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1 Introduction to Gentle, String, Biserial and Special Biserial Algebras

Monday 14th 13:00 – Mariusz Kaniecki (Toruń, Poland)

References.

(1) A. Skowroński, J. Waschbüsch. Representation finite biserial algebras, 1983.

(2) J. Külshammer’s website. “Biserial algebras”.

(3) J. Schröer. Biserial / special biserial / string / gentle algebras, 2016

(4) A. Skowroński. The finite-dimensional algebras in the mathematical nature (Polish).

Notation.

• k a field

• A a finite-dimensional k-algebra

Definition 1.1. A is biserial if it satisfies the following two properties:

(a) The radical rad(P ) of each indecomposable projective right A-module P is the sum

of at most two uniserial submodules U1 and U2 with `(U1 ∩ U2) ≤ 1.

(b) The radical rad(P ) of each indecomposable projective left A-module P is the sum of

at most two uniserial submodules U1 and U2 with `(U1 ∩ U2) ≤ 1.

Definition 1.2. A is special biserial if A ∼= kQ/I for an admissible ideal I such that:

(SB1) |{a ∈ Q1 | s(a) = i}| ≤ 2 and |{a ∈ Q1 | t(a) = i}| ≤ 2 for each i ∈ Q0.

(SB2) For arrows a, b, c ∈ Q1, a 6= b, t(a) = t(b) = s(c), it is ca ∈ I or cb ∈ I.

(SB3) For arrows a, b, c ∈ Q1, a 6= b, s(a) = s(b) = t(c), it is ac ∈ I or bc ∈ I.

Lemma 1.3 (Skowroński–Waschbüsch). Any special biserial algebra is a biserial algebra.

Proof. Let A = kQ/I and j
a←− i ∈ Q1. Let w = as · · · a2a1 be maximal in the set of all

paths starting with a and not belonging to I.

Now A(a+ I) ⊆ rad(Aei) is a uniserial module.

Suppose that we have two parallel paths u = an · · · a2a1 and v = bm · · · b2b1 starting in i

with a1 6= b1 but A(u+ I) = A(v + I) 6= 0.

By (SB2) an 6= bm, so A(u + I) = K(u + I) ⊆ soc(Aei). Assume c ∈ Q1 and cu 6∈ I.

Then t(c) gives the second upper (if any) factor of A(u + I) = A(v + I) leading to the

contradiction cv 6∈ I, can 6∈ I, cbm 6∈ I.
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Example 1.4. Let A = kQ/I for the quiver

Q =

1 2 4 5

3

a b

c

e

d

and I = 〈eb, ba− dca〉. Then Ae2 and e4A look as follows

e2

b+ I c+ I

dc+ I

edc+ I

e4

(b− dc) + I d+ I

dc+ I

dca+ I

Here, A is biserial but not special biserial.

Definition 1.5. A special biserial algebra A = kQ/I is a string algebra if additionally to

(SB1)–(SB3) the following condition holds:

(SB4) The ideal I can be generated by zero relations.

Example 1.6.

(a) A = k[T ]/(Tn) where Q is the quiver • T .

(b) Any Nakayama algebra is a string algebra. Recall that A is a Nakayama algebra if

for any indecomposable projective or indecomposable injective A-module M there

is a filtration 0 = M0 ⊆M1 ⊆ · · · ⊆Ms = M such that all Mj/Mj−1 are simple.

Definition 1.7. A string algebra A = kQ/I is a gentle algebra if additionally to the

conditions (SB1)–(SB4) the following hold:

(SB5) For arrows a, b, c ∈ Q1, a 6= b, t(a) = t(b) = s(c), it is ca 6∈ I or cb 6∈ I.

(SB6) For arrows a, b, c ∈ Q1, a 6= b, s(a) = s(b) = t(c), it is ac 6∈ I or bc 6∈ I.

(SB7) The ideal I can be generated by a set of paths of length 2.

3



2 The Representation Theory of the Lorentz Group

Monday 14th 14:15 – Philipp Lampe (Durham, United Kingdom)

(after Gel’fand and Ponomarev)

Notes: http://maths.dur.ac.uk/users/philipp.b.lampe/LorentzBadDriburg.pdf

(a) Minkowski space: R1,3 = (R4, η) with the bilinear form η : R4 × R4 → R defined as

η(x, y) = x0y0 + x1y1 + x2y2 − x3y3.

(b) Lorentz group: O(R1,3) = {f ∈ GL(R4) | η(x, y) = η(f(x), f(y))∀x, y ∈ R4}.

In matrix form with G = diag(1,−1,−1,−1):

O(1, 3) = {Λ ∈ GL(4,R) |ΛTGΛ = G}

SO(1, 3) = {Λ ∈ O(1, 3) | det(Λ) = 1}

(c) One-parameter subgroups:

A1 =




1 0 0 0

0 1 0 0

0 0 cos(t) − sin(t)

0 0 sin(t) cos(t)

 : t ∈ R


“space rotations” (similarly: A2, A3)

B1 =




cosh(t) sinh(t) 0 0

sinh(t) cosh(t) 0 0

0 0 1 0

0 0 0 1

 : t ∈ R


“Lorentz boosts” (similarly: B2, B3)

(d) Lie algebra so(1, 3):

Proposition 2.1. The complexified Lie algebra of SO(1, 3) is isomorphic to

〈ai, bi | i = 1, 2, 3〉R C

with [ak, ak+1] = ak+2 = −[bk, bk+1], [ak, bk+1] = bk+2 = [bk, ak+1], [ak, bk] = 0.

The Lie algebra so(1, 3)C contains the Lie subalgebra so(3)C of simple type A1.

(e) Classification of finite-dimensional irreducible so(3)C-modules: The Lie algebra so(3)C

has a basis h+ = ia1 − a2, h− = ia1 + a2, h3 = a3 with relations

[h+, h3] = −h+ , [h−, h3] = h− , [h+, h−] = 2h3 .
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Theorem 2.2. Every irreducible finite-dimensional representation of so(3)C is iso-

morphic to R` for some ` ∈ 1
2N0 where

R` = 〈em |m = −`,−`+ 1, . . . , `〉C

with
h+em =

√
(`+m+ 1)(`−m) em+1 ,

h−em =
√

(`−m+ 1)(`+m) em−1 ,

h3em = mem .

(f) Harish-Chandra module: A module M over so(1, 3)C is HC if restricted to so(3)C it

is isomorphic to
⊕

`∈ 1
2

N0
R
k`
` with k` ∈ N. Let R`,m ⊆ R

k`
` be the eigenspace of h3

for the eigenvalue m. Then (under some finiteness condition?)

M =
⊕
`,m

R`,m .

(g) New bases:

h+ = ia1 − a2 h− = ia1 + a2 h3 = a3

f+ = ib1 − b2 f− = ib1 + b2 f3 = b3

e+(x) =

{
0 x ∈ R`,m with m = `

1
(`+m+1)(`−m) h+(x) x ∈ R`,m with m 6= `

(e−(x) similarly)

(h) Action on HC modules: Suppose d+, d−, d0 : M →M such that

d+(R`,m) ⊆ R`+1,m

d−(R`,m) ⊆ R`−1,m

d0(R`,m) ⊆ R`,m

Then we get

R`,m+2 R`+2,m+1 R`+2,m+2

R`,m+1 R`+1,m+1 R`+2,m+1

R`,m R`+1,m R`+2,m

d+

e−
d0

d+

d−

e−
d0

d−

e−
d0

d+

e+

e−
d0

d+

d−

e+

e−
d0

d−

e+

e−
d0

d+

e+

d0

d+

d−

e+

d0

d−

e+

d0

5



such that the diagrams commute and d+d0 = d0d+ etc.

Proposition 2.3. 
f3(x)

f+(x)

f−(x)

 =


λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33




d−x

d0e+x

d+e−x


Then the b1, b2, b3 given by f3, f+, f− satisfy commutator relations for ai, bi if and

only if for every x ∈ R`,m:

`d+d0(x)− (`+ 2)d0d+(x) = 0

(`+ 1)d−d0(x)− (`− 1)d0d−(x) = 0

(2`− 1)d+d−(x)− (2`− 3)d−d+(x) = −d2
0(x) + x

(i) Harish-Chandra modules from quiver representations: Let `0, `1 ∈ 1
2N0 with `0 ≡ `1

mod 1. Let P ∈ mod(CQ/I). Then we have

φ`0,`1 : mod(CQ/I)→ HC(so(1, 3)C)

with Q sketched here:

0 · · · 0 P1 P1 · · · P1 P2 P2 P2
id id id

Pδ+

Pδ−

id id

Theorem 2.4 (Gel’fand–Ponomarev). φ`0,`1 : mod(CQ/I)→ Cs(λ1, λ2) is an equiv-

alence of categories.

(The right-hand side is the “singular block” of HC modules where the “Laplace op-

erators” have eigenvalues λ1 = −i`0`1 and λ2 = −1 + `20 + `21.)
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3 Classification of Indecomposable Modules over Special Biserial and String

Algebras

Monday 14th 15:45 – Apolonia Gottwald (Bielefeld, Germany)

3.1 Indecomposable Modules

Notation.

• Λ a special biserial algebra, Λ ∼= kQ/I

Lemma 3.1. For studying indecomposable non-projective modules we can assume that Λ

is a string algebra.

Proof. Write Λ = P1⊕P2 where P1 is the direct sum of the indecomposable non-uniserial

projective-injective modules. Then Λ/ soc(P1) is a string algebra.

Definition 3.2.

(a) For all arrows b let b−1 be its “formal inverse” with s(b−1) = t(b) and t(b−1) = s(b).

(b) Consider words over the alphabet of arrows and inverse arrows.

(c) For u ∈ Qu let 1u with s(1u) = u = t(1u).

(d) Strings: w = 1u or w = w1w2 · · ·wn such that

• s(wi) = t(wi+1) for all 1 ≤ i < n,

• there is no wiwi+1 · · ·wj ∈ I and no (wiwi+1 · · ·wj)−1 ∈ I,

• there is no wi+1 = w−1
i for all 1 ≤ i < n.

(e) Concatenation: w1 · · ·wmwm+1 · · ·wn of w1 · · ·wm and wm+1 · · ·wn is said to be

defined iff it is a string.

Definition 3.3. Let ∼ be the equivalence relation on strings induced by w ∼ w−1.

Let St be a complete set of representatives of strings under ∼.

Example 3.4.

a

e

b

cd

with relations ed = 0 and ce = 0. Then dcb−1a and b−1a ∼ a−1b are strings.

Definition 3.5. A string w = w1 · · ·wn is a band if

• all rotations wiwi+1 · · ·wnw1 · · ·wi−1 exist,

• all powers exist,
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• it is not a power itself.

Definition 3.6. Let ∼r be the equivalence relation on bands induced by w ∼r w′ if w′ is

a rotation of w.

Example 3.7. In Example 3.4 there are bands dcb−1a and bea−1.

Fact 3.8. If w is a string 6= 1u for all u ∈ Q0 there exists at most one arrow b with wb

defined and at most one arrow c with cw defined.

Definition 3.9. Let w = w1 · · ·wn or w = 1u be a string.

Define an algebra Cw and a functor Gw : Cw- mod→ Λ- mod.

 Cw(V ) is the representation over Qw where Cw = k and Qw with underlying graph

An+1 with an arrow pointing to the left iff wi is an arrow.

Example 3.10. • •a

b
.

For the string ab−1a and V = k we get Gw(V ) as a left Λ-module where α and β,

respectively, are represented by(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
and

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

)
.

Draw this as a representation as follows

k2 k2
( 1 0

0 1 )

( 0 1
0 0 )

.

Definition 3.11. Let w = w1 · · ·wn be a band (assume w1 is an arrow).

Let Cw = k[x, x−1] and Qw be the quiver that is an oriented cycle with consecutive

arrows w1, . . . , wn where wi is oriented anti-clockwise iff it is an arrow.

 Gw(V ) is the representation of Qw where the map at w1 is x and the maps at wi for

i 6= 1 are identities.

 There is a band module for all vector spaces V and all linear maps x : V → V .

Example 3.12. • •a

b
.

There is only one band w = ba−1 and Qw = • •a

b
.

The total dimension of Gw(V ) is 2 dim(V ). As a Λ-module

V V
id

x
.

For all vector spaces over k and linear maps x : V → V there is an indecomposable module

M(V, x) such that M(V, x) ∼= M(V ′, x′) iff V ∼= V ′ and x and x′ are similar.

Theorem 3.13. Let Λ be a string algebra and I := St
·
∪Ba. Then Gw(V ) for w ∈ I form

a complete set of representatives of the indecomposable Λ-modules.

Theorem 3.14. Λ special biserial ⇒ Λ tame or of finite type
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3.2 Functorial Filtration

The functors Gw : Cw- mod→ Λ- mod and Fw : Λ- mod→ Cw- mod satisfy:

(1) FwGw ∼= id, FvGw = 0 for all v 6= w.

(2) {Fw : w ∈ I} is locally finite and reflects isomorphisms.

(3) For all M ∈ Λ- mod and w ∈ I there exists a map γw,M : GwFw(M)→M such that

Fw(γw,M ) is an isomorphism.

(4) For all M ∈ Λ- mod the map γw,M :
⊕

w∈I GwFw(M)→M is an isomorphism.

(5) M indecomposable ⇒ a) Fw(M) = 0 and b) M ∼= GwFw(M).
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4 Irreducible Maps of Strings and Band Modules

Monday 14th 17:00 – Ögmundur Eiriksson (Bielefeld, Germany)

4.1 A Reminder on AR-theory

• k a field

• A a finite-dimensional k-algebra

• A- mod the category of finite-dimensional A-modules

Notation.

Definition 4.1. Let f : M → N be a map in A- mod.

We say f is left almost split if f is not a split mono and any non-split mono g : M → L

factors through f . Right almost split is defined dually.

M N

L

f

g

M N

L

f

g

Definition 4.2. We say an exact sequence 0 → L
f−→ M

g−→ N → 0 is an almost split

sequence (or AR-sequence) if f is left almost split and g is right almost split.

For each non-projective finitely generated indecomposable A-module M there is a unique

AR-sequence 0→ τ(M)→ N →M → 0. This determines the AR-translate τ(M) of M .

Definition 4.3. A map f : M → N with indecomposable A-modules M,N is irreducible

if for any factorization

M N

L

f

α β

either α is a split mono or β is a split epi.

Example 4.4. Let Q = 1→ 2→ 3. Then we have an almost split sequence

0→ P (2)→ P (1)⊕ S(2)→ I(2)→ 0 .

4.2 Irreducible Maps for Band Modules

Let Λ be a string algebra over k = k. Define C = k[x, x−1].

Observe that a finite-dimensional C-module “is the same” as a finite-dimensional vector

space with an automorphism. Let Jn(λ) be the n× n Jordan block with eigenvalue λ.

Then we have a 1 : 1 correspondence:

ind. f.d. C-modules up to iso {Jn(λ) |λ ∈ k, n ∈ N+}

Vn(λ) Jn(λ)

∼=
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Lemma 4.5. For n ≥ 1 and λ ∈ k× there is an AR-sequence

0→ Vn(λ)→ Vn−1(λ)⊕ Vn+1(λ)→ Vn(λ)→ 0 .

In particular, τ(Vn(λ)) = Vn(λ) and its AR-component is a tube of rank 1.

Sketch of proof. Fix a basis wn, (x− λ)wn, . . . (x− λ)n−1wn for Vn(λ) where wn is a gen-

erator. Then the matrix for x has Jordan form with respect to this basis. We then put

g(wn−1, 0) := (x − λ)wn and g(0, wn+1) = wn. Then g is non-split, surjective, and has

kernel 〈−wn−1, (x−λ)wn+1〉 ∼= Vn(λ). It is enough to check maps to/from M = Vm(λ).

Let w be a band (or an equivalence class of a band) and let Gw : C- mod→ Λ- mod be

the functor from the last talk.

Fact 4.6. Gw sends irreducible maps to irreducible maps.

Proposition 4.7. Write V = Vn(λ). The sequence

0→ Gw(V )
Gwf−−−→ Gw(Vn−1(λ)⊕ Vn+1(λ))

Gwg−−−→ Gw(V )→ 0

is an AR-sequence. The component of Gw(V ) consists of all such Gw(Vm(λ)) for m ∈ N.

Sketch of proof. The maps occurring after projecting (resp. restricting) Gwf (resp. Gwg)

to direct summands are irreducible by our fact. It is possible to see that this shows that we

have an AR-sequence. Also by uniqueness of AR-sequences, τ(Gw(V )) = Gw(V ). Since

we have found AR-sequences for all Gw(V ), we obtain the whole component.

4.3 Irreducible Maps for String Modules

Let Λ still be a string algebra over k = k. Let C be a string and let GC : k- mod→ Λ- mod

be the functor from the last talk. We write M(C) := GC(k).

Definition 4.8. We say C

(i) starts (resp. ends) on a peak if there is no arrow b such that Cb(b−1C) is a string,

(ii) starts (resp. ends) in a deep if there is no arrow b such that Cb−1(bC) is a string.

We say C = c1 · · · cn is directed (resp. inverse) if all the ci (resp. c−1
i ) are arrows.

If C,D are strings and b is an arrow such that CbD is a string, then there is a canonical

exact sequence

0→M(C)→M(CbD)→M(D)→ 0 .

Similarly, if Db−1C is a string, there is a canonical exact sequence

0→M(C)→M(Db−1C)→M(D)→ 0 .
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Hooks and Co-Hooks

Definition 4.9. If C does not start (resp. end) on a peak, so Cb(b−1C) is a string, there

is a unique directed D such that Ch := CbD−1 starts (resp. hC := Db−1C ends) in a deep.

Here, Ch (resp. hC) is called a hook.

If C does not start (resp. end) on a deep, so Cb−1(bC) is a string, there is a unique

directed D such that Cc := Cb−1D starts (resp. cC := D−1bC ends) on a peak.

Here, Cc (resp. cC) is called a co-hook.

Proposition 4.10. The canonical maps M(C) → M(Ch) and M(C) → M(hC) and the

canonical maps M(Cc)→M(C) and M(cC)→M(C) are irreducible.

Irreducible Maps Ending at Projectives (resp. Beginning at Injectives)

For a vertex u, the projective P (u) is a string module: Let C1, C2 be the maximal directed

paths beginning in u. Then P (u) ∼= M(C1C
−1
2 ). If both have length zero, then P (u) is

simple. Assume C1 = C1b has length ≥ 1. Then there is an irreducible map

M(C1)→M((C1)h) ∼= P (u) .

Similarly,

M(C2)→M(h(C2)) ∼= P (u) .

4.3.1 AR-Sequences

Now there are five families of AR-sequences:

(1) For any b there are C,D maximal directed such that C−1bD−1 is a string and starts in

a deep and ends on a peak. Note that Λeu/Λb ∼= M(D−1). We have an AR-sequence

0→M(C−1)→M(C−1bD−1)→M(D−1)→ 0 .

(2) If C neither starts nor ends on a peak, we have an AR-sequence

0→M(C)→M(hC)⊕M(Ch)→M(hCh)→ 0 .

(3) If C does not start on a peak but ends on a peak, we have with C = cD an AR-

sequence

0→M(cD)→M(D)⊕M(cDh)→M(Dh)→ 0 .

(4) If C starts on a peak but does not end on a peak, we have with C = Dc an AR-

sequence

0→M(Dc)→M(D)⊕M(hDc)→M(hD)→ 0 .

(5) If C starts and ends on a peak, we have with C = cDc an AR-sequence

0→M(cDc)→M(Dc)⊕M(cD)→M(D)→ 0 .

12



5 The Structure of Biserial Algebras

Tuesday 15th 8:30 – Manuel Flores Galicia (Bielefeld, Germany)

gentle string special biserial biserial
?

Notation.

• k = k a field

• Λ an associative k-algebra with 1, finite-dimensional over k

• Q = (Q0, Q1, s, t) a quiver with a trivial path εu for each u ∈ Q0

5.1 Description of Basic Biserial Algebras

Recall 5.1. Λ is basic if there exists a complete set of primitive orthogonal idempotents ei
(c.s.p.o.i) such that Λei 6∼= Λej for all i 6= j.

Definition 5.2. Λ is biserial if every indecomposable projective left or right Λ-module P

contains uniserial submodules U and V such that U + V = rad(P ) and U ∩ V is either

zero or simple.

Example 5.3. Nakayama algebras and algebras whose Auslander-Reiten sequences have

at most two non-projective summands in their middle term are biserial.

Definition 5.4. Let Q be a finite quiver.

(a) A bisection of Q is a pair (σ, τ) of functions Q1 → {±1} such that if a 6= b are arrows

starting (resp. ending) at the same vertex, then σ(a) 6= σ(b) (resp. τ(a) 6= τ(b).

(b) The quiver Q is biserial if for every vertex u, there are at most two arrows starting

at u and at most two arrows ending at u.

Observation 5.5. Q has a bisection ⇔ Q is biserial

Definition 5.6. Let Q be a quiver and (σ, τ) a bisection of Q. We say a path ar · · · a1 is

a good path or (σ, τ)-good if σ(ai) = τ(ai−1) for all 1 < i ≤ r. Otherwise, we say it is a

bad path. The trivial paths εu are good.

Definition 5.7. By a bisected presentation (Q, σ, τ, p, q) of an algebra Λ we mean that

Q is a biserial quiver with bisection (σ, τ) and p, q : kQ→ Λ are surjective algebra homo-

morphisms with p(εu) = q(εu) for all u ∈ Q0 and p(a), q(a) ∈ rad(Λ) for all a ∈ Q1 and

q(a)p(x) = 0 whenever a, x ∈ Q1 such that ax is a bad path.

Theorem 5.8 (Vila-Freyer). Every basic biserial algebra Λ has a bisected presentation

(Q, σ, τ, p, q) in which Q is the ordinary quiver of Λ.

Conversely, any algebra with a bisected presentation is basic and biserial.
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Let kQ+ be the arrow ideal of kQ.

Theorem 5.9 (Vila-Freyer). Let Q be a quiver with bisection (σ, τ). For each bad path ax

of length 2 let dax be elements in kQ+ such that

(1) dax = 0 or dax = wbt · · · b1, w ∈ k×, t ≥ 1, and bt · · · b1x a good path with t(bt) = t(a)

and bt 6= a,

(2) if dax = φb and dby = ψa with φ, ψ ∈ k×, then φψ 6= 1.

If I is admissible in kQ containing all the elements (a−dax)x, then kQ/I is a basic biserial

algebra. Conversely, every basic biserial algebra is isomorphic to a quotient of this form.

5.2 Distributive Algebras

Let S(Λ) be the lattice of (left) ideals of Λ.

Remark 5.10. In general, the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) in a lattice

does not hold.

Definition 5.11. Λ is distributive iff S(Λ) is distributive.

Fact 5.12. Λ is distributive
Thrall⇔ the Hasse diagram of S(Λ) does not contain

•

• • •

•

Theorem 5.13 (Jans). If V is a module over Λ, then the lattice of Λ-submodules of V is

finite iff it is distributive.

Corollary 5.14. The lattice of left (right, two-sided) ideals of a finite-dimensional algebra

over k is finite iff it is distributive.

Theorem 5.15 (Jans). If Λ is of finite-representation type, then Λ has a finite ideal

lattice. Therefore it is distributive.

Sketch of the proof of Theorem 5.13. “⇐”: Suppose the lattice is not distributive, so there

is a diagram

V1 + V2

V1 • V2

V0

14



It is enough to show that the submodule lattice of V/V0 is infinite. So assume V0 6= 0.

Then V1 and V2 are distinct direct summands of V1 + V2. Moreover, V1 ⊕ U ∼= V2 ⊕ U .

Hence, V1

ϕ∼= V2. Let {vi}ri=1 be a k-basis of V1. Then {ϕ(vi)}ri=1 is a k-basis of V2. One

verifies that the set {vi + κϕ(vi)}ri=1 for a fixed κ ∈ k is a basis for a Λ-submodule Vκ and

that Vκ1 6= Vκ2 for κ1 6= κ2. Since k = k is infinite, we have proved “⇐”.

5.3 Representation-Finite Biserial Algebras Are Special Biserial

Recall 5.16. Λ is special biserial if it is Morita-equivalent to a bound quiver algebra kQ/I

where (Q, I) satisfies:

(1) Q is biserial.

(2) For every arrow a ∈ Q1 there is at most one arrow b ∈ Q1 and at most one arrow

c ∈ Q1 such that ba and ac are not in I.

Theorem 5.17 (Skowroński-Waschbüsch). Any distributive biserial algebra is special bis-

erial.

Corollary 5.18. Representation-finite biserial algebras are special biserial.
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6 Repetitive Algebras of Gentle Algebras

Tuesday 15th 10:00 – Jordan McMahon (Graz, Austria)

Recall 6.1. kQ/I is special biserial if the following hold:

(SB1) Each vertex i ∈ Q0 has at most 2 arrows starting (resp. ending) at i.

(SB2) For each arrow b ∈ Q1 there is at most one a ∈ Q1 with ab 6∈ I.

(SB2’) For each arrow b ∈ Q1 there is at most one c ∈ Q1 with bc 6∈ I.

(G1) I is generated by paths of length 2.

(G2) For each arrow b ∈ Q1 there is at most one a ∈ Q1 with ab ∈ I.

(G3) For each arrow b ∈ Q1 there is at most one c ∈ Q1 with bc ∈ I.

Definition 6.2. A path p ∈ kQ/I is maximal if for each b ∈ Q1 we have bp = pb = 0.

Assume A = kQ/I is locally bounded (i.e. each arrow is contained in a maximal path)

and I generated by zero relations and commutativity relations.

Let DA = Homk(A, k) and for each path p let ϕp ∈ DA be the dual path.

6.1 Repetitive Algebra Â of A

As k-vector space we have

Â =
⊕
z∈Z

A[z]⊕
⊕
z∈Z

DA[z]

with multiplication

(a[z], ϕ[z])(b[z], ψ[z]) = (a[z]b[z], a[z]ψ[z] + ϕ[z]b[z − 1])

= (ab[z], (aψ)[z], (ϕb)[z]) .

Define a quiver Q̂ = (Q̂0, Q̂1) where

Q̂0 = Q0 × Z ,

Q̂1 = {a[z] : u[z]→ v[z] | a : u→ v ∈ Q1}
∪ {p̂[z] : v[z]→ u[z] | p max. path u→ · · · → v} ,

and an ideal

Î = {p[z] | p ∈ I} ∪ {p1[z]− p2[z] | p1 − p2 ∈ I}
∪ {p ∈ kQ̂ | p contains a connecting arrow and is not a subpath of a full path}
∪ {p2[z]p̂[z]p1[z − 1]− q2[z]q̂[z]q1[z − 1] | p = p1xp2, q = q1xq2 max. paths} ,

where a full path is any of the form p2[z]p̂[z]p1[z − 1] where p = p1p2 is a maximal path.

16



Example 6.3. Consider A = kQ/I where

Q = 1 2 3a
b c

and I = 〈a2bc〉. The maximal paths are {p = ab, q = c}.

· · ·

• • •

• • •

• • •

q̂[1] q̂[0] q̂[−1]
c[1]

p̂[1]

c[0]

p̂[0]

c[−1]

p̂[−1]

a[1]

b[1]

a[0]

b[0]

a[−1]

b[−1]

· · ·

Then Î = 〈a[z]a[z], b[z]c[z], c[z]q̂[z]− p̂[z]a[z − 1]b[z − 1], q̂[z]p̂[z − 1], p̂[z]b[z − 1]〉.

Theorem 6.4 (Schröer; see also: Asashiba, Hille, Roggenkamp). Â = kQ̂/Î where the

ideal Î is generated by relations p[z]q[z] = pq[z], ϕp[z](p[z]) = ϕ1(z), ϕ1[z]ϕ1[z − 1] = 0.

Sketch of proof. Draw a picture.

If q = q1p, then ϕq1 [z] = p[z]ϕq[z].

If q = pq2, then ϕq2 [z] = ϕq[z]p[z].

6.2 Interlude: Trivial Extensions

Let T (A) be the trivial extension of A with the “same” multiplication as in the repetitive

algebra. So modZ(T (A)) = mod(Â).

Example 6.5. For A = • → • → • we have

Â = · · ·

• • •

• • •

• • •

· · ·

and

T (A) =

•

•

•

Theorem 6.6 (Schröer; see also: Assem, Ringel, Pogorza ly, Skowroński). A is gentle if

and only if Â is special biserial.
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Proof. Assume A is gentle. We need only to check endpoints of maximal paths.

Case 1.
• • · · · •

•
• • · · · •

b

a

Case 2. • • •b a with ba = 0.

Draw some nice pictures in both cases . . .

Conversely, assume now that Â is special biserial. Then A is special biserial. Distinguish

again a few cases and draw some more pictures . . .

18



7 Brauer Graph Algebras (BGA) = Symmetric Special Biserial Algebras

(SSB)

Tuesday 15th 11:15 – Wassilij Gnedin (Bochum, Germany)

7.1 Origins of BGA

(a) G a group, char(k) = p |#G <∞, B = kG ⇒ B is SSB

(b) A gentle
last talk⇒ Â SSB ⇒ B = T (A) is SSB and B � A

Remark : Db(A)
∼−→ Db(A′) ⇒ Db(B)

∼−→ Db(B′) where B′ = T (A′)

(c) Γ a “graph on an oriented surface S” (e.g. a triangulation)
§ 7.2
 AΓ BGA

7.2 From BGA to SSB

Definition 7.1. A Brauer graph Γ = (H,σ, α, V,m) is given by

• H = {1, . . . , 2n} “half-edges”,

• σ : H
∼=−→ H  σ has cycle decomposition σ = σ1 · · ·σs,

• α : H
∼=−→ H such that α2 = id and α(h) 6= h for all h ∈ H

 h and α(h) form an edge in Γ,

• V = {v1, . . . , vs}  f : H → V , h 7→ vj if h occurs in σj,

• m = (mv)v∈V with mv ∈ N+.

Example 7.2.

Γ = • •3 4

1 2

5 6

σ = (135)(264)

α = (12)(34)(56)

m = (m1,m2,m3)

Γ′ =

σ′ = (135)(246)

α′ = α

m′ = m

Definition 7.3. Γ a Brauer graph. We get its BGA in three steps:

(S1) Define Q̃ by Q̃0 = H and ∃ a : i→ j in Q̃ if σ(i) = j.
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(S2) For each i ∈ Q̃0 glue i and α(i) to obtain (Q, I):

•

i

•

b

a

•

α(i)

•

d

c

 

• •

•

• •

d

b

a
c

with relations da = 0 = bc.

 (Q, I) is “complete gentle (CG)”

Example 7.4.

Remark 7.5. (Q, I) is CG ⇒ For each a ∈ Q1 there is a unique ca ∈ C = {simple cycle}
such that ca begins with a.  Q1 → C → V , a 7→ ca 7→ v(ca) = “center of the cycle ca”.

Set

za := c
mv(ca)
a .

Notation 7.6. A cyclic path c = an · · · a1 is a simple cycle in (Q, I) if ai 6= aj for all i 6= j

and c 6∈ I and c has “maximal length”.

(S3) Set AΓ = kQ/(I + J) where J = 〈za − zb | s(a) = s(b), a 6= b〉.

Remark 7.7. J is not admissible. For example, Γ = p− 1 1 gives

AΓ = k[x, y]/(xy, xp−1 − y) ∼= k[x]/(xp) .

Remark 7.8. AΓ
∼= kQ/R with Q1 = Q1 \ {` ∈ Q1 : z` = `}.

Proposition 7.9. AΓ is finite-dimensional, symmetric and special biserial.

Proof. (i) For all a ∈ Q1 there is b ∈ Q1 such that c
ma+1
a = zaca = zbca where ma = mv(ca).

Then zbca ∈ J because bca = 0. Hence, dimAΓ <∞.

(ii) AΓ is symmetric iff there exists ϕ : AΓ → k such that ϕ(pq) = ϕ(qp) and if a ⊆ ker(ϕ)

is a left ideal, then a = 0. Define

ϕ(p) =

{
1 if p = za for some a ∈ Q1,

0 else.
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Let a be as above. Assume there exists p ∈ a\{0}. Then p = pa where a is the first arrow

in p. ⇒ There is q ∈ AΓ such that qp = za. ⇒ ϕ(qp) 6= 0 ⇒ ϕ(a) 6= 0, a contradiction.

(iii) AΓ
∼= kQ/R. For all i ∈ Q0 we have

• •

i

• •

d

b

a
c

or • • • .a b

ba = 0 = cd ba = 0

7.3 SSB are BGA

Let k = k and B = kQ/I a finite-dimensional SSB.

Goal.

Find a Brauer graph ΓB such that B ∼= AΓB
.

Main Observation.

B is up to isomorphism uniquely determined by its maximal paths.

Idea.

Encode maximal paths in ΓB.

Theorem 7.10 (Roggenkamp ’96, Schroll ’15). Let B = kQ/I be finite-dimensional.

Then there exists a Brauer graph Γ such that B ∼= AΓ iff B is SSB.

Example 7.11. For gentle A to obtain B = T (A) . . .

• complete maximal paths in A to cycles,

• add loops . . . ,

• set ca = cb if s(a) = s(b).

 algebra B  ΓB with mv ≡ 1
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Remark 7.12. If B ∼= T (A′) for another algebra B, then Db(A′) 6' Db(A).

Example 7.13.
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8 Introduction to Triangulated Categories

Tuesday 15th 14:00 – Karin M. Jacobsen (Trondheim, Norway)

(following Happel ’88)

Triangulated categories

• were introduced by Verdier in the ’60s, published in ’77,

• codify “abelian-like” behavior.

Definition 8.1. Let T be an additive category with an autoequivalence Σ : T → T .

Triangles are sequences of the form

X
u−→ Y

v−→ Z
w−→ ΣX . (?)

Definition 8.2. A set ∆ of triangles is called a triangulation of T if it fulfills the following

axioms

(TR1) For all morphisms f : X → Y in T there exists

X
f−→ Y −→ Z −→ ΣX ∈ ∆ .

For all objects X in T
X

idX−−→ X −→ 0 −→ ΣX ∈ ∆ .

If X ′ −→ Y ′ −→ Z ′ −→ ΣX ′ is isomorphic to X −→ Y −→ Z −→ ΣX then

X ′ −→ Y ′ −→ Z ′ −→ ΣX ′ ∈ ∆ .

(TR2) If X
u−→ Y

v−→ Z
w−→ ΣX, then

Y
v−→ Z

w−→ ΣX
−Σu−−−→ ΣY ∈ ∆ .

(TR3) Given a commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

there exists h : Z → Z ′ making the following diagram commute

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′ .

h
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(TR4) Given

X Y U ΣX

X Z V ΣX

Y Z W ΣY

ΣU ΣU

f

gf

f

g

there exists a dashed triangle in ∆ as indicated.

In this case T is called a triangulated category.

Remark 8.3.

Lemma 8.4.

(1) In (?): vu = 0 and wv = 0

(2) In (TR3): f, g iso ⇒ h iso

(3) X
f−→ Y → 0→ ΣX ∈ ∆ ⇔ f iso

(4) In (?) the following are equivalent:

(i) u split mono

(ii) v split epi

(iii) w = 0

Lemma 8.5. Let T ∈ T . Then

HomT (T,−) : T → mod(EndT )op

HomT (−, T ) : T → mod(EndT )

are cohomological functors, i.e. for each triangle as in (?) ∈ ∆ the induced sequences

· · · → HomT (T,X)→ HomT (T, Y )→ HomT (T,Z)→ HomT (T,ΣX)→ HomT (T,ΣY )→ HomT (T,ΣZ)→ HomT (T,Σ2X)→ · · ·

· · · → HomT (Z, T )→ HomT (Y, T )→ HomT (X,T )→ HomT (Σ−1Z, T )→ HomT (Σ−1Y, T )→ HomT (Σ−1X,T )→ HomT (Σ−2Z, T )→ · · ·

are long exact sequences.
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Proof. For HomT (T,−), given (TR2), it is enough to check the exactness once:

T T 0 X

ΣX Y Z ΣX

id

g f

u v

Now:

f ∈ ker(HomT (T, v))⇔ f = ug for some g ⇔ f ∈ im(HomT (T, u))

Example 8.6. Stable module categories mod(A) = mod(A)/ proj(A) where A is a self-

injective locally bounded algebra with Σ = Ω−1 the syzygy functor given as

X
inj. env.−−−−−→ I −−→ Ω−1X −−→ 0

and triangles

X → E → Y → Ω−1X ∈ ∆

induced by short exact sequences 0→ X → E → Y → 0 in mod(A).

For example take A = kQ/I with

Q = aa

a

and I = 〈a3〉 .

Then mod(A) looks as follows:

• • • •

• • •

• • • •

Example 8.7. Derived categories:

A abelian category  C(A) category of complexes:

· · · • • • • • · · ·d d d d d d

in A with d2 = 0

 K(A) homotopy category (this is triangulated with Σ given by shifting complexes)

 D(A) derived category (obtained by localizing at quasi-isomorphisms)
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9 A Construction of the Happel Functor

Tuesday 15th 15:15 – Gabriele Bocca (Norwich, United Kingdom)

References.

• [Hap] Happel, Triangulated categories in the representation theory of finite dimen-

sional algebras, 1988.

• [BM] Barot–Mendoza, An explicit construction for the Happel functor, 1991.

Notation.

• k any field

• A a finite-dimensional k-algebra

• mod(A) the category of finitely generated modules over A

• Â the repetitive algebra of A

• mod(Â) the stable module category over Â

Remark 9.1. Ob(mod(Â)) = Ob(mod(Â)) and Hom
Â

(X,Y ) = Hom
Â

(X,Y )/I(X,Y )

where I(X,Y ) consists of the morphisms factoring through injectives.

History and Motivation

Theorem 9.2 (Happel). There exists a triangulated, full and faithful functor

H : Db(mod(A)) −−→ mod(Â) .

If gl.dim(A) <∞, then H is dense.

Proof strategy:

Cb(A) ⊇ C≤0(A) ⊇ C[−i, 0] = {X : · · · → 0→ X−i → · · · → X0 → 0→ · · · }

mod(A) ∼= C[0, 0]

C[−i, 0] mod(Â)

C≤0(A)

Cb(A) mod(Â)

Db(A)

j=F0

Fi

p

F ′

F≤0

H
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Here j is exact, full and faithful.

Theorem 9.3 (Rickard). Let Λ be a Frobenius k-algebra. Then there exists an equivalence

F : mod(Λ) −−→ Db(Λ)/Kb(PΛ)

where PΛ is the full subcategory of mod(Λ) of projective modules.

Remark 9.4.

(1) A k-algebra Λ is Frobenius if it is locally bounded and the projective and injective

modules coincide.

(2) For all X ∈ mod(Λ) consider 0→ X −→ I(X)→ Ω−1(X)→ 0 and then

X I(X) Ω−1(X)

Y Cu Ω−1(X)

u

where the left square is a pushout. We get

X Y Cu Ω−1(X) . (?)

In mod(Λ) let

T = {sequences isomorphic to (?) } .

Then T is a triangulation for mod(Â) with suspension functor Ω−1.

In particular:

Proposition 9.5 ([Hap, II.2.2). ] Let A be a finite-dimensional k-algebra. Then Â is

Frobenius and so mod(Â) is triangulated.

The construction in [BM] is the following:

• mod(A)
j−→ mod(Â) exact, full and faithful:

Db(Â) mod(Â)

Db(A) Db(Â)/Kb(P
Â

)

F̃

F̂

FJ

H=F̃ J
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• G : Db(Λ)→ Db(Λ), G ∼=nat id:

For X ∈ Cb(Λ) and n ∈ Z:

X · · · Xn−1 Xn Xn+1 Xn+2 · · ·

LnX · · · Xn−1 I Cn Xn+2 · · ·

λn,x

Dually we can define RnX and ρn,x : RnX → X.

 For every morphism f : X → Y in Cb(X) we get Lnf and Rnf .

Lemma 9.6.

(a) For all n ∈ Z, X ∈ Cb(Λ) the maps λn,x and ρn,x are quasi-isomorphisms.

(b) “Different choices” for Lnf and Rnf lead to homotopic morphisms.

For all X ∈ C[s, n], s, n ∈ Z with s < 0 < n,

L<0X = L−1L−2 · · ·Ls(X) ,

R>0X = R1R2 · · ·Rn(X)

the maps λ<0,x : X → L<0X and ρ>0,x : R>0X → X are quasi-isomorphisms.

We have:

Cb(Λ) Cb(Λ)

Kb(Λ) Kb(Λ)

Db(Λ) Db(Λ)

L<0

q q

L<0

π′ π′

L̃<0

Then λ̃<0,x and ρ̃>0,x are isomorphisms for all X ∈ Db(Λ). Moreover, L̃<0 and R̃>0

are equivalences naturally isomorphic to id : Db(Λ)→ Db(Λ).

Definition 9.7. G = R̃>0L̃<0 : Db(Λ)→ Db(Λ), G ∼=nat id.

• Cb(Λ)→ mod(Λ):

F1X = p(R>0L<0(X))0

 

Cb(Λ) Cb(Λ) mod(Λ)

Kb(Λ) mod(Λ)

R>0L<0

F1

X 7→X0

F2
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Properties.

• FF2
∼= πGπ′:

mod(Λ)

Kb(Λ) Db(Λ)/Kb(PΛ)

Db(Λ) Db(Λ)

F

ξ nat. iso

F2

π′

G

π

• F2 factors through π′:

Kb(Λ) mod(Λ)

Db(Λ)

F2

π′
F̃

F2 = F̃ π′ ⇒ FF̃π′ = FF2
∼= πGπ′

• FF̃ ∼=nat πG ∼= π′

Remark 9.8. F̃ is triangulated since π is triangulated and F is a triangulated equivalence.

• Definition of H:

H := F̃ J : Db(A)
J−→ Db(Â)

F̃−→ mod(Â)

(?H):
• H is triangulated, full and faithful

• gl. dim(A) <∞ ⇒ H dense

Define Φ = πJ :

Db(Â) mod(Â)

Db(A) Db(Â)/Kb(P
Â

)

F̃

π
FJ

Φ

(?Φ) ⇔ (?H): Φ = πJ ∼= FF̃J = FH

• Φ is triangulated and full, since π and J are.

• Φ is faithful: main idea is to show X 6∼= 0 ⇒ Φ(X) 6∼= 0.

 apply Rickard’s argument about F
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• By [Hap, II.3.2]: gl.dim(A) < ∞ ⇒ mod(A) generates mod(Â) as a triangulated

category.

• mod(A) generates Db(A) as a triangulated category.

• Φ(mod(A)) = mod(A) ⇒ Φ is dense ([Hap, II.3.4]).
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10 Classification of Indecomposable Objects in the Bounded Derived

Category of a Gentle Algebra

Tuesday 15th 17:00 – Sebastian Opper (Cologne, Germany)

Notation.

• k = k a field

• Λ = kΓ/I

Example 10.1. Running example: Λ = kΓ/I with

Γ =

1 3

0

2 4

b

fa

dc

e

and I = 〈ac, ba, cb, ed, fe, df〉.

Fact 10.2. Db(mod(Λ)) contains 3 types of indecomposable objects:

• band complexes ∈ Kb(proj(Λ))

• string complexes ∈ Kb(proj(Λ))

• infinite string complexes

10.1 String Complexes

For x ∈ Γ0 let P (x) be the indecomposable projective module of x.

Example 10.3.

0 P (0) P (2)⊕ P (3) P (1)⊕ P (4) P (3) 0

−1 0 1 2 3 4

( cf )
(
b 0
0 e

)
( af 0 )

Rewrite it as:

P (2) P (1)

0 P (0) P (3) 0

P (3) P (4)
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This unfolds as:

P (4) P (3) P (0) P (2) P (1) P (3)

2 1 0 1 2 3

e f c b af

 diagram of type A6 with:

• vertices: pairs (indec. proj. module, integer)

• arrows: admissible (i.e. no subpath in I) paths in Γ

What properties are needed to construct an indecomposable complex from an An-

diagram via “folding”?

Given

Pn Pn−1 · · · P0

dn dn−1 d0

wn wn−1 w1

with Pi indecomposable projective, wi admissible path in (Γ, I) and di ∈ Z.

(S1) Degrees increase by 1 along arrows.

(S2) If
wi−→ Pi

wi−1−−−→, then P (s(wi)) = Pi = P (t(wi−1) and wiwi−1 ∈ I.

(S3) If
wi←− Pi

wi−1←−−−, then P (t(wi)) = Pi = P (s(wi−1) and wi−1wi ∈ I.

(S4) If
wi−→ Pi

wi−1←−−−, then P (s(wi)) = Pi = P (s(wi−1) and wi−1 and wi do not start with

the same arrow.

(S5) If
wi←− Pi

wi−1−−−→, then P (t(wi)) = Pi = P (t(wi−1) and wi−1 and wi do not end with

the same arrow.

Definition 10.4. An An-diagram satisfying (S1)–(S5) is called a string diagram.

string diagram
fold
 string complex

Example 10.5.

P (0) P (2) P (1) P (0) P (4) P (3) P (0)

0 1 2 3 2 1 0

c b a d e f

fold
 

P (0) P (3) P (4)

P (0)

P (0) P (2) P (1)

0 1 2 3

f e

d

c b

a
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10.2 Band complexes

Example 10.6. Take Example 10.5.

identify outer vertices
 

•

• •

• •

•

f c

e b

d a

 diagram of type Ã

Remark 10.7. Rotating and reflecting gives isomorphic complexes.

Definition 10.8. A diagram of type Ã satisfying (S1)–(S5) and not covering any such

diagram of strictly smaller size is called a band diagram.

Example 10.9. Example of a cover:

•

• •

• •

• •

• •

• •

•

f c

e b

d a

a d

b e

c f

 
•

• •

• •

•

f c

e b

d a

band diagram
folding
 k× × N+ family of pairwise non-isomorphic band complexes
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Given λ ∈ k×, m ∈ N+ and a band diagram

Pn

P0 Pn−1

w0 wn

w1 wn−1

we get a band complex

Pn ⊗ km

P0 ⊗ km Pn−1 ⊗ km

w0⊗id wn⊗Jm(λ)

w1⊗id wn−1⊗id

This is isomorphic to

Pn ⊗ km

P0 ⊗ km Pn−1 ⊗ km

w0⊗Jm(λ±1) wn⊗id

w1⊗id wn−1⊗id

10.3 Infinite String Complexes

Definition 10.10. A cycle is a string diagram of (Γ, I) (up to reflection)

Pn
αn←−− · · · α1←− P0

where αi are arrows in Γ and Pn = P0.

Example 10.11.
a−→ c−→ b−→ and

d−→ e−→ f−→ are cycles in the running example.

Definition 10.12. Start with a string diagram

Pn · · · P0

dn d0

wn w1

It is called . . .
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• left resolvable if
wn−−→ and dn = min{dj} and there exists a cycle Pn

αm−−→ · · · α1−→ Pn

such that
α1−→ wn−−→ is a string diagram,

• right resolvable if it satifies the dual condition,

• two-sided resolvable if it is left and right resolvable.

Suppose

Pn · · · P0

dn d0

wn w1

is left resolvable and Pn
αm−−→ · · · α1−→ Pn, then

· · · Pn · · · Pn · · · P0

dn d0

α1 αm α1 wn w1

is an infinite string diagram.
fold
 infinite string complex

Theorem 10.13 (Bekkert–Merklen, Burban–Drozd, Raphael). There is a bijection be-

tween

{isoclasses of indecomposables in Db(mod(Λ))}

and
{string diagrams}/reflection

·
∪ {band diagrams}/reflection and rotation
·
∪ {infinite string diagrams}/reflection .
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11 Derived Equivalences

Wednesday 16th 8:30 – Fajar Yuliawan (Bielefeld, Germany)

References.

(1) Schröer, Zimmermann. Stable endomorphism algebras of modules over special bise-

rial algebras.

(2) Schröer. Modules without self-extensions over gentle algebras.

(3) Crawley-Boevey. Maps between representations of zero relation algebras.

(4) Rickard. Morita theory for derived categories.

Definition 11.1. Let Q be a (not necessarily finite) quiver and ρ a set of relations. Then

(Q, ρ) is special biserial if (SB1, SB1’) and (SB2, SB2’) and

(SB3) Each infinite path in Q contains a subpath in ρ.

Remark 11.2. A = kQ/(ρ) finite-dimensional gentle  (Q̂, ρ̂) special biserial

Definition 11.3. A k-algebra is called special biserial (resp. gentle) if it is up to Morita

equivalence an algebra kQ/(ρ) with (Q, ρ) special biserial (resp. gentle).

Theorem 11.4 (Main Theorem). Let A be a special biserial algebra and M a finite-

dimensional A-module with Ext1
A(M,M) = 0. Then EndA(M) is gentle.

Corollary 11.5. Let A be finite-dimensional, T ∈ Db(A) and HomDb(A)(T, T [1]) = 0.

Then EndDb(A)(T ) is gentle.

In particular, any algebra B which is derived equivalent to A is gentle.

Proof of Corollary 11.5. A gentle
Jordan’s talk⇒ Â special biserial

∃H : Db(A)
∼−→ mod(Â) fully faithful and triangulated

Take M ∈ mod(Â) to be M = H(T ), then

EndDb(A)(T ) ∼= End
Â

(M)

and

Ext1
Â

(M,M) ∼= Hom
Â

(ΩM,M) ∼= HomDb(A)(T [−1], T ) = 0 .

Thus by Theorem 11.4 EndDb(A)(T ) is gentle.

Lemma 11.6. Let A, B be finite-dimensional k-algebras and F : Db(B)→ Db(A) a fully

faithful and triangulated functor. Then T = F (B) satisfies

B = EndDb(A)(T ) and HomDb(A)(T, T [1]) = 0 .
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Known Facts on Special Biserial Algebras

Let (Q, ρ) be special biserial and A = kQ/(ρ). Assume ρ contains only zero relations and

commutativity relations. Define

ρ+ = ρ+ all paths which are contained in a commutativity relation in ρ .

Example 11.7. Let

Q =

3

1 2 4

5

γ

α

β

δ ε

and ρ = {αβ, βγ − δε}. Then ρ+ = {αβ, βγ, δε} and kQ/(ρ+) is a string algebra.

Indecomposables in A:

• non-uniserial projective-injectives

• string modules

• band modules

If M1 is a band module, then Ext1
A(M1,M1) 6= 0.

Let C = C1 · · ·Cn be a string with s(C) = s(C1) and t(C) = t(Cn).

Ext1
A(M,M) = 0  M does not contain band modules as direct summands

For every vertex i we define two strings of length 0, starting and ending at i:

1(i,1) and 1(i,−1)

Concatenation of strings of length 0 depends on chosen “orientation” σ, ε : S → ±1

where

S = {all strings for (Q, ρ+)} .

Remark 11.8. If C starts at i, then only one of 1(i,1)C and 1(i,−1)C is defined.

Definition 11.9 (Main definition). For a string C define

P(C) = {(D,E, F ) |DEF = C,D,E, F ∈ S} .

We call (D,E, F ) a factor string of C if

(1) either |D| = 0 or D ends with an inverse arrow,

(2) either |F | = 0 or F starts with a directed arrow.

A substring (D,E, F ) is defined dually.

We call a pair a = ((D1, E1, F1), (D2, E2, F2)) ∈ fac(C1)× sub(C2) admissible where

E1 ∼ E2 ⇒ E1 = E2 or E1 = E−2 .

The set of all admissible pairs is denoted A(C1, C2).
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Example 11.10. E.g. if |D| > 0 and |F | > 0 then a factor string has the form

and a substring has the form

For each a ∈ A(C1, C2) we define

fa : M(C1)→M(C2)

and call it a graph map.

Example 11.11. Let A = kQ/(ρ) with

Q = •α β

and ρ = 〈αβ, βα, α4, β3〉.
Let C1 = α−α−βα−β and C2 = β−ααα and a = ((1, α−α−, βα−β), (β−α, αα, 1)).

Then:

• M(C1) has basis z1, . . . , z6,

• M(C2) has basis w1, . . . , w5.

Observe M(α−α−) ∼= M(αα).

We have:
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• (D1, E1, F1) factor string of C1 ⇒ M(C1)�M(E1)

• (D2, E2, F2) substring of C2 ⇒ M(E2) ↪→M(C2)

• admissible ⇒ M(E1)
∼=−→M(E2)

Thus fa is just

M(C1)�M(E1)
∼=−→M(E2) ↪→M(C2) .

Theorem 11.12 (Crawley-Boevey). The graph maps form a basis of the hom spaces.

In particular, dim HomA(M(C1),M(C2)) = |A(C1, C2)|.

Definition 11.13. Let a = ((D1, E1, F1), (D2, E2, F2)) ∈ A(C1, C2). We call fa . . .

• oriented if E1 = E2,

• left (resp. right) sided if |D1| = |D2| = 0 (resp. |F1| = |F2| = 0),

• weakly one-sided if a or ((F−1 , E
−
1 , D

−
1 ), (D2, E2, F2)) is one-sided,

• two-sided if it is not weakly one-sided.

Define

a(`) =

{
a if a is oriented

((F−1 , E
−
1 , D

−
1 ), (D2, E2, F2)) otherwise

and a(r) dually.

Remark 11.14.

• a is weakly one-sided ⇔ a(`) is one-sided ⇔ a(r) is one-sided

• a is not oriented ⇒ E2 = E−1

M(C−1 ) M(C2)

M(C1)

fa(`)

∼=
fa

Proof

Lemma 11.15. Let fai : M(C1)→M(C2) with 1 ≤ i ≤ s be pairwise different which are

weakly one-sided. If fai 6= 0, then the fai are linearly independent in Hom(M(C1),M(C2)).

Proof. Let fa : M(C1)→M(C2) be a two-sided graph map and Ext1(M(C2),M(C1)) = 0.

Then fa = 0.

Theorem 11.16. Let M ∈ A- mod with Ext1
A(M,M) = 0. Then EndA(M) is gentle.

Proof.

• M does not contain band modules
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• M does not contain projective indecomposables

• Mi 6∼= Mj for all i 6= j

⇒ M =
⊕n

i=1Mi with Mi = M(Ci) and Ci 6∼ Cj for all i 6= j

Thus Theorem 11.12 and Lemma 11.15 imply that

B = {fa | fa ∈ EndA(M) weakly one-sided with fa 6= 0 }

is a basis of EndA(M) which behaves multiplicatively:

fafb = 0 or fafb ∈ B

Q0 = {id : M(Ci)→M(Ci) with 1 ≤ i ≤ n}
Q1 = B \ (Q0 ∪ {fa ∈ B such that fa = fbfc})

Lemma 11.17 (Key Lemma 1). Let X,Y, Z ∈ {M(Ci) | 1 ≤ i ≤ n} and fa : X → Z,

fb : Y → Z be different such that fa, fb ∈ Q1.

Then fa(`) is left-sided and fb(`) is right-sided or vice versa.

Proof. . . .

Lemma 11.18 (Key Lemma 2). Let X
fa−→ Y

fb−→ Z with fa, fb ∈ Q1. If fa(`) and fb(r)
are both left-sided or both right-sided, then fafb 6= 0. Otherwise, fafb = 0.

Proof. . . .
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12 Combinatorial Derived Invariants

Wednesday 16th 10:00 – Nicolas Berkouk (Paris, France)

References.

• C. Geiß and Diana Avella-Alaminos.

”Quiver“ Plan of the Talk.

12.1 Definitions

Definition 12.1. Let A = kQ/〈ρ〉 be a special biserial algebra of finite dimension over k.

Recall that A is a string algebra if ρ is composed only of paths.

Let A be a string algebra.

Definition 12.2.

• C = an · · · a1 is a non-trivial permitted thread iff Cb or bC lies in 〈ρ〉 for all b ∈ Q1.

• Π = an · · · a1 is a non-trivial forbidden thread iff ai+1ai ∈ ρ for all i ∈ [1, n− 1] and

a1b and ban lie in ρ for all b ∈ Q1.
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For every v ∈ Q0 such that
•

•

•

b

a

and ba 6= 0 we formally consider a trivial permitted thread hv. For every v ∈ Q0 such that

•

•

•

b

a

and ba = 0 we formally consider a trivial forbidden thread pv.

Notation 12.3. HA = {permitted threads}

Let σ, ε : Q1 → {±1} be such that:

(1) If b1 6= b2 ∈ Q1, s(b1) = s(b2), then σ(b1) = −σ(b2).

(2) If b1 6= b2 ∈ Q1, t(b1) = t(b2), then ε(b1) = −ε(b2).

(3) If b, c ∈ Q1, cb ∈ ρ, s(c) = t(b), then σ(c) = −σ(b).

We extend ε, σ to HA. For H = an · · · a1 non-trivial in HA define

(1) σ(H) := σ(a1), ε(H) := ε(an),

(2) for trivial threads hv by connectivity of Q (i.e. v
c−→  σ(hv) = −ε(hv) = −σ(c)

and
b−→ v  σ(hv) = −ε(hv) = −ε(b)),

(3) for trivial threads pv similarly (i.e. v
c−→  σ(pv) = −ε(pv) = −σ(c) and

b−→ v  
σ(pv) = −ε(pv) = −ε(b)).

12.2 The Algorithm

(1)

a) First consider H0 ∈ HA.

b) Suppose that Hi is defined. Consider the forbidden thread Πi which ends in

t(Hi) such that ε(Hi) = −ε(Πi).

c) Hi+1 := permitted thread starting in s(Πi) with σ(Πi) = −σ(Hi+1).

This process stops when Hn = H0. Define (n,m) and n =
∑n

i=1 `(Πi−2).

(2) Repeat (1) while all permitted threads haven’t been considered.
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(3) Add (0, |C|) for every directed cycle C such that each consecutive pair of arrows

is a relation.

(4) Define φA : N2 → N by

(n,m) 7→ number of times (n,m) appeared in the previous process .

Example 12.4.

1 2 3

4 5 6 7 8

a5

a1

a6

a7

a8 a2 a3

a4

a9

with relations a1a4, a4a2, a6a5, a8a1 and

σ(a1) = σ(a2) = σ(a3) = σ(a7) = σ(a9) = 1 ,

σ(a4) = σ(a5) = σ(a6) = σ(a8) = −1 ,

ε(a4) = ε(a7) = 1 ,

ε(a1) = ε(a2) = ε(a3) = ε(a5) = ε(a6) = ε(a8) = ε(a9) = −1 .

12.3 Interpretation of Permitted Threads of Â

A = kQ/〈ρ〉 gentle algebra  Â = kQ̂/〈ρ̂〉 repetitive algebra (ν : a[z] 7→ a[z + 1])

Definition 12.5. In (Q̂, ρ̂) a full path is a path p not involving any relation in ρ̂ such

that t(p) = ν−1(s(p)).

Define

• ρ̂ = ρ̂ ∪ {full paths},

• Â = kQ̂/〈ρ̂〉 the expansion of A.

Remark 12.6. Â is a string algebra, isomorphic to Â/socle of inj.-proj.

Theorem 12.7 (Ringel, Butler). The vertices of the stable AR-quiver Γ
Â,s

of Â which

are the end of AR-sequences with indecomposable middle term are in one-to-one corre-

spondence with H
Â

.

Remark 12.8. We get an easy description of τ
Â

through this correspondence.

Proposition 12.9. If (Q, ρ) is not a tree (and gentle) with A = kQ/〈ρ〉, we have that

• infinite τ -orbits ↔ ZA∞-components in Γ
Â,s

• finite τ -orbits ↔ ZA∞/〈τn〉-components in Γ
Â,s

coming from string modules
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12.4 Action of the Cosyzygy Functor

Let A = kQ/〈ρ〉 be gentle, not a tree. Define

Ω−1(M) = Coker(M → E(M)) the cokernel of the injective hull as object in mod(Â) .

Remark 12.10. Ω ◦ τ = τ ◦ Ω ⇒ Ω−1 permutes the components of Γ
Â,s

Definition 12.11. The characteristic components of Γ
Â,s

are those of the form ZA∞ or

ZA∞/〈τn〉 with n ≥ 1 coming from string modules.

Proposition 12.12. All components ZA∞ and ZA∞/〈τn〉 with n ≥ 2 come from string

modules.

Definition 12.13. We say that two characteristic components C1 and C2 are equivalent

iff they belong to the same Ω−1-orbit.

An equivalence class is called a series of components.

Remark 12.14. Since Ω−1 is an equivalence, it preserves the type of components.

⇒ Only one type of component in each series of components.

Proposition 12.15 (Avella-Alaminos–Geiß). Γ
Â,s

has only finitely many ZA∞-components.

Let C be of type ZA∞ in Γ
Â,s

.

 i[C] = (n,m) such that |n−m| = #[C] and Ωn−m
Â

(M) = τn
Â

(M) for all M ∈ [C]

Let C be of type ZA∞/〈τn〉 with n ≥ 1.

 i[C] = (n, n) such that (Ωn−n
Â

(M) =)M = τn
Â

(M) for all M ∈ [C]

Define NA : N2 → N by

(n,m) 7→ #{[C] | i[C] = (n,m)} .

Fact 12.16. NA = φA

12.5 End of Proof

Let A = kQ/〈ρ〉 and B = kQ′/〈ρ′〉 be gentle algebras.

If Q is a tree, then Db(A) ∼= Db(A#Q0
).  φA = φA#Q0

Now assume that neither A nor B is a tree and Db(A) '∆ Db(B).

Theorem 12.17 (Asashiba). Db(Â) '∆ Db(B̂).

Theorem 12.18 (Rickard). For self-injective finite-dimensional algebras:

derived equivalence ⇒ stable equivalence

Â- mod ∼=∆ B̂- mod

 [ZA∞] in Γ
Â,s
↔ [ZA∞] in Γ

B̂,s

 [ZA∞/〈τn〉] in Γ
Â,s

n≥2↔ [ZA∞/〈τn〉] in Γ
B̂,s

 
∑

(n,m) φA(n,m)m = #Q0 is a derived invariant  recover φA(1, 1) = φB(1, 1)
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13 Derived Discrete Algebras

Thursday 17th 8:30 – Toshitaka Aoki (Nagoya, Japan)

References.

• D. Vossieck. The algebras with discrete derived category.

Structure.

(1) Introduction

(2) Main result in [Vossieck] and sketch of proof

(3) Derived equivalences

13.1 Introduction and Notation

Aim.

Introduce the algebras with discrete derived category and classify them up to Morita

equivalences / up to derived equivalences.

Notation.

• k = k an algebraically closed field

• A a finite-dimensional k-algebra

• mod -A the category of finitely generated A-modules

• Db(A) the bounded derived category of mod -A

• Db(A)perf the subcategory of Db(A) formed by perfect complexes

• K0(A) the Grothendieck group of mod -A

Definition 13.1. For X ∈ Db(A) define

DimX := (dimH i(X))i∈Z ∈ K0(A)(Z)

the sequence of dimension vectors of H i(X).

Definition 13.2 (Vossieck). We say Db(A) is discrete if for all positive x ∈ K0(A)(Z)

#{X ∈ Db(A) |X indecomposable with DimX = x}/iso. < ∞ .

Example 13.3. The path algebra A of a quiver of Dynkin type Am, Dn (n ≥ 4), E6, E7,

E8 has a discrete derived category.
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Proof.

• A is representation-finite.

• Any indecomposable complex is a shift of an indecomposable A-module up to iso-

morphism (see [Happel]).

13.2 Main Result and ”Proof“

Theorem 13.4 (Vossieck). Let A be a connected basic finite-dimensional k-algebra. Then

the following are equivalent:

(i) The repetitive algebra Â is representation discrete, i.e. for every positive m ∈ K0(Â)

#{M ∈ mod(Â) |M indecomposable with dimM = m}/iso. < ∞ .

(ii) Db(A) is discrete.

(iii) Db(A)perf is discrete.

(iv) A is either derived hereditary of Dynkin type or there is a presentation A
'−→ kQ/I

where

• (Q, I) is a gentle quiver,

• Q contains exactly one cycle,

• Q does not satisfy the clock-condition

#{clockwise relations C ∈ I} = #{counter-clockwise relations C ∈ I} .

Remark 13.5.

• Derived hereditary algebras of type An are precisely the gentle tree algebras [Assem–

Happel].

• Derived hereditary algebras of type Ãm (not discrete) are precisely the gentle one–

cycle algebras satisfying the clock-condition [Assem-Skowroński].

Proof.

“(i) ⇒ (ii)”. Use the Happel functor H : Db(A)→ mod(Â).

“(ii) ⇒ (iii)”. Trivial.

“(iv) ⇒ (i)”. Assume A is derived hereditary of Dynkin type. Then Â is locally repre-

sentation finite, i.e. for each vertex v of the quiver of Â

#{M ∈ mod(Â) |M indecomposable with Mev 6= 0}/iso. < ∞ .

Thus Â is representation discrete.

Assume now A
'−→ kQ/I is a gentle algebra. Then Â is special biserial.

The indecomposables in mod(Â) are
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• non-uniserial projective-injectives,

• string modules

• band modules

Note: If there are no bands for Â, then Â is representation-discrete.

Let A = Â/ soc(non-uniserial proj.-inj.).

Recall: Each band corresponds to a cyclic word b such that b is not a proper power of

a cyclic word and bm 6= 0 for any m ∈ N.

Lemma 13.6 (Ringel ’97). Let Q̂ be the quiver with

• vertices v[z] for v ∈ Q0 and z ∈ Z,

• arrows d[z] : v[z]→ w[z] for d : v → w and p̂ : w[z]→ v[z] for maximal paths p.

Then

{cyclic words w in Q with cyclic defect δc(w) = 0} 1:1←−→ {cyclic words ŵ}

where

δc(w) := #{clockwise relations w ∈ I} −#{counter-clockwise relations w ∈ I} .

If (Q, I) satisfies the additional condition, then the left set is empty.

 Â does not have any band modules.

 Â is representation discrete.

“(iii) ⇒ (iv)”.

Lemma 13.7 (V.4.1). If Db(A)perf is discrete, then A is representation finite.

To prove this part, we need “covering theory” (see Gabriel and Roiter) and the “cleaving

method” (see “Algebra V III. Rep. of fin. dim. algebras”) for k-categories or bound quivers.

Assume Db(A)perf is discrete. We regard A as a k-category with

• objects: {e1, . . . , en} a complete set of pairwise orthogonal idempotents in A,

• Hom(ei, ej) = ejAei for all 1 ≤ i, j ≤ n.

(1) [Vossieck, Lemma 4.2]: If A is simply connected, then A is derived hereditary of

Dynkin type. The converse also holds.

(2) If A is not simply connected, we can show that A is a gentle algebra.

Now, there is a presentation A
'−→ kQ/I where (Q, I) is a gentle quiver. If Q is a gentle

tree, then Â is derived hereditary of type Am by Remark 13.5, a contradiction.

So Q contains at least one cycle.

Lemma 13.8 (Ringel). If Q contains at least two cycles, then there exists a cyclic word

with cyclic defect 0.
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Consequently, Q contains exactly one cycle.

If (Q, I) satisfies the clock condition, A is derived equivalent to an algebra of type Ãn,

a contradiction.

Therefore (Q, I) does not satisfy the clock condition.

Theorem 13.9 (Bobiński–Geiß–Skowroński). Let A be a connected finite-dimensional

algebra which is not of Dynkin type. Then the following are equivalent:

(i) Db(A) is discrete.

(ii) Db(A)
∼−→ Db(Λ(r, n,m)) for some (r, n,m).

(iii) A is tilting-cotilting equivalent to Λ(r, n,m)

Moreover, Db(Λ(r, n,m))
∼−→ Db(Λ(r′, n′,m′)) if and only if (r, n,m) = (r′, n′,m′).

The algebra Λ(r, n,m) is given by the quiver

1 · · · n− r − 1

−m · · · −1 0 n− r

n− 1 · · · n− r + 1

a2 an−r−1

an−ra1

an−r+1an

an−1 an−r+2

with relations a1an, anan−1, . . ., an−r+2an−r+1.
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14 Singularity Categories of Gentle Algebras

Thursday 17th 10:00 – David Pauksztello (Verona, Italy)

References.

(1) Geiß, Reiten. Gentle algebras are Gorenstein.

(2) Kalck. Singularity categories of gentle algebras.

Notation.

• Λ a finite-dimensional k-algebra

14.1 Gorenstein Algebras, Motivation

Definition 14.1. Λ is Gorenstein if inj. dim ΛΛ <∞ and inj.dim ΛΛ <∞.

Example 14.2.

• Λ with gl.dim Λ <∞

• Λ self-injective

Properties of Gorenstein Algebras.

• [Happel] Kb(proj Λ) = Kb(inj Λ) ⇔ Λ Gorenstein.

• Kb(proj Λ) satisfies Serre duality, i.e. has AR-triangles.

• The full subcategory of Gorenstein projective modules is defined by

GP(Λ) = {M ∈ mod Λ | ExtiΛ(M,Λ) = 0 ∀ i > 0},

an exact Frobenius category whose projective-injectives are the projective Λ-modules.

Theorem 14.3 (Buchweitz). Let Λ be Gorenstein. The embedding GP(Λ) ↪→ Db(Λ)

induces a triangle equivalence

GP(Λ)/ proj Λ
∼−−→ Dsg(Λ) := Db(Λ)/Kb(proj Λ)

Remark 14.4.

• GPs are often called maximal Cohen-Macaulay modules.

Simple hypersurface singularities ⇔ finitely indecomposable GPs.

• When Λ is self-injective, all modules are GP, so the singularity category is modΛ.
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14.2 Gentle Algebras Are Gorenstein

Let Λ = kQ/I be a gentle algebra.

• An arrow b ∈ Q1 is gentle if there is no a ∈ Q1 with ba ∈ I.

• A direct walk w = an · · · a1 is critical if ai+1ai ∈ I for 1 ≤ i < n.

It is called a critical cycle if s(a1) = t(an) and a1an ∈ I.

Note.

• There exists at most one arrow a0 such that an · · · a1a0 is critical.

• There exists at most one arrow an+1 such that an+1an · · · a1 is critical.

Lemma 14.5. There is a bound n(Λ) ≤ |Q1| for the maximal lengths of critical paths

starting with a gentle arrow.

Proof. Assume an+1an · · · a1 is critical with a1 gentle and a1, . . . , an pairwise different.

Draw a picture . . .

Injectives and Projectives.

The injective Ix is

x

v u

= M(v−1u)

where u, v distinct maximal directed paths ending (resp. starting) at x ∈ Q0.

50



Similary, the projective Px looks as follows:

x

u v

= M(uv−1)

For Ix = M(v−1u) consider the unique (if they exist!) arrows a and b such that v−1ua−1

and/or bv−1u are defined as strings. Then a, b are gentle arrows.

Definition 14.6. For each a ∈ Q1 define

r(a) := the unique maximal direct string such that r(a)a is defined as a string .

Define R(a) := M(r(a)).

Proposition 14.7. Let Ix = M(v−1u). For j ≥ 1 each indecomposable non-projective

summand of ΩjM(v−1u) is of the form R(aj) for a critical path aj · · · a1 with a1 gentle.

Proof. Take the projective cover of Ix.  Pt ⊕ Ps → Ix  Draw a picture . . .

Theorem 14.8 (Geiß–Reiten).

inj.dim(Λ) =

{
n(Λ) = proj. dim ΛD(Λop) if n(Λ) > 0

proj. dim ΛD(Λop) ≤ 1 if n(Λ) = 0.

In particular, Λ is Gorenstein.

Proof. proj. dim ΛD(Λop) ≤ n(Λ) + δn(Λ),0.

Suppose n(Λ) > 0. Let an · · · a1 be a critical path with a1 gentle. If there is b ∈ Q1

such that s(b) = s(a1) then It(b) looks like

v
 t(b)

b←− a1−−→

by Proposition 14.7 and proj.dim It(b) ≥ 1.

If there is no such b, then Is(a1) looks like

v
 s(a1)

a1−−→

and proj.dim Is(a1) ≥ n.

Note: n(Λ) = n(Λop) ⇒ Λ is Gorenstein
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Theorem 14.9 (Kalck).

(1) ind GP(Λ) = ind proj(Λ) ∪ {R(a1), . . . , R(an) | c = an · · · a1 ∈ C(Λ)}

(2) Dsg(Λ) ∼=
∏
c∈C(Λ)D

b(kA1)/Σ`(c) “product of orbit categories” [Keller]

where `(c) is the length of the cycle c.

Example 14.10. Let Λ be the algebra given by the quiver

5

4

2

1 3 6 7

b2

b1

a2a1

a3

c1 c2

with relations a1a3, a2a1, a3a2, c2c1. Then:

There are short exact sequences

0→ R(ai)→ Pi → R(ai−1)→ 0 .

For example,

0→
( c1←−

)
→
( c1←− a2←− b1−→ b2−→

)
→
( b1−→ b2−→

)
→ 0 .

In particular, ΩR(ai−1) = R(ai) and ΣR(ai) = R(ai−1) in GP(Λ).

Db(Λ) looks like:

where

• ∆ : X 0,X 1,X 2 are ZA∞ components of Kb(proj Λ),

• \/ : Z0,Z1,Z2 are A∞∞ components of Db(Λ) \Kb(proj Λ)

(one of an irreducible morphism in a Z component lies on the boundary of an X
component, i.e. each Z component is identified in Dsg(Λ)).
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Sketch.

Use the following facts to show R(ai) are all the GPs:

• A GP Λ-module is either projective or of infinite projective dimension.

• M is GP ⇔ ΩM ∼= ΩdN for some N ∈ mod Λ, where d = inj.dim ΛΛ

(⇒ every GP module is a submodule of a projective)

The short exact sequences 0→ R(ai)→ Pi → R(ai−1)→ 0 for ai ∈ c ∈ C(Λ) show R(ai)

are GP.

No submodule of a projective can have a subword of the form →←.

So the worst case is ←→.  Get a projective.

The remaining GPs are uniserial. The only way to embed into a projective is if they

have the form R(a) for some a ∈ Q1.

By Proposition 14.7 if a 6∈ c ∈ C(Λ) then proj. dimR(a) <∞.

Second Statement.

We have ΣR(ai) = R(ai−1), so Σ`(c)R(ai) = R(ai).

Fact 14.11. Any semisimple abelian category with autoequivalence Σ admits a unique

triangulated structure with shift Σ.

Hom(R(a), R(a′)) = δa,a′k .

Remark 14.12. [Chen–Shen–Zhou] have more general versions of these statements for

quadratic monomial algebras.
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15 Quivers with Potential from Surface Triangulations

Thursday 17th 14:00 – Toshiya Yurikusa (Nagoya, Japan)

Aim.

To introduce a new class of gentle algebras.

• Quivers with potential (QP) and QP-mutations

• QPs from surface triangulations (unpunctured case)

15.1 Quivers with Potential

Notation.

• k a field

• Q a finite quiver without loops

Definition 15.1. A potential S on Q is a linear combination of cyclic paths up to cyclical

equivalence (i.e. ad · · · a1 ∼ a1ad · · · a2).

The pair (Q,S) is called a quiver with potential (QP).

Example 15.2.

2

1 3

ba

c

Potential (3-cycle case): S = cba ∼ bac ∼ acb, 0, cbacba, . . .

Definition 15.3. The cyclic derivative ∂a at a ∈ Q1 is defined by

∂a(ad · · · a1) =

d∑
i=1

∂a,aiai−1 · · · a1ad · · · ai+1

where ad · · · a1 is a cyclic path.

The ideal

J(S) := 〈∂a(S) | a ∈ Q1〉

of the completed path algebra of Q is called the Jacobian ideal.

Following [DWZ ’08] we define the Jacobian algebra

P(Q,S) := the completed path algebra/J(S) .
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15.2 QP-Mutations

Let (Q,S) be a QP and v ∈ Q0.

Theorem 15.4 (and Definition). If Q has no 2-cycles incident to v, we obtain a new QP

(Q′, S′) = µ̃v(Q,S) “QP-premutation at v”

constructed as follows:

(1) For each i
b←− v a←− j add an arrow i

[ba]←−−− j.

(2) Reverse all arrows incident to v (
a←− v  a∗−−→ v).

Let

S′ := [S] +
∑

i←−
b
v←−
a
j in Q

a∗b∗[ba]

where [S] is obtained from S by replacing all i
b←− v a←− j with [ba].

By [DWZ, Theorem 4.6] (“splitting theorem”) there exists a QP

(Q∗, S∗) = µv(Q,S)

such that S∗ has no 2-cycles and P(Q∗, S∗) ∼= P(Q′, S′).
“Remove 2-cycles in S′ and the corresponding arrows.”

Then µk(Q,S) is a QP-mutation of (Q,S) at v.

Example 15.5. Let (Q,S) be the QP with

Q =

2

1 3

ba

c

and S = cba.

Then µ̃2(Q,S) is the QP (Q′, S′) with

Q′ =

2

1 3

a∗

[ba]

c

b∗

and S′ = c[ba] + a∗b∗[ba]. Then µ2(Q,S) is the QP (Q∗, S∗) with

Q∗ =

2

1 3 .

a∗ b∗

The 2-acyclicity of Q is essential to apply the QP-mutation for every vertex of Q.

But 2-acyclicity is not invariant under QP-mutation.
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Example 15.6. For (Q,S)with

Q =

2

1 3

ba

c

and S = 0 the QP µ2(Q,S) = µ̃2(Q,S) is (Q∗, S∗) with

Q∗ =

2

1 3

a∗ b∗

and S∗ = a∗b∗[ba].

Theorem 15.7 (DWZ, Corollary 7.4). Let k be an uncountable field. Any 2-acyclic

quiver has a potential S such that the quiver obtained from (Q,S) after any sequence of

QP-mutations is 2-acyclic. Such a potential S is called non-degenerate.

15.3 Surface Triangulations (Unpunctured Case)

Let Σ be a connected oriented Riemann surface with boundary ∂Σ and M a finite set of

marked points on ∂Σ containing at least one point from each connected component of ∂Σ.

Then (Σ,M) is called a marked surface (without punctures).

Definition 15.8. An arc on (Σ,M) is a curve up to isotopy on Σ satisfying:

• Its endpoints lie in M .

• It has no self-intersection (except in the endpoints).

• It is neither contractible nor a boundary segment.

A triangulation of a marked surface is given by a maximal collection of arcs which do

not intersect each other.

Example 15.9.

Definition 15.10. Let (Σ,M) be a marked surface and τ a triangulation of (Σ,M).

Define a QP (Q(τ), S(τ)) as follows:
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• Q(τ)0 = {arcs of τ}

• Q(τ)1 = {i→ j | ∃ in τ}

• S(τ) =
∑

internal triangles of τ

Remark 15.11. If Q(τ) is 2-acyclic, then

J(S(τ)) =
〈 ∣∣∆ internal triangle of τ

〉
.

By [LF ’09, Theorem 3.6]

P(Q(τ), S(τ)) = kQ(τ)/J(S(τ)) .

is finite-dimensional. This is a gentle algebra [ABCP, ’09, Theorem 2.7] (next talk).

Example 15.12. For

τ =

we have

Q(τ) =

2 1

3

4 5

and

S(τ) = .

Theorem 15.13 (LF, Theorem 3.0). QP-mutations of (Q(τ), S(τ)) are compatible with

flips of τ where a flip of τ at an arc v is

fv(τ) = (τ \ {v}) ∪ {v′}

such that fv(τ) is a triangulation with v 6= v′.

Since Q(τ) has no 2-cycles for any triangulation τ , the potential S(τ) is non-degenerate.

Example 15.14.

Theorem 15.15 (GLFS ’16, Theorem 1.4). If (Σ,M) is not a torus with |M | = 1, then

S(τ) is the only non-degenerate potential up to right equivalence.
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16 Gentle Algebras Arising from Surface Triangulations

Thursday 17th 15:15 – Alexander Garver (Montreal, Canada)

References.

• [Assem–Brüstle–Charbonneau-Jodoin–Plamondon]

Let (S,M) be an unpunctured surface and Γ a triangulation of (S,M).

 (Q(Γ),W (Γ))

 A(Γ) = kQ(Γ)/I(Γ) where I(Γ) = J(W (Γ))

Questions.

• Properties of A(Γ)

• Which A(Γ) are cluster-tilted?

• Which gentle algebras are cluster-tilted?

16.1 Properties of A(Γ)

Theorem 16.1. The following hold:

(i) A(Γ) is gentle.

(ii) A(Γ) is Gorenstein of dimension one.

(iii) If ab ∈ I(Γ) where x
a−→ z

b−→ y, then there is an arrow y → x in Q(Γ).

(iv) There is a Galois covering kQ̃/Ĩ of A(Γ) such that:

(T1) Every chordless cycle in Q̃ is a 3-cycle with full relations.

(T2) These are the only relations.
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Proof. (i)

• A(Γ) is finite-dimensional [LF].

• I(Γ) is generated by 2-paths.

• Any vertex i of Q(Γ) has

i

since the corresponding arc appears in exactly 2 triangles.

• Suppose

b1

a c

b2

α1

β

α2

then draw some picture . . .

(ii) Drawing a picture . . .

16.2 Which A(Γ) are cluster-tilted?

Recall that if Q is acyclic, one defines its cluster category

CQ = Db(kQ)/τ−1[1] .

Then ind CQ = ind kQ
·
∪ Pi[1]i∈Q0

.
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If T = T1⊕ · · · ⊕ Tn is a cluster-tilting object (i.e. Ext1
CQ(T, T ) = 0 and n = #Q0), then

EndCQ(T ) is a cluster-tilted algebra.

Theorem 16.2. The following are equivalent:

(1) A(Γ) is cluster-tilted.

(2) A(Γ) is cluster-tilted of type A or Ã.

(3) S is a disc or an annulus.

Moreover, all cluster-tilted algebras of these types are realizable as A(Γ).

Proof. “(2) ⇒ (1)”: Trivial.

“(1) ⇒ (2)”: Let (Q(Γ),W (Γ)) be the QP corresponding to A(Γ).

(Q(Γ),W (Γ)) (Q′, 0) (under a sequence of QP mutations)

⇒ A(Γ′) = kQ′ hereditary

⇒ Since A(Γ′) is gentle, it is of type A or Ã.

“(3) ⇒ (2)”: Any two triangulations of (S,M) are flip-equivalent [Hatcher, 1991].

Since flips correspond to mutations, it is easy to show that “(3) ⇒ (2)” for a particular

triangulation:

16.3 Which gentle algebras are cluster-tilted?

Theorem 16.3 (Assem–Brüstle–Schiffler 2008). An algebra Λ is cluster-tilted iff there

exists a tilted algebra C (i.e. C = EndkQ(T ) for a tilting object in mod kQ) such that

Λ ∼= C̃ := C n Ext2
C(DC,C) .
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As abelian group

C̃ = C ⊕ Ext2
C(DC,C)

with addition (c, e) + (c′, e′) = (c+ c′, e+ e′) where e+ e′ is the Baer sum in Ext2
C(DC,C)

and multiplication (c, e)(c′, e′) = (cc′, ce′ + ec′) with e1 = ce′ and

e : 0 P M N I 0

e′ : 0 P ′ M ′ N ′ I ′ 0

and
e′ : 0 P ′ M ′ N ′ I ′ 0

e1 : 0 ce′C M1 N ′ I ′ 0

c

where the left-hand square is a pushout.

Theorem 16.4. Let C = kQC/IC be a tilted algebra and C̃ the trivial extension. The

following are equivalent:

(1) C is gentle.

(2) C is tilted of type A or Ã.

(3) C̃ is gentle.

(4) C̃ is cluster-tilted of type A or Ã.

Proof.

“(1) ⇒ (2)”: [Schröer 1999]

“(3) ⇒ (1)”: [Assem–Coelho–Trepode]

“(2) ⇔ (4)”: [Assem–Brüstle–Schiffler]

“(2) ⇒ (3)”: Not quite easy.

Important part here is saying what is I
C̃

where C̃ = kQ
C̃
/I
C̃

.

Example 16.5.

QC =

• •

• •

•

Q
C̃

=

• •

• •

•
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17 Surface (Cut) Algebras

Thursday 17th 17:00 – Raquel Coelho Simoes (Lisbon, Portugal)

References.

• [David-Roesler–Schiffler]

17.1 Cuts of Triangulated Surfaces

Fix (S,M, T ) where . . .

• S is a connected oriented unpunctured Riemann surface with boundary ∂S,

• M is a set of marked points in ∂S intersecting each connected component of ∂S,

• T is a triangulation of (S,M).

Let ∆ be an internal triangle in T , v ∈M one of the vertices of ∆, and α, β the arcs of

∆ incident to v:

(S,M, T )
cut at v, α, β
 (S, χv,β,α(M), χv,β,α(T )) where

χv,β,α(M) = (M \ {v}) ∪ {v′, v′′}

χv,β,α(T ) = T \ {γ | γ incident to v}) ∪ {γ+ | γ incident to v′ or v′′}

where γ+ is the arc obtained from γ by replacing the end of γ by the concatenation of γ

and δ′ (resp. δ′′) if γ = α or γαβ (resp. γ = β or αβγ).

Example 17.1.
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Definition 17.2.

(1) χv,β,α(S,M, T ) is called the local cut of (S,M, T ) at vertex v relative to α and β.

(2) A cut of (S,M, T ) is a partially triangulated surface (S,M+, T+) obtained by ap-

plying a sequence of local cuts χv1,β1,α1
, . . . , χvt,βt,αt in such a way that we cut each

internal triangle at most once.

(3) A cut is admissible if every internal triangle of T is cut exactly once.

(4) ∆+ quasi-triangles

17.2 Definition of Surface Algebras

Let (S,M+, T+) be the cut of (S,M, T ) given by (χvi,βi,αi)i=1,...,t.

First, complete T+ to a triangulation T
+

of (S,M+).

Second, construct Q
T

+ (see previous talk). Some picture here . . .

α+
i εi γ+

i

β+
i

Third, obtain QT+ from Q
T

+ by deleting the vertices εi.

 
α+
i γ+

i

β+
i

Locally: (again a picture . . . )

Definition 17.3. A (cut) surface algebra of type (S,M) is A+ = kQ+/I+ (with I+ as in

the above figure) where (S,M+, T+) is a cut of a triangulated surface (S,M, T ).

(S,M, T ) (S,M+, T+)

A(T ) A(T+)

cut

cut “edges”

Definition 17.4. Let Q be a quiver and C an oriented cycle in Q.

(1) C is a chordless cycle if it is a full subquiver of Q and for each v ∈ C there is a

unique a ∈ C and a unique b ∈ C such that s(a) = v and t(b) = v.

(2) A cut of Q is a subset of the set of arrows lying on chordless cycles such that no two

arrows lie in the same cycle.

(3) A cut is admissible if it contains exactly one arrow of each chordless cycle in Q.
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(4) Let A = kQ/I. An algebra is said to be obtained from A by a cut if it is isomorphic

to kQ/〈I ∪ Γ〉 where Γ is a cut of Q.

[Amiot–Grimeland] In other words, let d be a degree map assigning degree 0 or 1 to

each arrow of Q such that:

• Chordless cycles have degree 1.

• Arrows not lying on a chordless cycle have degree 0.

 d describes an admissible cut.

The cut algebra of A with respect to d is the degree zero subalgebra.

Observation 17.5. χv,β,α ↔ cutting the arrows between α and β in QT

Theorem 17.6. Every surface algebra is gentle.

Proof. Let A be a surface algebra. Then A = A(T+) with (S,M+, T+) a cut of (S,M, T ).

Now:

• A(T+) is obtained from A(T ) by a cut.

• A(T ) is gentle.

• Any cut of a gentle algebra is gentle.

17.3 Motivation

• (see Wassilij’s talk) gentle algebra G
trivial extension−−−−−−−−−−→ BGA T (G) = GnDG

• [Schroll] Every gentle algebra is the admissible cut of a unique Brauer graph algebra

(its trivial extension).

• The Brauer graph of A(T+) is T+. But the BGA (i.e. T (A(T+))) is not the Jacobian

algebra A(T ).

Theorem 17.7 (DR–S). If (S,M+, T+)

(1) gl.dim(A+) ≤ 2

(2) A(T ) ∼= A(T+) n Ext2
A(T+)(DA(T+), A(T+)) (compare [ABS])

17.4 AG-Invariant

Example 17.8. A picture . . .
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Notation. Let (S,M, T ) be a triangulated surface, C the boundary components of S.

• MC,T = {marked points on C that are incident to at least one arc in T }

• nC,T = #MC,T

• mC,T = #boundary segments on C that have both endpoints on MC,T

Theorem 17.9. Let A = A(T+) be a surface algebra of type (S,M, T ) given by a cut

(S,M+, T+). The AG-invariant of A is given as follows:

(a) (0, 3)
1:1↔ internal triangle in T+, and 6 ∃ (0,m) with m 6= 3.

(b) ordered pairs (n,m) in AG(A) with n 6= 0
1:1↔ boundary components of S.

If C is a boundary component, the corresponding (n,m) is given by n = nC,T +` and

m = mC,T + 2` where

` = #local cuts χv,β,α in (S,M+, T+) such that v is a point on C. .

“Proof”. permitted threads H 1:1↔ non-empty complete fans of (S,M+, T+) (picture . . . )

forbidden threads F\ cycles:

• length 2
1:1↔ quasi-triangles

• length 1
1:1↔ triangles with exactly one side on the boundary

• length 0
1:1↔ triangles with exactly two sides on the boundary

(another picture . . . )
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18 Derived Equivalence Classification of Surface Algebras

Friday 18th 8:30 – Matthew Pressland (Stuttgart, Germany)

(d’après Ladkani)

Aim.

Classify surface algebras A(Γ) up to derived equivalence.

Approach.

1) Separate non-equivalent algebras  AG invariants

2) Exhibit derived equivalences  good mutations

Example 18.1.

18.1 AG Invariants

Recall 18.2. The AG invariant φA(Γ) : N2 → N is a function given by “path counting”.

In this case, computed by [David-Roesler–Schiffler].

Let (S,M) be a surface with triangulation Γ.

Definition 18.3. A dome in Γ is a triangle with two boundary arcs.

• • •

Write dC for the number of domes incident with the boundary component C and set

nC = #(M ∩ C) .
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Parameters of Γ:

• g the genus of S,

• b the number of boundary components,

• (nC , dC) for each boundary component C.

The parameters determine (S,M) up to homeomorphism.

Proposition 18.4 (David-Roesler–Schiffler, Ladkani).

φA(Γ) =
∑

Cboundary component

1(nC−dC ,nC−2dC) + t1(0,3)

where t = 4(g − 1) + 2b+
∑

C dC is the number of internal triangles of Γ.

Since nC 6= dC for all C, the AG invariant φA(Γ) determines all the parameters.

In particular, A(Γ)
der.' A(Γ′) means Γ and Γ′ are triangulations of the same surface.

18.2 Good Mutations

Recall 18.5. Flipping an arc v of Γ induces a mutation of A(Γ) to A(µv(Γ)).

Aim.

• Find good mutations such that A(Γ)
der.' A(µv(Γ)).

• Show that if Γ and Γ′ have the same parameters
(
⇔ φA(Γ) = φA(Γ′)

)
, then they are

linked by good mutations.

Definition 18.6. Let A be an algebra. Then T • ∈ Kb(projA) is a tilting complex if

(i) Hom(T •, T •[i]) = 0 for all i 6= 0,

(ii) thickT • = Kb(projA).

[Rickard,Keller]⇒ A
der.' End(T •)op

Example 18.7. Let T be a (classical) tilting module, i.e.

proj. dimT ≤ 1 , Ext1
A(T, T ) = 0 , ∃ 0→ A→ T0 → T1 → 0 with T0, T1 ∈ addT .

Then [Brenner–Butler, Happel], A
der.' EndA(T )op. Let 0 → P1 → P0 → T → 0 be a

projective resolution.

 (· · · 0→ P1 → P0 → 0 · · · ) ∈ Kb(projA) is a tilting complex.

A vertex v of A(Γ) determines complexes:

T−v = Pv
(·a)−−→

⊕
a:j→v

Pj ⊕
⊕
i 6=v

Pi

T+
v = Pv

(·a)−−→
⊕
a:v→j

Pj ⊕
⊕
i 6=v

Pi
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Definition 18.8. Say the mutation µv is good if T εk is a tilting complex with

EndA(Γ)(T
ε
k )

Morita' A(µv(Γ))

for some ε ∈ {+,−}.

⇒ A(Γ)
der.' A(µv(Γ))

Example 18.9. v a sink  T−k tilting; v a source  T+
k tilting.

Proposition 18.10 (Ladkani). If µv(Γ) and Γ have the same parameters, then µv is good.

Proof. The number of arrows in A(Γ)

12(g − 1) + 6b+
∑
C

(nC + dC)

can be recovered from the parameters. [Ladkani] showed previously (with computer assis-

tance) that mutations preserving the number of arrows are good.

Theorem 18.11 (Ladkani). If Γ and Γ′ have the same parameters, then A(Γ)
der.' A(Γ′).

Proof. Since they have the same parameters, Γ and Γ′ are both triangulations of one

surface (S,M).

Step 1: Adjust spacing of domes of Γ to match Γ′.

Idea:

Repeat this.  There is an automorphism of (S,M) taking domes of Γ to those of Γ′.

Step 2: Apply this automorphism.

Step 3: Γ and Γ′ have the same domes. We want a sequence of good mutations Γ Γ′.

Use a combinatorial recipe of [Mosher].

Idea: Pick an arc a ∈ Γ′ \ Γ, orient it arbitrarily. Flip first arc of Γ that a intersects.

Observation: We can choose a carefully so that we never create or destroy domes:
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(1) a cannot intersect an arc of a dome since Γ and Γ′ have the same domes.

(2) To avoid creation of domes: (picture)

Example 18.12. In Example 18.1 the green part corresponds to different orientations

of A3:

gl.dim = 1 and φA(Γ) = 1(4,2)

For the red part:

gl.dim =∞ and φA(Γ) = 1(3,0) + 1(0,3)
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