)

For $(X, f_{\bullet}) \in \operatorname{rep}(M(S, \sim))$ define

$$\dim(X, f_{\bullet}) := \sum_{i=1}^{n} (\dim M_{i}^{+}(X) + \dim M_{i}^{-}(X)).$$

We show the claim by induction on $\dim(X, f_{\bullet})$ for all bundles of chains simultaneously.

More precisely, given an indecomposable representation $(X, f_{\bullet}) \in \operatorname{rep}(M(S, \sim))$ we find a subcategory $\mathcal{M} \subseteq \operatorname{rep}(M(S, \sim))$ containing (X, f_{\bullet}) such that there is a "reduction" (equivalence) $\mathcal{M} \xrightarrow{\Phi} \mathcal{N} \subseteq \operatorname{rep}(M(S', \sim'))$ with dim $\Phi(X, f_{\bullet}) < \dim(X, f_{\bullet})$.

 \rightsquigarrow name of "self-reproducing systems"

Reduction Algorithm

Let $(X, f_{\bullet}) \in \operatorname{rep}(M(S, \sim))$ be indecomposable. We may suppose that some $f_i \neq 0$. Then:

$$f_i = \gamma = \bigvee \xrightarrow{X} \xrightarrow{X} \xrightarrow{X}$$

For some $x \in S_i^-$ and $y \in S_i^+$ we have $(f_i)_{xy} \neq 0$ and this block shape.

Let $\mathcal{M} \subseteq \operatorname{rep}(\mathcal{M}(S,\sim))$ where f_i has this block shape. In more categorical terms we demand that

$$R_i(\operatorname{rad}^{k_i}(M_i^+(X))) \subseteq \operatorname{rad}^{\ell_i}(M_i^-(X)).$$

There are two cases:

(1) " $y \neq x^{\sim}$ ": We can perform (within column block x and row block y) row and column transformations independently. We get the following:

"Somewhere else" (e.g. $y^\sim \in M_j^-,\, x^\sim \in M_j^+)$:

This tells us how to define (S', \sim') :

- Go to the chain which contains x^{\sim} , substitute x^{\sim} by $x_1 > x^{\sim}$.
- Go to the chain which contains y^{\sim} , substitute y^{\sim} by $y^{\sim} > y_1$ and set $y_1 \sim' x_1^{\sim}$.

Recall that $(X, f_{\bullet}) \cong (X, f'_{\bullet})$ and $\Phi(X, f_{\bullet})_j = f'_j$ for $j \neq i$. Just insert a new division in the blocks of x^{\sim} / y^{\sim} .

Define

$$\Phi(X, f_{\bullet})_{i} = \gamma \left(\begin{array}{c} O' & f_{i,n} \\ \hline O & f_{i,n} \\ \hline f_{i,n} & f_{i,n} \\ \hline f_{$$

We claim that this defines a functor from $\mathcal{M} \to \mathcal{N}/I$ where $\mathcal{N} \subseteq \operatorname{rep}(M(S', \sim'))$ and \mathcal{N} consists of the objects (Y, g_{\bullet}) that have the block shape in (\star) .

This functor is an equivalence and

strings / bands $\stackrel{\Phi}{\leftrightarrow}$ strings / bands.

Example 3.1. Φ on strings / bands: $x^{\sim}y \leftrightarrow x_1$

(2) " $y = x^{\sim}$ ": So column transformations in x are conjugate to row transformations in y. We can bring f_{1xy} to rational normal form (or Jordan normal form if $k = \overline{k}$). Blocks which are invertible correspond to indecomposable direct summands which correspond to the band $\cdots xxx \cdots$.

So we have to worry only about the nilpotent block of shape

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & 0 & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

Thus we can obtain by admissible transformations:

Now define a new (S', \sim') :

- Substitution in S_i^+ : x by $x_k > x_{k-1} > \cdots > x_1 > x$
- Substitution in S_i^- : y by $y > x_1 > y_2 > \cdots > x_k$ and set $y_k \sim' x_k$.

Now we can define in a similar way our functor

$$\Phi: \mathcal{M} \to \mathcal{N}/I$$

where $\mathcal{N} \subseteq \operatorname{rep}(M(S', \sim')).$