Summer School on Gentle Algebras

Participants' Talks

BIREP

14–18 August 2017

To edit these notes please go to:

https://www.overleaf.com/10715638pjykdvtysgrf

Please feel free to correct mistakes and to add/modify whatever seems reasonable.

Contents

1	Introduction to Gentle, String, Biserial and Special Biserial Algebras	2
2	The Representation Theory of the Lorentz Group	4
3	Classification of Indecomposable Modules $\ldots \ldots \ldots$	7
4	Irreducible Maps of Strings and Band Modules	10
5	The Structure of Biserial Algebras	13
6	Repetitive Algebras	16
$\overline{7}$	Brauer Graph Algebras (BGA) = Symmetric Special Biserial Algebras (SSB) $$	19
8	Introduction to Triangulated Categories	23
9	A Construction of the Happel Functor	26
10	Indecomposable Objects in the Derived Category	31
11	Derived Equivalences	36
12	Combinatorial Derived Invariants	41
13	Derived Discrete Algebras	45
14	Singularity Categories of Gentle Algebras	49
15	Quivers with Potential from Surface Triangulations	54
16	Gentle Algebras Arising from Surface Triangulations	58
17	Surface (Cut) Algebras	62
18	Derived Equivalence Classification of Surface Algebras	66

1 Introduction to Gentle, String, Biserial and Special Biserial Algebras

Monday 14th 13:00 – Mariusz Kaniecki (Toruń, Poland)

References.

- (1) A. Skowroński, J. Waschbüsch. Representation finite biserial algebras, 1983.
- (2) J. Külshammer's website. "Biserial algebras".
- (3) J. Schröer. Biserial / special biserial / string / gentle algebras, 2016
- (4) A. Skowroński. The finite-dimensional algebras in the mathematical nature (Polish).

Notation.

- k a field
- A a finite-dimensional k-algebra

Definition 1.1. A is biserial if it satisfies the following two properties:

- (a) The radical rad(P) of each indecomposable projective right A-module P is the sum of at most two uniserial submodules U_1 and U_2 with $\ell(U_1 \cap U_2) \leq 1$.
- (b) The radical rad(P) of each indecomposable projective left A-module P is the sum of at most two uniserial submodules U_1 and U_2 with $\ell(U_1 \cap U_2) \leq 1$.

Definition 1.2. A is special biserial if $A \cong kQ/I$ for an admissible ideal I such that:

- (SB1) $|\{a \in Q_1 \mid s(a) = i\}| \le 2$ and $|\{a \in Q_1 \mid t(a) = i\}| \le 2$ for each $i \in Q_0$.
- (SB2) For arrows $a, b, c \in Q_1$, $a \neq b$, t(a) = t(b) = s(c), it is $ca \in I$ or $cb \in I$.

(SB3) For arrows $a, b, c \in Q_1$, $a \neq b$, s(a) = s(b) = t(c), it is $ac \in I$ or $bc \in I$.

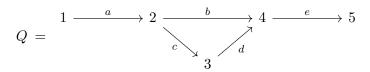
Lemma 1.3 (Skowroński-Waschbüsch). Any special biserial algebra is a biserial algebra.

Proof. Let A = kQ/I and $j \leftarrow a \in Q_1$. Let $w = a_s \cdots a_2 a_1$ be maximal in the set of all paths starting with a and not belonging to I.

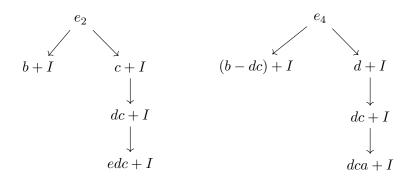
Now $A(a+I) \subseteq \operatorname{rad}(Ae_i)$ is a uniserial module.

Suppose that we have two parallel paths $u = a_n \cdots a_2 a_1$ and $v = b_m \cdots b_2 b_1$ starting in i with $a_1 \neq b_1$ but $A(u+I) = A(v+I) \neq 0$.

By (SB2) $a_n \neq b_m$, so $A(u+I) = K(u+I) \subseteq \operatorname{soc}(Ae_i)$. Assume $c \in Q_1$ and $cu \notin I$. Then t(c) gives the second upper (if any) factor of A(u+I) = A(v+I) leading to the contradiction $cv \notin I$, $ca_n \notin I$, $cb_m \notin I$. **Example 1.4.** Let A = kQ/I for the quiver



and $I = \langle eb, ba - dca \rangle$. Then Ae_2 and e_4A look as follows



Here, A is biserial but not special biserial.

Definition 1.5. A special biserial algebra A = kQ/I is a string algebra if additionally to (SB1)-(SB3) the following condition holds:

(SB4) The ideal I can be generated by zero relations.

Example 1.6.

- (a) $A = k[T]/(T^n)$ where Q is the quiver $\bullet \supseteq T$.
- (b) Any Nakayama algebra is a string algebra. Recall that A is a Nakayama algebra if for any indecomposable projective or indecomposable injective A-module M there is a filtration $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_s = M$ such that all M_j/M_{j-1} are simple.

Definition 1.7. A string algebra A = kQ/I is a gentle algebra if additionally to the conditions (SB1)-(SB4) the following hold:

- (SB5) For arrows $a, b, c \in Q_1$, $a \neq b$, t(a) = t(b) = s(c), it is $ca \notin I$ or $cb \notin I$.
- (SB6) For arrows $a, b, c \in Q_1$, $a \neq b$, s(a) = s(b) = t(c), it is $ac \notin I$ or $bc \notin I$.
- (SB7) The ideal I can be generated by a set of paths of length 2.

2 The Representation Theory of the Lorentz Group

Monday 14th 14:15 – Philipp Lampe (Durham, United Kingdom)

(after Gel'fand and Ponomarev)

Notes: http://maths.dur.ac.uk/users/philipp.b.lampe/LorentzBadDriburg.pdf

- (a) Minkowski space: $\mathbb{R}^{1,3} = (\mathbb{R}^4, \eta)$ with the bilinear form $\eta : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ defined as $\eta(x, y) = x_0 y_0 + x_1 y_1 + x_2 y_2 x_3 y_3$.
- (b) Lorentz group: $O(\mathbb{R}^{1,3}) = \{f \in GL(\mathbb{R}^4) | \eta(x,y) = \eta(f(x), f(y)) \forall x, y \in \mathbb{R}^4\}.$ In matrix form with G = diag(1, -1, -1, -1):

$$O(1,3) = \{\Lambda \in GL(4,\mathbb{R}) \mid \Lambda^T G \Lambda = G\}$$
$$SO(1,3) = \{\Lambda \in O(1,3) \mid \det(\Lambda) = 1\}$$

(c) One-parameter subgroups:

$$\begin{split} A_1 &= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(t) & -\sin(t) \\ 0 & 0 & \sin(t) & \cos(t) \end{pmatrix} : t \in \mathbb{R} \right\} \quad \text{``space rotations'' (similarly: } A_2, A_3) \\ B_1 &= \left\{ \begin{pmatrix} \cosh(t) & \sinh(t) & 0 & 0 \\ \sinh(t) & \cosh(t) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\} \quad \text{``Lorentz boosts'' (similarly: } B_2, B_3) \end{split}$$

(d) Lie algebra $\mathfrak{so}(1,3)$:

Proposition 2.1. The complexified Lie algebra of SO(1,3) is isomorphic to

$$\langle a_i, b_i \mid i = 1, 2, 3 \rangle_{\mathbb{R}}$$

with $[a_k, a_{k+1}] = a_{k+2} = -[b_k, b_{k+1}], [a_k, b_{k+1}] = b_{k+2} = [b_k, a_{k+1}], [a_k, b_k] = 0.$ The Lie algebra $\mathfrak{so}(1,3)_{\mathbb{C}}$ contains the Lie subalgebra $\mathfrak{so}(3)_{\mathbb{C}}$ of simple type \mathbb{A}_1 .

(e) Classification of finite-dimensional irreducible $\mathfrak{so}(3)_{\mathbb{C}}$ -modules: The Lie algebra $\mathfrak{so}(3)_{\mathbb{C}}$ has a basis $h_+ = ia_1 - a_2$, $h_- = ia_1 + a_2$, $h_3 = a_3$ with relations

$$[h_+, h_3] = -h_+, \qquad [h_-, h_3] = h_-, \qquad [h_+, h_-] = 2h_3.$$

Theorem 2.2. Every irreducible finite-dimensional representation of $\mathfrak{so}(3)_{\mathbb{C}}$ is isomorphic to R_{ℓ} for some $\ell \in \frac{1}{2}\mathbb{N}_0$ where

$$R_{\ell} = \langle e_m \, | \, m = -\ell, -\ell + 1, \dots, \ell \rangle_{\mathbb{C}}$$

with

(f) Harish-Chandra module: A module M over $\mathfrak{so}(1,3)_{\mathbb{C}}$ is HC if restricted to $\mathfrak{so}(3)_{\mathbb{C}}$ it is isomorphic to $\bigoplus_{\ell \in \frac{1}{2}\mathbb{N}_0} R_{\ell}^{k_{\ell}}$ with $k_{\ell} \in \mathbb{N}$. Let $R_{\ell,m} \subseteq R_{\ell}^{k_{\ell}}$ be the eigenspace of h_3 for the eigenvalue m. Then (under some finiteness condition?)

$$M = \bigoplus_{\ell,m} R_{\ell,m}$$

(g) New bases:

$$h_{+} = ia_{1} - a_{2} \qquad h_{-} = ia_{1} + a_{2} \qquad h_{3} = a_{3}$$

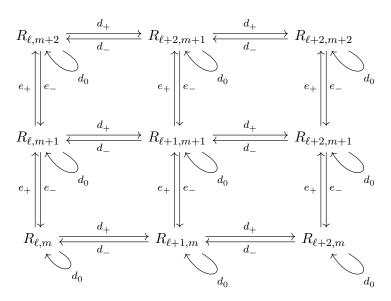
$$f_{+} = ib_{1} - b_{2} \qquad f_{-} = ib_{1} + b_{2} \qquad f_{3} = b_{3}$$

$$e_{+}(x) = \begin{cases} 0 \qquad x \in R_{\ell,m} \text{ with } m = \ell \\ \frac{1}{(\ell+m+1)(\ell-m)} h_{+}(x) \qquad x \in R_{\ell,m} \text{ with } m \neq \ell \end{cases} \qquad (e_{-}(x) \text{ similarly})$$

(h) Action on HC modules: Suppose $d_+, d_-, d_0: M \to M$ such that

$$\begin{array}{rcl} d_+(R_{\ell,m}) &\subseteq & R_{\ell+1,m} \\ d_-(R_{\ell,m}) &\subseteq & R_{\ell-1,m} \\ d_0(R_{\ell,m}) &\subseteq & R_{\ell,m} \end{array}$$

Then we get



such that the diagrams commute and $d_+d_0 = d_0d_+$ etc.

Proposition 2.3.

$$\begin{pmatrix} f_3(x) \\ f_+(x) \\ f_-(x) \end{pmatrix} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} \begin{pmatrix} d_-x \\ d_0e_+x \\ d_+e_-x \end{pmatrix}$$

Then the b_1, b_2, b_3 given by f_3, f_+, f_- satisfy commutator relations for a_i, b_i if and only if for every $x \in R_{\ell,m}$:

$$\begin{split} \ell d_+ d_0(x) &- (\ell+2) d_0 d_+(x) = 0 \\ (\ell+1) d_- d_0(x) &- (\ell-1) d_0 d_-(x) = 0 \\ (2\ell-1) d_+ d_-(x) &- (2\ell-3) d_- d_+(x) = -d_0^2(x) + x \end{split}$$

(i) Harish-Chandra modules from quiver representations: Let $\ell_0, \ell_1 \in \frac{1}{2}\mathbb{N}_0$ with $\ell_0 \equiv \ell_1 \mod 1$. Let $P \in \operatorname{mod}(\mathbb{C}Q/I)$. Then we have

$$\phi_{\ell_0,\ell_1}: \operatorname{mod}(\mathbb{C}Q/I) \to \operatorname{HC}(\mathfrak{so}(1,3)_{\mathbb{C}})$$

with Q sketched here:

$$0 \cdots \longleftrightarrow 0 \longleftrightarrow P_1 \xleftarrow{\mathrm{id}} P_1 \xleftarrow{\mathrm{id}} \cdots \xleftarrow{\mathrm{id}} P_1 \xleftarrow{P_{\delta_+}} P_2 \xleftarrow{\mathrm{id}} P_2 \xleftarrow{\mathrm{id}} P_2$$

Theorem 2.4 (Gel'fand–Ponomarev). $\phi_{\ell_0,\ell_1} : \operatorname{mod}(\mathbb{C}Q/I) \to C_s(\lambda_1,\lambda_2)$ is an equivalence of categories.

(The right-hand side is the "singular block" of HC modules where the "Laplace operators" have eigenvalues $\lambda_1 = -i\ell_0\ell_1$ and $\lambda_2 = -1 + \ell_0^2 + \ell_1^2$.)

3 Classification of Indecomposable Modules over Special Biserial and String Algebras

Monday 14th 15:45 – Apolonia Gottwald (Bielefeld, Germany)

3.1 Indecomposable Modules

Notation.

• Λ a special biserial algebra, $\Lambda \cong kQ/I$

Lemma 3.1. For studying indecomposable non-projective modules we can assume that Λ is a string algebra.

Proof. Write $\Lambda = P_1 \oplus P_2$ where P_1 is the direct sum of the indecomposable non-uniserial projective-injective modules. Then $\Lambda/\operatorname{soc}(P_1)$ is a string algebra.

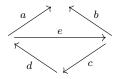
Definition 3.2.

- (a) For all arrows b let b^{-1} be its "formal inverse" with $s(b^{-1}) = t(b)$ and $t(b^{-1}) = s(b)$.
- (b) Consider words over the alphabet of arrows and inverse arrows.
- (c) For $u \in Q_u$ let 1_u with $s(1_u) = u = t(1_u)$.
- (d) Strings: $w = 1_u$ or $w = w_1 w_2 \cdots w_n$ such that
 - $s(w_i) = t(w_{i+1})$ for all $1 \le i < n$,
 - there is no $w_i w_{i+1} \cdots w_i \in I$ and no $(w_i w_{i+1} \cdots w_i)^{-1} \in I$,
 - there is no $w_{i+1} = w_i^{-1}$ for all $1 \le i < n$.
- (e) Concatenation: $w_1 \cdots w_m w_{m+1} \cdots w_n$ of $w_1 \cdots w_m$ and $w_{m+1} \cdots w_n$ is said to be defined *iff it is a string*.

Definition 3.3. Let ~ be the equivalence relation on strings induced by $w \sim w^{-1}$.

Let St be a complete set of representatives of strings under \sim .

Example 3.4.



with relations ed = 0 and ce = 0. Then $dcb^{-1}a$ and $b^{-1}a \sim a^{-1}b$ are strings.

Definition 3.5. A string $w = w_1 \cdots w_n$ is a band if

- all rotations $w_i w_{i+1} \cdots w_n w_1 \cdots w_{i-1}$ exist,
- all powers exist,

• *it is not a power itself.*

Definition 3.6. Let \sim_r be the equivalence relation on bands induced by $w \sim_r w'$ if w' is a rotation of w.

Example 3.7. In Example 3.4 there are bands $dcb^{-1}a$ and bea^{-1} .

Fact 3.8. If w is a string $\neq 1_u$ for all $u \in Q_0$ there exists at most one arrow b with wb defined and at most one arrow c with cw defined.

Definition 3.9. Let $w = w_1 \cdots w_n$ or $w = 1_n$ be a string.

Define an algebra C_w and a functor $G_w : C_w \operatorname{-mod} \to \Lambda \operatorname{-mod}$.

 $\rightsquigarrow C_w(V)$ is the representation over Q_w where $C_w = k$ and Q_w with underlying graph \mathbb{A}_{n+1} with an arrow pointing to the left iff w_i is an arrow.

Example 3.10. • $\Leftarrow \frac{a}{b}$ • .

For the string $ab^{-1}a$ and V = k we get $G_w(V)$ as a left Λ -module where α and β , respectively, are represented by

Draw this as a representation as follows

$$k^2 \stackrel{\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}}{\underbrace{\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}}} k^2$$

Definition 3.11. Let $w = w_1 \cdots w_n$ be a band (assume w_1 is an arrow).

Let $C_w = k[x, x^{-1}]$ and Q_w be the quiver that is an oriented cycle with consecutive arrows w_1, \ldots, w_n where w_i is oriented anti-clockwise iff it is an arrow.

 $\rightsquigarrow G_w(V)$ is the representation of Q_w where the map at w_1 is x and the maps at w_i for $i \neq 1$ are identities.

 \rightsquigarrow There is a band module for all vector spaces V and all linear maps $x: V \to V$.

Example 3.12. • $\Leftarrow \frac{a}{b}$ • .

There is only one band $w = ba^{-1}$ and $Q_w = \bullet \xleftarrow{a}{b} \bullet$. The total dimension of $G_w(V)$ is $2\dim(V)$. As a Λ -module

$$V \xleftarrow{\mathrm{id}}{x} V$$

For all vector spaces over k and linear maps $x : V \to V$ there is an indecomposable module M(V, x) such that $M(V, x) \cong M(V', x')$ iff $V \cong V'$ and x and x' are similar.

Theorem 3.13. Let Λ be a string algebra and $I := St \cup Ba$. Then $G_w(V)$ for $w \in I$ form a complete set of representatives of the indecomposable Λ -modules.

Theorem 3.14. A special biserial $\Rightarrow \Lambda$ tame or of finite type

3.2 Functorial Filtration

The functors $G_w: C_w \operatorname{-} \operatorname{mod} \to \Lambda \operatorname{-} \operatorname{mod}$ and $F_w: \Lambda \operatorname{-} \operatorname{mod} \to C_w \operatorname{-} \operatorname{mod}$ satisfy:

- $(1) \ F_w G_w \cong \mathrm{id}, \, F_v G_w = 0 \text{ for all } v \neq w.$
- (2) $\{F_w : w \in I\}$ is locally finite and reflects isomorphisms.
- (3) For all $M \in \Lambda$ mod and $w \in I$ there exists a map $\gamma_{w,M} : G_w F_w(M) \to M$ such that $F_w(\gamma_{w,M})$ is an isomorphism.
- (4) For all $M \in \Lambda$ mod the map $\gamma_{w,M} : \bigoplus_{w \in I} G_w F_w(M) \to M$ is an isomorphism.
- (5) *M* indecomposable \Rightarrow a) $F_w(M) = 0$ and b) $M \cong G_w F_w(M)$.

4 Irreducible Maps of Strings and Band Modules

Monday 14th 17:00 – Ögmundur Eiriksson (Bielefeld, Germany)

4.1 A Reminder on AR-theory

- k a field
- A a finite-dimensional k-algebra
- A-mod the category of finite-dimensional A-modules

Notation.

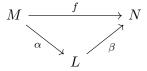
Definition 4.1. Let $f : M \to N$ be a map in A-mod.

We say f is left almost split if f is not a split mono and any non-split mono $g: M \to L$ factors through f. Right almost split is defined dually.

Definition 4.2. We say an exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is an almost split sequence (or AR-sequence) if f is left almost split and g is right almost split.

For each non-projective finitely generated indecomposable A-module M there is a unique AR-sequence $0 \to \tau(M) \to N \to M \to 0$. This determines the AR-translate $\tau(M)$ of M.

Definition 4.3. A map $f: M \to N$ with indecomposable A-modules M, N is irreducible if for any factorization



either α is a split mono or β is a split epi.

Example 4.4. Let $Q = 1 \rightarrow 2 \rightarrow 3$. Then we have an almost split sequence

$$0 \to P(2) \to P(1) \oplus S(2) \to I(2) \to 0.$$

4.2 Irreducible Maps for Band Modules

Let Λ be a string algebra over $k = \overline{k}$. Define $C = k[x, x^{-1}]$.

Observe that a finite-dimensional C-module "is the same" as a finite-dimensional vector space with an automorphism. Let $J_n(\lambda)$ be the $n \times n$ Jordan block with eigenvalue λ .

Then we have a 1 : 1 correspondence:

ind. f.d. *C*-modules up to iso
$$\longleftrightarrow$$
 $\{J_n(\lambda) | \lambda \in k, n \in \mathbb{N}_+\}$
 $V_n(\lambda) \longleftrightarrow J_n(\lambda)$

Lemma 4.5. For $n \ge 1$ and $\lambda \in k^{\times}$ there is an AR-sequence

$$0 \to V_n(\lambda) \to V_{n-1}(\lambda) \oplus V_{n+1}(\lambda) \to V_n(\lambda) \to 0.$$

In particular, $\tau(V_n(\lambda)) = V_n(\lambda)$ and its AR-component is a tube of rank 1.

Sketch of proof. Fix a basis $w_n, (x - \lambda)w_n, \dots, (x - \lambda)^{n-1}w_n$ for $V_n(\lambda)$ where w_n is a generator. Then the matrix for x has Jordan form with respect to this basis. We then put $g(w_{n-1}, 0) := (x - \lambda)w_n$ and $g(0, w_{n+1}) = w_n$. Then g is non-split, surjective, and has kernel $\langle -w_{n-1}, (x - \lambda)w_{n+1} \rangle \cong V_n(\lambda)$. It is enough to check maps to/from $M = V_m(\lambda)$.

Let w be a band (or an equivalence class of a band) and let $G_w : C \operatorname{-mod} \to \Lambda \operatorname{-mod}$ be the functor from the last talk.

Fact 4.6. G_w sends irreducible maps to irreducible maps.

Proposition 4.7. Write $V = V_n(\lambda)$. The sequence

$$0 \to G_w(V) \xrightarrow{G_w f} G_w(V_{n-1}(\lambda) \oplus V_{n+1}(\lambda)) \xrightarrow{G_w g} G_w(V) \to 0$$

is an AR-sequence. The component of $G_w(V)$ consists of all such $G_w(V_m(\lambda))$ for $m \in \mathbb{N}$.

Sketch of proof. The maps occurring after projecting (resp. restricting) $G_w f$ (resp. $G_w g$) to direct summands are irreducible by our fact. It is possible to see that this shows that we have an AR-sequence. Also by uniqueness of AR-sequences, $\tau(G_w(V)) = G_w(V)$. Since we have found AR-sequences for all $G_w(V)$, we obtain the whole component.

4.3 Irreducible Maps for String Modules

Let Λ still be a string algebra over $k = \overline{k}$. Let C be a string and let $G_C : k \text{-} \mod \Lambda \text{-} \mod B$ be the functor from the last talk. We write $M(C) := G_C(k)$.

Definition 4.8. We say C

- (i) starts (resp. ends) on a peak if there is no arrow b such that $Cb(b^{-1}C)$ is a string,
- (ii) starts (resp. ends) in a deep if there is no arrow b such that $Cb^{-1}(bC)$ is a string.

We say $C = c_1 \cdots c_n$ is directed (resp. inverse) if all the c_i (resp. c_i^{-1}) are arrows.

If C, D are strings and b is an arrow such that CbD is a string, then there is a canonical exact sequence

$$0 \to M(C) \to M(CbD) \to M(D) \to 0$$

Similarly, if $Db^{-1}C$ is a string, there is a canonical exact sequence

$$0 \to M(C) \to M(Db^{-1}C) \to M(D) \to 0.$$

Hooks and Co-Hooks

Definition 4.9. If C does not start (resp. end) on a peak, so $Cb(b^{-1}C)$ is a string, there is a unique directed D such that $C_h := CbD^{-1}$ starts (resp. $_hC := Db^{-1}C$ ends) in a deep. Here, C_h (resp. $_hC$) is called a hook.

If C does not start (resp. end) on a deep, so $Cb^{-1}(bC)$ is a string, there is a unique directed D such that $C_c := Cb^{-1}D$ starts (resp. $_cC := D^{-1}bC$ ends) on a peak.

Here, C_c (resp. $_cC$) is called a co-hook.

Proposition 4.10. The canonical maps $M(C) \to M(C_h)$ and $M(C) \to M(_hC)$ and the canonical maps $M(C_c) \to M(C)$ and $M(_cC) \to M(C)$ are irreducible.

Irreducible Maps Ending at Projectives (resp. Beginning at Injectives)

For a vertex u, the projective P(u) is a string module: Let C_1 , C_2 be the maximal directed paths beginning in u. Then $P(u) \cong M(C_1C_2^{-1})$. If both have length zero, then P(u) is simple. Assume $C_1 = \overline{C}_1 b$ has length ≥ 1 . Then there is an irreducible map

$$M(\overline{C}_1) \to M((\overline{C}_1)_h) \cong P(u)$$

Similarly,

$$M(\overline{C}_2) \to M(h(\overline{C}_2)) \cong P(u)$$

4.3.1 AR-Sequences

Now there are five families of AR-sequences:

(1) For any b there are C, D maximal directed such that $C^{-1}bD^{-1}$ is a string and starts in a deep and ends on a peak. Note that $\Lambda e_u/\Lambda b \cong M(D^{-1})$. We have an AR-sequence

$$0 \to M(C^{-1}) \to M(C^{-1}bD^{-1}) \to M(D^{-1}) \to 0$$

(2) If C neither starts nor ends on a peak, we have an AR-sequence

$$0 \to M(C) \to M({}_{h}C) \oplus M(C_{h}) \to M({}_{h}C_{h}) \to 0$$

(3) If C does not start on a peak but ends on a peak, we have with $C = {}_{c}D$ an AR-sequence

$$0 \to M(_cD) \to M(D) \oplus M(_cD_h) \to M(D_h) \to 0.$$

(4) If C starts on a peak but does not end on a peak, we have with $C = D_c$ an AR-sequence

$$0 \to M(D_c) \to M(D) \oplus M({}_hD_c) \to M({}_hD) \to 0.$$

(5) If C starts and ends on a peak, we have with $C = {}_{c}D_{c}$ an AR-sequence

$$0 \to M(_cD_c) \to M(D_c) \oplus M(_cD) \to M(D) \to 0$$

5 The Structure of Biserial Algebras

Tuesday 15th 8:30 – Manuel Flores Galicia (Bielefeld, Germany)

gentle \implies string \implies special biserial $\stackrel{\implies}{\underset{\frown}{\longleftarrow}}$ biserial

Notation.

- $k = \overline{k}$ a field
- Λ an associative k-algebra with 1, finite-dimensional over k
- $Q = (Q_0, Q_1, s, t)$ a quiver with a trivial path ε_u for each $u \in Q_0$

5.1 Description of Basic Biserial Algebras

Recall 5.1. Λ is basic if there exists a complete set of primitive orthogonal idempotents e_i (c.s.p.o.i) such that $\Lambda e_i \cong \Lambda e_i$ for all $i \neq j$.

Definition 5.2. Λ is biserial if every indecomposable projective left or right Λ -module P contains uniserial submodules U and V such that $U + V = \operatorname{rad}(P)$ and $U \cap V$ is either zero or simple.

Example 5.3. Nakayama algebras and algebras whose Auslander-Reiten sequences have at most two non-projective summands in their middle term are biserial.

Definition 5.4. Let Q be a finite quiver.

- (a) A bisection of Q is a pair (σ, τ) of functions $Q_1 \to \{\pm 1\}$ such that if $a \neq b$ are arrows starting (resp. ending) at the same vertex, then $\sigma(a) \neq \sigma(b)$ (resp. $\tau(a) \neq \tau(b)$.
- (b) The quiver Q is biserial if for every vertex u, there are at most two arrows starting at u and at most two arrows ending at u.

Observation 5.5. *Q* has a bisection \Leftrightarrow *Q* is biserial

Definition 5.6. Let Q be a quiver and (σ, τ) a bisection of Q. We say a path $a_r \cdots a_1$ is a good path or (σ, τ) -good if $\sigma(a_i) = \tau(a_{i-1})$ for all $1 < i \leq r$. Otherwise, we say it is a bad path. The trivial paths ε_u are good.

Definition 5.7. By a bisected presentation (Q, σ, τ, p, q) of an algebra Λ we mean that Q is a biserial quiver with bisection (σ, τ) and $p, q: kQ \to \Lambda$ are surjective algebra homomorphisms with $p(\varepsilon_u) = q(\varepsilon_u)$ for all $u \in Q_0$ and $p(a), q(a) \in \operatorname{rad}(\Lambda)$ for all $a \in Q_1$ and q(a)p(x) = 0 whenever $a, x \in Q_1$ such that ax is a bad path.

Theorem 5.8 (Vila-Freyer). Every basic biserial algebra Λ has a bisected presentation (Q, σ, τ, p, q) in which Q is the ordinary quiver of Λ .

Conversely, any algebra with a bisected presentation is basic and biserial.

Let kQ^+ be the arrow ideal of kQ.

Theorem 5.9 (Vila-Freyer). Let Q be a quiver with bisection (σ, τ) . For each bad path ax of length 2 let d_{ax} be elements in kQ^+ such that

- (1) $d_{ax} = 0 \text{ or } d_{ax} = wb_t \cdots b_1, w \in k^{\times}, t \ge 1, and b_t \cdots b_1 x a good path with <math>t(b_t) = t(a)$ and $b_t \ne a$,
- (2) if $d_{ax} = \phi b$ and $d_{by} = \psi a$ with $\phi, \psi \in k^{\times}$, then $\phi \psi \neq 1$.

If I is admissible in kQ containing all the elements $(a-d_{ax})x$, then kQ/I is a basic biserial algebra. Conversely, every basic biserial algebra is isomorphic to a quotient of this form.

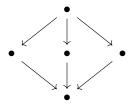
5.2 Distributive Algebras

Let $\mathcal{S}(\Lambda)$ be the *lattice of (left) ideals* of Λ .

Remark 5.10. In general, the distributive law $a \land (b \lor c) = (a \land b) \lor (a \land c)$ in a lattice does not hold.

Definition 5.11. Λ is distributive iff $\mathcal{S}(\Lambda)$ is distributive.

Fact 5.12. Λ is distributive $\stackrel{Thrall}{\Leftrightarrow}$ the Hasse diagram of $\mathcal{S}(\Lambda)$ does not contain



Theorem 5.13 (Jans). If V is a module over Λ , then the lattice of Λ -submodules of V is finite iff it is distributive.

Corollary 5.14. The lattice of left (right, two-sided) ideals of a finite-dimensional algebra over k is finite iff it is distributive.

Theorem 5.15 (Jans). If Λ is of finite-representation type, then Λ has a finite ideal lattice. Therefore it is distributive.

Sketch of the proof of Theorem 5.13. " \Leftarrow ": Suppose the lattice is not distributive, so there is a diagram



It is enough to show that the submodule lattice of V/V_0 is infinite. So assume $V_0 \neq 0$. Then V_1 and V_2 are distinct direct summands of $V_1 + V_2$. Moreover, $V_1 \oplus U \cong V_2 \oplus U$. Hence, $V_1 \stackrel{\varphi}{\cong} V_2$. Let $\{v_i\}_{i=1}^r$ be a k-basis of V_1 . Then $\{\varphi(v_i)\}_{i=1}^r$ is a k-basis of V_2 . One verifies that the set $\{v_i + \kappa \varphi(v_i)\}_{i=1}^r$ for a fixed $\kappa \in k$ is a basis for a A-submodule V_{κ} and that $V_{\kappa_1} \neq V_{\kappa_2}$ for $\kappa_1 \neq \kappa_2$. Since $k = \overline{k}$ is infinite, we have proved " \Leftarrow ".

5.3 Representation-Finite Biserial Algebras Are Special Biserial

Recall 5.16. A is special biserial if it is Morita-equivalent to a bound quiver algebra kQ/I where (Q, I) satisfies:

- (1) Q is biserial.
- (2) For every arrow $a \in Q_1$ there is at most one arrow $b \in Q_1$ and at most one arrow $c \in Q_1$ such that ba and ac are not in I.

Theorem 5.17 (Skowroński-Waschbüsch). Any distributive biserial algebra is special biserial.

Corollary 5.18. Representation-finite biserial algebras are special biserial.

6 Repetitive Algebras of Gentle Algebras

Tuesday 15th 10:00 – Jordan McMahon (Graz, Austria)

Recall 6.1. kQ/I is special biserial if the following hold:

(SB1) Each vertex $i \in Q_0$ has at most 2 arrows starting (resp. ending) at i.

(SB2) For each arrow $b \in Q_1$ there is at most one $a \in Q_1$ with $ab \notin I$.

(SB2') For each arrow $b \in Q_1$ there is at most one $c \in Q_1$ with $bc \notin I$.

(G1) I is generated by paths of length 2.

- (G2) For each arrow $b \in Q_1$ there is at most one $a \in Q_1$ with $ab \in I$.
- (G3) For each arrow $b \in Q_1$ there is at most one $c \in Q_1$ with $bc \in I$.

Definition 6.2. A path $p \in kQ/I$ is maximal if for each $b \in Q_1$ we have bp = pb = 0.

Assume A = kQ/I is locally bounded (i.e. each arrow is contained in a maximal path) and I generated by zero relations and commutativity relations.

Let $DA = \operatorname{Hom}_k(A, k)$ and for each path p let $\varphi_p \in DA$ be the dual path.

6.1 Repetitive Algebra \widehat{A} of A

As k-vector space we have

$$\widehat{A} \; = \; \bigoplus_{z \in \mathbb{Z}} A[z] \oplus \bigoplus_{z \in \mathbb{Z}} DA[z]$$

with multiplication

$$\begin{aligned} (a[z], \varphi[z])(b[z], \psi[z]) &= (a[z]b[z], a[z]\psi[z] + \varphi[z]b[z-1]) \\ &= (ab[z], (a\psi)[z], (\varphi b)[z]) \,. \end{aligned}$$

Define a quiver $\widehat{Q}=(\widehat{Q}_0,\widehat{Q}_1)$ where

$$\begin{aligned} \widehat{Q}_0 &= Q_0 \times \mathbb{Z} ,\\ \widehat{Q}_1 &= \{a[z] : u[z] \to v[z] \,|\, a : u \to v \in Q_1 \}\\ &\cup \{\widehat{p}[z] : v[z] \to u[z] \,|\, p \text{ max. path } u \to \dots \to v \} .\end{aligned}$$

and an ideal

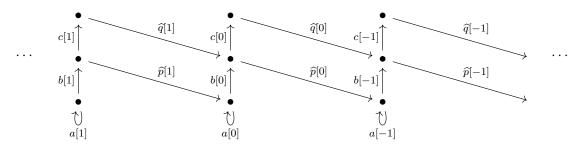
$$\begin{split} \widehat{I} &= & \{ p[z] \mid p \in I \} \cup \{ p_1[z] - p_2[z] \mid p_1 - p_2 \in I \} \\ &\cup & \{ p \in k \widehat{Q} \mid p \text{ contains a connecting arrow and is not a subpath of a full path} \} \\ &\cup & \{ p_2[z] \widehat{p}[z] p_1[z-1] - q_2[z] \widehat{q}[z] q_1[z-1] \mid p = p_1 x p_2, \ q = q_1 x q_2 \text{ max. paths} \} \,, \end{split}$$

where a *full path* is any of the form $p_2[z]\hat{p}[z]p_1[z-1]$ where $p = p_1p_2$ is a maximal path.

Example 6.3. Consider A = kQ/I where

 $Q = \operatorname{a} \operatorname{C} 1 \xrightarrow{b} 2 \xrightarrow{c} 3$

and $I = \langle a^2 b c \rangle$. The maximal paths are $\{p = ab, q = c\}$.



Then $\widehat{I} = \langle a[z]a[z], b[z]c[z], c[z]\widehat{q}[z] - \widehat{p}[z]a[z-1]b[z-1], \widehat{q}[z]\widehat{p}[z-1], \widehat{p}[z]b[z-1] \rangle.$

Theorem 6.4 (Schröer; see also: Asashiba, Hille, Roggenkamp). $\widehat{A} = k\widehat{Q}/\widehat{I}$ where the ideal \widehat{I} is generated by relations $p[z]q[z] = pq[z], \varphi_p[z](p[z]) = \varphi_1(z), \varphi_1[z]\varphi_1[z-1] = 0.$

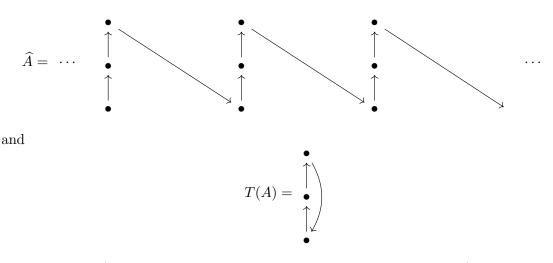
Sketch of proof. Draw a picture.

 $\begin{array}{l} \text{If } q=q_1p, \, \text{then } \varphi_{q_1}[z]=p[z]\varphi_q[z].\\ \text{If } q=pq_2, \, \text{then } \varphi_{q_2}[z]=\varphi_q[z]p[z]. \end{array}$

6.2 Interlude: Trivial Extensions

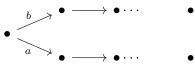
Let T(A) be the trivial extension of A with the "same" multiplication as in the repetitive algebra. So $\operatorname{mod}_{\mathbb{Z}}(T(A)) = \operatorname{mod}(\widehat{A})$.

Example 6.5. For $A = \bullet \to \bullet \to \bullet$ we have



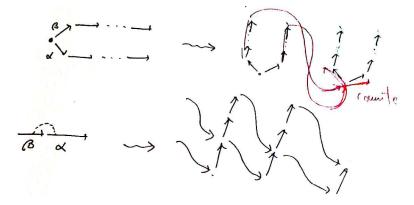
Theorem 6.6 (Schröer; see also: Assem, Ringel, Pogorzały, Skowroński). A is gentle if and only if \widehat{A} is special biserial.

Proof. Assume A is gentle. We need only to check endpoints of maximal paths. Case 1.

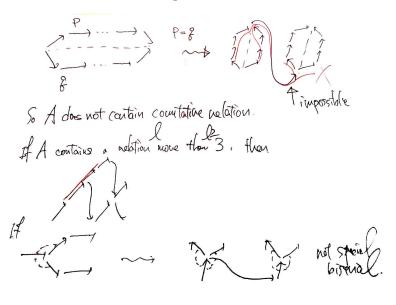


Case 2. $\bullet \xrightarrow{b} \bullet \xrightarrow{a} \bullet$ with ba = 0.

Draw some nice pictures in both cases ...



Conversely, assume now that \widehat{A} is special biserial. Then A is special biserial. Distinguish again a few cases and draw some more pictures ...



7 Brauer Graph Algebras (BGA) = Symmetric Special Biserial Algebras (SSB)

Tuesday 15th 11:15 – Wassilij Gnedin (Bochum, Germany)

7.1 Origins of BGA

- (a) G a group, $\mathrm{char}(k)=p\,|\,\#G<\infty,\,B=kG\Rightarrow B$ is SSB
- (b) $A \text{ gentle} \stackrel{\text{last talk}}{\Rightarrow} \widehat{A} \text{ SSB} \Rightarrow B = T(A) \text{ is SSB and } B \twoheadrightarrow A$ $Remark: D^b(A) \xrightarrow{\sim} D^b(A') \Rightarrow D^b(B) \xrightarrow{\sim} D^b(B') \text{ where } B' = T(A')$
- (c) Γ a "graph on an oriented surface S" (e.g. a triangulation) $\stackrel{\S{7.2}}{\leadsto} A_{\Gamma}$ BGA

7.2 From BGA to SSB

Definition 7.1. A Brauer graph $\Gamma = (H, \sigma, \alpha, V, m)$ is given by

- $H = \{1, ..., 2n\}$ "half-edges",
- $\sigma: H \xrightarrow{\cong} H \rightsquigarrow \sigma$ has cycle decomposition $\sigma = \sigma_1 \cdots \sigma_s$,
- α : H → H such that α² = id and α(h) ≠ h for all h ∈ H
 → h and α(h) form an edge in Γ,
- $V = \{v_1, \ldots, v_s\} \rightsquigarrow f : H \rightarrow V, h \mapsto v_j \text{ if } h \text{ occurs in } \sigma_j,$
- $m = (m_v)_{v \in V}$ with $m_v \in \mathbb{N}_+$.

Example 7.2.

$$\Gamma = \bullet \underbrace{\begin{array}{c} \frac{1 & 2}{3 & 4} \\ 5 & 6 \end{array}}_{3 & 4} \bullet$$

$$\sigma = (135)(264)$$

$$\alpha = (12)(34)(56)$$

$$m = (m_1, m_2, m_3)$$

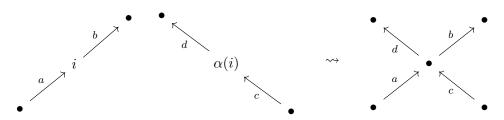
$$\Gamma' = \underbrace{_{1}}_{0} \bullet$$

$$\sigma' = (135)(246)$$

$$\alpha' = \alpha$$

$$m' = m$$

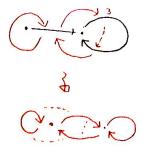
Definition 7.3. Γ a Brauer graph. We get its BGA in three steps: (S1) Define \widetilde{Q} by $\widetilde{Q}_0 = H$ and $\exists a : i \to j$ in \widetilde{Q} if $\sigma(i) = j$. (S2) For each $i \in \widetilde{Q}_0$ glue *i* and $\alpha(i)$ to obtain (Q, I):



with relations da = 0 = bc.

 $\rightsquigarrow (Q, I)$ is "complete gentle (CG)"

Example 7.4.



Remark 7.5. (Q, I) is CG \Rightarrow For each $a \in Q_1$ there is a unique $c_a \in \mathcal{C} = \{\text{simple cycle}\}$ such that c_a begins with $a. \rightsquigarrow Q_1 \to \mathcal{C} \to V$, $a \mapsto c_a \mapsto v(c_a) = \text{"center of the cycle } c_a\text{".}$ Set

$$z_a := c_a^{m_{v(c_a)}}.$$

Notation 7.6. A cyclic path $c = a_n \cdots a_1$ is a *simple cycle* in (Q, I) if $a_i \neq a_j$ for all $i \neq j$ and $c \notin I$ and c has "maximal length".

(S3) Set $A_{\Gamma} = kQ/(I+J)$ where $J = \langle z_a - z_b | s(a) = s(b), a \neq b \rangle$.

Remark 7.7. J is not admissible. For example, $\Gamma = p - 1 - 1$ gives

$$A_{\Gamma} = k[x, y]/(xy, x^{p-1} - y) \cong k[x]/(x^p).$$

Remark 7.8. $A_{\Gamma} \cong k\overline{Q}/R$ with $\overline{Q}_1 = Q_1 \setminus \{\ell \in Q_1 : z_\ell = \ell\}.$

Proposition 7.9. A_{Γ} is finite-dimensional, symmetric and special biserial.

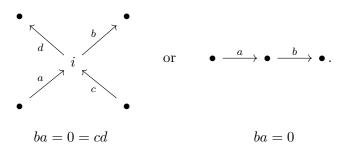
Proof. (i) For all $a \in Q_1$ there is $b \in Q_1$ such that $c_a^{m_a+1} = z_a c_a = z_b c_a$ where $m_a = m_{v(c_a)}$. Then $z_b c_a \in J$ because $bc_a = 0$. Hence, dim $A_{\Gamma} < \infty$.

(ii) A_{Γ} is symmetric iff there exists $\varphi : A_{\Gamma} \to k$ such that $\varphi(pq) = \varphi(qp)$ and if $\mathfrak{a} \subseteq \ker(\varphi)$ is a left ideal, then $\mathfrak{a} = 0$. Define

$$\varphi(p) = \begin{cases} 1 & \text{if } p = z_a \text{ for some } a \in Q_1, \\ 0 & \text{else.} \end{cases}$$

Let \mathfrak{a} be as above. Assume there exists $p \in \mathfrak{a} \setminus \{0\}$. Then $p = \overline{p}a$ where a is the first arrow in p. \Rightarrow There is $q \in A_{\Gamma}$ such that $qp = z_a$. $\Rightarrow \varphi(qp) \neq 0 \Rightarrow \varphi(\mathfrak{a}) \neq 0$, a contradiction.

(iii) $A_{\Gamma} \cong k\overline{Q}/R$. For all $i \in Q_0$ we have



7.3 SSB are BGA

Let $k = \overline{k}$ and B = kQ/I a finite-dimensional SSB.

Goal.

Find a Brauer graph Γ_B such that $B \cong A_{\Gamma_B}$.

Main Observation.

B is up to isomorphism uniquely determined by its maximal paths.

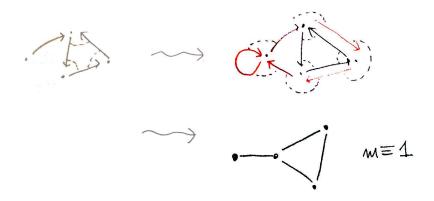
Idea.

Encode maximal paths in Γ_B .

Theorem 7.10 (Roggenkamp '96, Schroll '15). Let B = kQ/I be finite-dimensional. Then there exists a Brauer graph Γ such that $B \cong A_{\Gamma}$ iff B is SSB.

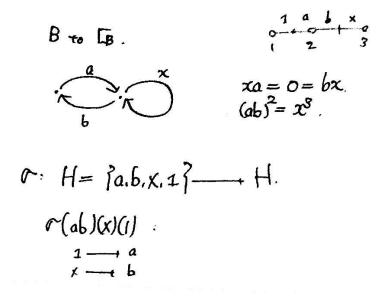
Example 7.11. For gentle A to obtain $B = T(A) \dots$

- complete maximal paths in A to cycles,
- add loops ...,
- set $c_a = c_b$ if s(a) = s(b).
- \rightsquigarrow algebra $B \rightsquigarrow \Gamma_B$ with $m_v \equiv 1$



Remark 7.12. If $B \cong T(A')$ for another algebra B, then $D^b(A') \not\simeq D^b(A)$.

Example 7.13.



8 Introduction to Triangulated Categories

Tuesday 15th 14:00 – Karin M. Jacobsen (Trondheim, Norway)

(following Happel '88)

Triangulated categories

- were introduced by Verdier in the '60s, published in '77,
- codify "abelian-like" behavior.

Definition 8.1. Let \mathcal{T} be an additive category with an autoequivalence $\Sigma : \mathcal{T} \to \mathcal{T}$. Triangles are sequences of the form

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma X. \tag{(\star)}$$

.

Definition 8.2. A set Δ of triangles is called a triangulation of \mathcal{T} if it fulfills the following axioms

(TR1) For all morphisms $f: X \to Y$ in \mathcal{T} there exists

$$X \xrightarrow{f} Y \to Z \to \Sigma X \in \Delta$$

For all objects X in \mathcal{T}

$$X \xrightarrow{\mathrm{id}_X} X \to 0 \to \Sigma X \in \Delta \,.$$

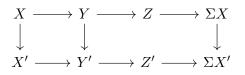
If $X' \to Y' \to Z' \to \Sigma X'$ is isomorphic to $X \to Y \to Z \to \Sigma X$ then

$$X' \to Y' \to Z' \to \Sigma X' \in \Delta \,.$$

(TR2) If $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma X$, then

$$Y \xrightarrow{v} Z \xrightarrow{w} \Sigma X \xrightarrow{-\Sigma u} \Sigma Y \in \Delta \,.$$

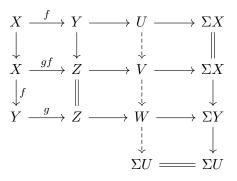
(TR3) Given a commutative diagram



there exists $h: Z \to Z'$ making the following diagram commute

$$\begin{array}{cccc} X & \longrightarrow & Y & \longrightarrow & Z & \longrightarrow & \Sigma X \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & \Sigma X' \,. \end{array}$$

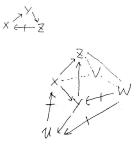
(TR4) Given



there exists a dashed triangle in Δ as indicated.

In this case \mathcal{T} is called a triangulated category.

Remark 8.3.



Lemma 8.4.

- (1) In (\star) : vu = 0 and wv = 0
- (2) In (TR3): $f, g \text{ iso} \Rightarrow h \text{ iso}$
- (3) $X \xrightarrow{f} Y \to 0 \to \Sigma X \in \Delta \Leftrightarrow f$ iso
- (4) In (\star) the following are equivalent:
 - (i) u split mono
 - (ii) v split epi
 - (iii) w = 0

Lemma 8.5. Let $T \in \mathcal{T}$. Then

 $\operatorname{Hom}_{\mathcal{T}}(T,-): \mathcal{T} \to \operatorname{mod}(\operatorname{End} T)^{\operatorname{op}}$ $\operatorname{Hom}_{\mathcal{T}}(-,T): \mathcal{T} \to \operatorname{mod}(\operatorname{End} T)$

are cohomological functors, i.e. for each triangle as in $(\star) \in \Delta$ the induced sequences

 $\cdots \to \operatorname{Hom}_{\mathcal{T}}(T, X) \to \operatorname{Hom}_{\mathcal{T}}(T, Y) \to \operatorname{Hom}_{\mathcal{T}}(T, Z) \to \operatorname{Hom}_{\mathcal{T}}(T, \Sigma X) \to \operatorname{Hom}_{\mathcal{T}}(T, \Sigma Z) \to \operatorname{Hom}_{\mathcal{T}}(T, \Sigma^2 X) \to \cdots$

 $\cdots \to \operatorname{Hom}_{\mathcal{T}}(Z,T) \to \operatorname{Hom}_{\mathcal{T}}(Y,T) \to \operatorname{Hom}_{\mathcal{T}}(X,T) \to \operatorname{Hom}_{\mathcal{T}}(\Sigma^{-1}Z,T) \to \operatorname{Hom}_{\mathcal{T}}(\Sigma^{-1}Y,T) \to \operatorname{Hom}_{\mathcal{T}}(\Sigma^{-1}X,T) \to \operatorname{Hom}_{\mathcal{T}}(\Sigma^{-2}Z,T) \to \cdots$ are long exact sequences.

Proof. For Hom_{\mathcal{T}}(T, -), given (TR2), it is enough to check the exactness once:

$$\begin{array}{cccc} T & \stackrel{\mathrm{id}}{\longrightarrow} & T & \longrightarrow & 0 & \longrightarrow & X \\ \downarrow^{g} & & \downarrow^{f} & \downarrow & & \downarrow \\ \Sigma X & \stackrel{u}{\longrightarrow} & Y & \stackrel{v}{\longrightarrow} & Z & \longrightarrow & \Sigma X \end{array}$$

Now:

$$f \in \ker(\operatorname{Hom}_{\mathcal{T}}(T, v)) \Leftrightarrow f = ug \text{ for some } g \Leftrightarrow f \in \operatorname{im}(\operatorname{Hom}_{\mathcal{T}}(T, u))$$

Example 8.6. Stable module categories $\underline{\text{mod}}(A) = \text{mod}(A)/\text{proj}(A)$ where A is a selfinjective locally bounded algebra with $\Sigma = \Omega^{-1}$ the syzygy functor given as

$$X \xrightarrow{\text{inj. env.}} I \longrightarrow \Omega^{-1} X \longrightarrow 0$$

and triangles

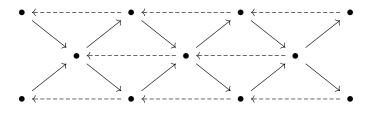
$$\underline{X} \to \underline{E} \to \underline{Y} \to \underline{\Omega}^{-1} \underline{X} \in \Delta$$

induced by short exact sequences $0 \to X \to E \to Y \to 0$ in mod(A).

For example take A = kQ/I with

$$Q = \underbrace{a \land a}_{a} \quad \text{and} \quad I = \langle a^3 \rangle \,.$$

Then $\underline{\mathrm{mod}}(A)$ looks as follows:



Example 8.7. Derived categories:

 \mathcal{A} abelian category $\rightsquigarrow C(\mathcal{A})$ category of complexes:

$$\cdots \xrightarrow{d} \bullet \xrightarrow{d} \cdots$$

in \mathcal{A} with $d^2 = 0$

 $\rightsquigarrow K(\mathcal{A})$ homotopy category (this is triangulated with Σ given by shifting complexes)

 $\rightsquigarrow D(\mathcal{A})$ derived category (obtained by localizing at quasi-isomorphisms)

9 A Construction of the Happel Functor

Tuesday 15th 15:15 – Gabriele Bocca (Norwich, United Kingdom)

References.

- [Hap] Happel, Triangulated categories in the representation theory of finite dimensional algebras, 1988.
- [BM] Barot-Mendoza, An explicit construction for the Happel functor, 1991.

Notation.

- k any field
- A a finite-dimensional k-algebra
- mod(A) the category of finitely generated modules over A
- \widehat{A} the repetitive algebra of A
- $\underline{\mathrm{mod}}(\widehat{A})$ the stable module category over \widehat{A}

Remark 9.1. $Ob(\underline{mod}(\widehat{A})) = Ob(\underline{mod}(\widehat{A}))$ and $\underline{Hom}_{\widehat{A}}(X,Y) = Hom_{\widehat{A}}(X,Y)/I(X,Y)$ where I(X,Y) consists of the morphisms factoring through injectives.

History and Motivation

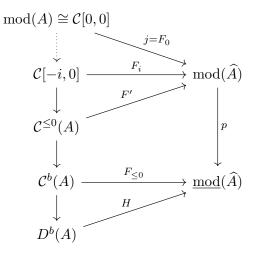
Theorem 9.2 (Happel). There exists a triangulated, full and faithful functor

$$H: D^b(\operatorname{mod}(A)) \longrightarrow \operatorname{mod}(\widehat{A}).$$

If gl. dim $(A) < \infty$, then H is dense.

Proof strategy:

 $\mathcal{C}^{b}(A) \supseteq \mathcal{C}^{\leq 0}(A) \supseteq \mathcal{C}[-i,0] = \{X : \dots \to 0 \to X^{-i} \to \dots \to X^{0} \to 0 \to \dots\}$



Here j is exact, full and faithful.

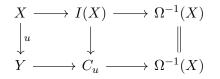
Theorem 9.3 (Rickard). Let Λ be a Frobenius k-algebra. Then there exists an equivalence

$$F: \underline{\mathrm{mod}}(\Lambda) \longrightarrow D^b(\Lambda)/K^b(P_\Lambda)$$

where P_{Λ} is the full subcategory of $mod(\Lambda)$ of projective modules.

Remark 9.4.

- (1) A k-algebra Λ is *Frobenius* if it is locally bounded and the projective and injective modules coincide.
- (2) For all $X \in \text{mod}(\Lambda)$ consider $0 \to X \to I(X) \to \Omega^{-1}(X) \to 0$ and then



where the left square is a pushout. We get

$$X \longrightarrow Y \longrightarrow C_u \longrightarrow \Omega^{-1}(X) \,. \tag{(\star)}$$

In $\underline{\mathrm{mod}}(\Lambda)$ let

 $\mathcal{T} = \{ \text{sequences isomorphic to } (\star) \}.$

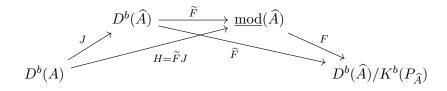
Then \mathcal{T} is a triangulation for $\underline{\mathrm{mod}}(\widehat{A})$ with suspension functor Ω^{-1} .

In particular:

Proposition 9.5 ([Hap, II.2.2).] Let A be a finite-dimensional k-algebra. Then \widehat{A} is Frobenius and so $\underline{mod}(\widehat{A})$ is triangulated.

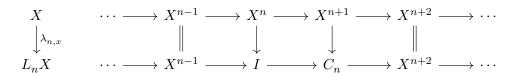
The construction in [BM] is the following:

• $\operatorname{mod}(A) \xrightarrow{j} \operatorname{mod}(\widehat{A})$ exact, full and faithful:



• $G: D^b(\Lambda) \to D^b(\Lambda)$, $G \cong_{\text{nat}} \text{id}$:

For $X \in \mathcal{C}^b(\Lambda)$ and $n \in \mathbb{Z}$:



Dually we can define $R_n X$ and $\rho_{n,x} : R_n X \to X$.

 \rightsquigarrow For every morphism $f: X \to Y$ in $\mathcal{C}^b(X)$ we get $L_n f$ and $R_n f$.

Lemma 9.6.

- (a) For all $n \in \mathbb{Z}$, $X \in \mathcal{C}^b(\Lambda)$ the maps $\lambda_{n,x}$ and $\rho_{n,x}$ are quasi-isomorphisms.
- (b) "Different choices" for $L_n f$ and $R_n f$ lead to homotopic morphisms. For all $X \in C[s, n]$, $s, n \in \mathbb{Z}$ with s < 0 < n,

$$L_{<0}X = L_{-1}L_{-2}\cdots L_s(X),$$

$$R_{>0}X = R_1R_2\cdots R_n(X)$$

the maps $\lambda_{<0,x}: X \to L_{<0}X$ and $\rho_{>0,x}: R_{>0}X \to X$ are quasi-isomorphisms. We have:

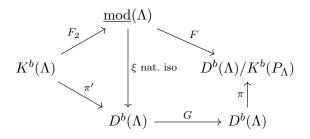
$$\begin{array}{c} \mathcal{C}^{b}(\Lambda) \xrightarrow{L_{\leq 0}} \mathcal{C}^{b}(\Lambda) \\ \downarrow^{q} \qquad \qquad \downarrow^{q} \\ K^{b}(\Lambda) \xrightarrow{\overline{L}_{\leq 0}} K^{b}(\Lambda) \\ \downarrow^{\pi'} \qquad \qquad \qquad \downarrow^{\pi'} \\ D^{b}(\Lambda) \xrightarrow{\widetilde{L}_{\leq 0}} D^{b}(\Lambda) \end{array}$$

Then $\widetilde{\lambda}_{<0,x}$ and $\widetilde{\rho}_{>0,x}$ are isomorphisms for all $X \in D^b(\Lambda)$. Moreover, $\widetilde{L}_{<0}$ and $\widetilde{R}_{>0}$ are equivalences naturally isomorphic to id : $D^b(\Lambda) \to D^b(\Lambda)$.

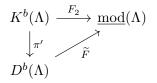
 ${\rm Definition} \ {\rm 9.7.} \ G = \widetilde{R}_{>0}\widetilde{L}_{<0}: D^b(\Lambda) \to D^b(\Lambda), \ G \cong_{\rm nat} {\rm id}.$

Properties.

• $FF_2 \cong \pi G \pi'$:



• F_2 factors through π' :



$$F_2 = \tilde{F}\pi' \Rightarrow F\tilde{F}\pi' = FF_2 \cong \pi G\pi'$$

• $F\widetilde{F} \cong_{\operatorname{nat}} \pi G \cong \pi'$

Remark 9.8. \widetilde{F} is triangulated since π is triangulated and F is a triangulated equivalence.

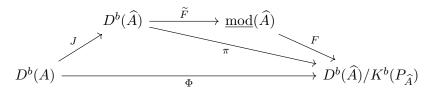
• **Definition of** *H*:

$$H := \widetilde{F}J: D^b(A) \xrightarrow{J} D^b(\widehat{A}) \xrightarrow{F} \underline{\mathrm{mod}}(\widehat{A})$$

 $(\star H)$:

- H is triangulated, full and faithful
- gl. dim $(A) < \infty \Rightarrow H$ dense

Define $\Phi = \pi J$:



 $(\star \Phi) \Leftrightarrow (\star H): \Phi = \pi J \cong F\widetilde{F}J = FH$

- Φ is triangulated and full, since π and J are.
- Φ is faithful: main idea is to show X ≇ 0 ⇒ Φ(X) ≇ 0.
 → apply Rickard's argument about F

- By [Hap, II.3.2]: gl. dim(A) < $\infty \Rightarrow mod(A)$ generates $\underline{mod}(\widehat{A})$ as a triangulated category.
- mod(A) generates $D^b(A)$ as a triangulated category.
- $\Phi(\operatorname{mod}(A)) = \operatorname{mod}(A) \Rightarrow \Phi$ is dense ([Hap, II.3.4]).

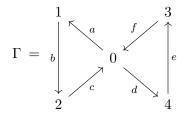
10 Classification of Indecomposable Objects in the Bounded Derived Category of a Gentle Algebra

Tuesday 15th 17:00 – Sebastian Opper (Cologne, Germany)

Notation.

- $k = \overline{k}$ a field
- $\Lambda = k\Gamma/I$

Example 10.1. Running example: $\Lambda = k\Gamma/I$ with



and $I = \langle ac, ba, cb, ed, fe, df \rangle$.

Fact 10.2. $D^b(\text{mod}(\Lambda))$ contains 3 types of indecomposable objects:

- band complexes $\in K^b(\text{proj}(\Lambda))$
- string complexes $\in K^b(\operatorname{proj}(\Lambda))$
- infinite string complexes

10.1 String Complexes

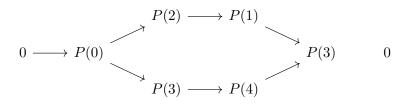
For $x \in \Gamma_0$ let P(x) be the indecomposable projective module of x.

Example 10.3.

$$0 \longrightarrow P(0) \xrightarrow{\begin{pmatrix} c \\ f \end{pmatrix}} P(2) \oplus P(3) \xrightarrow{\begin{pmatrix} b & 0 \\ 0 & e \end{pmatrix}} P(1) \oplus P(4) \xrightarrow{(af \ 0)} P(3) \longrightarrow 0$$

-1 0 1 2 3 4

Rewrite it as:



This unfolds as:

$$P(4) \xleftarrow{e} P(3) \xleftarrow{f} P(0) \xrightarrow{c} P(2) \xrightarrow{b} P(1) \xrightarrow{af} P(3)$$

$$2 \qquad 1 \qquad 0 \qquad 1 \qquad 2 \qquad 3$$

 \rightsquigarrow diagram of type \mathbb{A}_6 with:

- vertices: pairs (indec. proj. module, integer)
- arrows: admissible (i.e. no subpath in I) paths in Γ

What properties are needed to construct an indecomposable complex from an $\mathbb{A}_n\text{-}$ diagram via "folding"?

Given

$$P_n \xrightarrow{w_n} P_{n-1} \xrightarrow{w_{n-1}} \cdots \xrightarrow{w_1} P_0$$
$$d_n \qquad d_{n-1} \qquad d_0$$

with P_i indecomposable projective, w_i admissible path in (Γ, I) and $d_i \in \mathbb{Z}$.

- (S1) Degrees increase by 1 along arrows.
- (S2) If $\xrightarrow{w_i} P_i \xrightarrow{w_{i-1}}$, then $P(s(w_i)) = P_i = P(t(w_{i-1}) \text{ and } w_i w_{i-1} \in I.$
- (S3) If $\xleftarrow{w_i} P_i \xleftarrow{w_{i-1}}$, then $P(t(w_i)) = P_i = P(s(w_{i-1}) \text{ and } w_{i-1}w_i \in I.$
- (S4) If $\xrightarrow{w_i} P_i \xleftarrow{w_{i-1}}$, then $P(s(w_i)) = P_i = P(s(w_{i-1}) \text{ and } w_{i-1} \text{ and } w_i \text{ do not start with the same arrow.}$
- (S5) If $\stackrel{w_i}{\longleftrightarrow} P_i \stackrel{w_{i-1}}{\longrightarrow}$, then $P(t(w_i)) = P_i = P(t(w_{i-1}) \text{ and } w_{i-1} \text{ and } w_i \text{ do not end with the same arrow.}$

Definition 10.4. An \mathbb{A}_n -diagram satisfying (S1)-(S5) is called a string diagram.

string diagram $\stackrel{\rm fold}{\rightsquigarrow}$ string complex

Example 10.5.

$$P(0) \xrightarrow{c} P(2) \xrightarrow{b} P(1) \xrightarrow{a} P(0) \xleftarrow{d} P(4) \xleftarrow{e} P(3) \xleftarrow{f} P(0)$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 2 \qquad 1 \qquad 0$$

fold

$$P(0) \xrightarrow{f} P(3) \xrightarrow{e} P(4)$$

$$\xrightarrow{d} P(0)$$

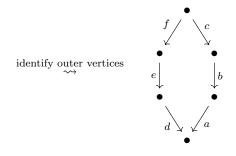
$$\xrightarrow{f} P(0) \xrightarrow{c} P(2) \xrightarrow{b} P(1)$$

$$\xrightarrow{a} P(0)$$

$$\xrightarrow{b} P(1)$$

10.2 Band complexes

Example 10.6. Take Example 10.5.

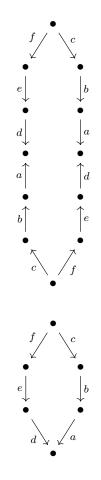


 \rightsquigarrow diagram of type $\widetilde{\mathbb{A}}$

Remark 10.7. Rotating and reflecting gives isomorphic complexes.

Definition 10.8. A diagram of type $\widetilde{\mathbb{A}}$ satisfying (S1)–(S5) and not covering any such diagram of strictly smaller size is called a band diagram.

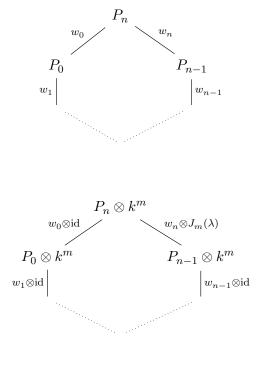
Example 10.9. Example of a cover:



 $\sim \rightarrow$

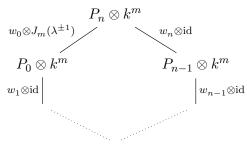
band diagram $\stackrel{\text{folding}}{\leadsto} k^{\times} \times \mathbb{N}_+$ family of pairwise non-isomorphic band complexes

Given $\lambda \in k^{\times}, m \in \mathbb{N}_+$ and a band diagram



This is isomorphic to

we get a band complex



10.3 Infinite String Complexes

Definition 10.10. A cycle is a string diagram of (Γ, I) (up to reflection)

$$P_n \xleftarrow{\alpha_n} \cdots \xleftarrow{\alpha_1} P_0$$

where α_i are arrows in Γ and $P_n = P_0$.

Example 10.11. $\xrightarrow{a} \xrightarrow{c} \xrightarrow{b}$ and $\xrightarrow{d} \xrightarrow{e} \xrightarrow{f}$ are cycles in the running example.

Definition 10.12. Start with a string diagram

$$P_n \xrightarrow{w_n} \cdots \xrightarrow{w_1} P_0$$
$$d_n \qquad \qquad d_0$$

It is called ...

- left resolvable if $\xrightarrow{w_n}$ and $d_n = \min\{d_j\}$ and there exists a cycle $P_n \xrightarrow{\alpha_m} \cdots \xrightarrow{\alpha_1} P_n$ such that $\xrightarrow{\alpha_1} \xrightarrow{w_n}$ is a string diagram,
- right resolvable if it satisfies the dual condition,
- two-sided resolvable if it is left and right resolvable.

Suppose

$$P_n \xrightarrow{w_n} \cdots \xrightarrow{w_1} P_0$$
$$d_n \qquad \qquad d_0$$

is left resolvable and $P_n \xrightarrow{\alpha_m} \cdots \xrightarrow{\alpha_1} P_n$, then

$$\cdots \xrightarrow{\alpha_1} P_n \xrightarrow{\alpha_m} \cdots \xrightarrow{\alpha_1} P_n \xrightarrow{w_n} \cdots \xrightarrow{w_1} P_0$$
$$d_n \qquad \qquad d_0$$

is an infinite string diagram. $\stackrel{\textit{fold}}{\leadsto}$ infinite string complex

Theorem 10.13 (Bekkert–Merklen, Burban–Drozd, Raphael). There is a bijection between

 $\{isoclasses of indecomposables in D^b(mod(\Lambda))\}$

and

 $\{string \ diagrams\}/reflection$

- $\stackrel{\cdot}{\cup}$ {band diagrams}/reflection and rotation
- $\stackrel{\cdot}{\cup}$ {infinite string diagrams}/reflection.

11 Derived Equivalences

Wednesday 16th 8:30 – Fajar Yuliawan (Bielefeld, Germany)

References.

- (1) Schröer, Zimmermann. Stable endomorphism algebras of modules over special biserial algebras.
- (2) Schröer. Modules without self-extensions over gentle algebras.
- (3) Crawley-Boevey. Maps between representations of zero relation algebras.
- (4) Rickard. Morita theory for derived categories.

Definition 11.1. Let Q be a (not necessarily finite) quiver and ρ a set of relations. Then (Q, ρ) is special biserial if (SB1, SB1') and (SB2, SB2') and

(SB3) Each infinite path in Q contains a subpath in ρ .

Remark 11.2. $A = kQ/(\rho)$ finite-dimensional gentle $\rightsquigarrow (\widehat{Q}, \widehat{\rho})$ special biserial

Definition 11.3. A k-algebra is called special biserial (resp. gentle) if it is up to Morita equivalence an algebra $kQ/(\rho)$ with (Q, ρ) special biserial (resp. gentle).

Theorem 11.4 (Main Theorem). Let A be a special biserial algebra and M a finitedimensional A-module with $\operatorname{Ext}_{A}^{1}(M, M) = 0$. Then $\operatorname{End}_{A}(M)$ is gentle.

Corollary 11.5. Let A be finite-dimensional, $T \in D^b(A)$ and $\operatorname{Hom}_{D^b(A)}(T, T[1]) = 0$. Then $\operatorname{End}_{D^b(A)}(T)$ is gentle.

In particular, any algebra B which is derived equivalent to A is gentle.

Proof of Corollary 11.5. A gentle $\overset{\text{Jordan's talk}}{\Rightarrow} \widehat{A}$ special biserial $\exists H : D^b(A) \xrightarrow{\sim} \underline{\text{mod}}(\widehat{A})$ fully faithful and triangulated Take $M \in \text{mod}(\widehat{A})$ to be M = H(T), then

$$\operatorname{End}_{D^b(A)}(T) \cong \underline{\operatorname{End}}_{\widehat{A}}(M)$$

and

$$\operatorname{Ext}^{1}_{\widehat{A}}(M,M) \cong \operatorname{\underline{Hom}}_{\widehat{A}}(\Omega M,M) \cong \operatorname{Hom}_{D^{b}(A)}(T[-1],T) = 0.$$

Thus by Theorem 11.4 $\operatorname{End}_{D^b(A)}(T)$ is gentle.

Lemma 11.6. Let A, B be finite-dimensional k-algebras and $F: D^b(B) \to D^b(A)$ a fully faithful and triangulated functor. Then T = F(B) satisfies

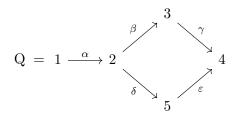
$$B = \operatorname{End}_{D^b(A)}(T) \quad and \quad \operatorname{Hom}_{D^b(A)}(T, T[1]) = 0.$$

Known Facts on Special Biserial Algebras

Let (Q, ρ) be special biserial and $A = kQ/(\rho)$. Assume ρ contains only zero relations and commutativity relations. Define

 $\rho^+ = \rho + \text{all paths which are contained in a commutativity relation in } \rho$.

Example 11.7. Let



and $\rho = \{\alpha\beta, \beta\gamma - \delta\varepsilon\}$. Then $\rho^+ = \{\alpha\beta, \beta\gamma, \delta\varepsilon\}$ and $kQ/(\rho^+)$ is a string algebra.

Indecomposables in A:

- non-uniserial projective-injectives
- string modules
- band modules

If M_1 is a band module, then $\operatorname{Ext}^1_A(M_1, M_1) \neq 0$. Let $C = C_1 \cdots C_n$ be a string with $s(C) = s(C_1)$ and $t(C) = t(C_n)$. $\operatorname{Ext}^1_A(M, M) = 0 \rightsquigarrow M$ does not contain band modules as direct summands For every vertex *i* we define two strings of length 0, starting and ending at *i*:

$$1_{(i,1)}$$
 and $1_{(i,-1)}$

Concatenation of strings of length 0 depends on chosen "orientation" $\sigma, \varepsilon : S \to \pm 1$ where

 $S = \{ \text{all strings for } (Q, \rho^+) \}.$

Remark 11.8. If C starts at i, then only one of $1_{(i,1)}C$ and $1_{(i,-1)}C$ is defined.

Definition 11.9 (Main definition). For a string C define

$$\mathcal{P}(C) = \{ (D, E, F) \mid DEF = C, D, E, F \in \mathcal{S} \}.$$

We call (D, E, F) a factor string of C if

(1) either |D| = 0 or D ends with an inverse arrow,

(2) either |F| = 0 or F starts with a directed arrow.

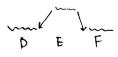
A substring (D, E, F) is defined dually.

We call a pair $a = ((D_1, E_1, F_1), (D_2, E_2, F_2)) \in fac(C_1) \times sub(C_2)$ admissible where

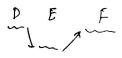
$$E_1 \sim E_2 \Rightarrow E_1 = E_2 \text{ or } E_1 = E_2^-.$$

The set of all admissible pairs is denoted $\mathcal{A}(C_1, C_2)$.

Example 11.10. E.g. if |D| > 0 and |F| > 0 then a factor string has the form



and a substring has the form



For each $a \in \mathcal{A}(C_1, C_2)$ we define

$$f_a: M(C_1) \to M(C_2)$$

and call it a graph map.

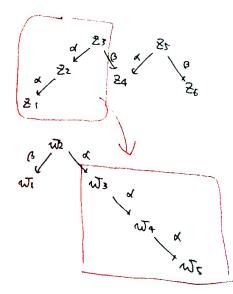
Example 11.11. Let $A = kQ/(\rho)$ with

$$Q = \alpha \overset{\frown}{\smile} \bullet \overset{\frown}{\smile} \beta$$

and $\rho = \langle \alpha \beta, \beta \alpha, \alpha^4, \beta^3 \rangle$.

Let $C_1 = \alpha^- \alpha^- \beta \alpha^- \beta$ and $C_2 = \beta^- \alpha \alpha \alpha$ and $a = ((1, \alpha^- \alpha^-, \beta \alpha^- \beta), (\beta^- \alpha, \alpha \alpha, 1))$. Then:

- $M(C_1)$ has basis z_1, \ldots, z_6 ,
- $M(C_2)$ has basis w_1, \ldots, w_5 .



Observe $M(\alpha^{-}\alpha^{-}) \cong M(\alpha\alpha)$.

We have:

- (D_1, E_1, F_1) factor string of $C_1 \Rightarrow M(C_1) \twoheadrightarrow M(E_1)$
- (D_2, E_2, F_2) substring of $C_2 \Rightarrow M(E_2) \hookrightarrow M(C_2)$
- admissible $\Rightarrow M(E_1) \xrightarrow{\cong} M(E_2)$

Thus f_a is just

$$M(C_1) \twoheadrightarrow M(E_1) \xrightarrow{\cong} M(E_2) \hookrightarrow M(C_2)$$
.

Theorem 11.12 (Crawley-Boevey). The graph maps form a basis of the hom spaces. In particular, dim Hom_A $(M(C_1), M(C_2)) = |\mathcal{A}(C_1, C_2)|$.

Definition 11.13. Let $a = ((D_1, E_1, F_1), (D_2, E_2, F_2)) \in \mathcal{A}(C_1, C_2)$. We call $f_a \ldots$

- oriented if $E_1 = E_2$,
- left (resp. right) sided if $|D_1| = |D_2| = 0$ (resp. $|F_1| = |F_2| = 0$),
- weakly one-sided if a or $((F_1^-, E_1^-, D_1^-), (D_2, E_2, F_2))$ is one-sided,
- two-sided if it is not weakly one-sided.

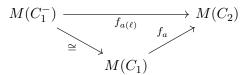
Define

$$a(\ell) = \begin{cases} a & \text{if a is oriented} \\ ((F_1^-, E_1^-, D_1^-), (D_2, E_2, F_2)) & \text{otherwise} \end{cases}$$

and a(r) dually.

Remark 11.14.

- a is weakly one-sided $\Leftrightarrow a(\ell)$ is one-sided $\Leftrightarrow a(r)$ is one-sided
- *a* is not oriented $\Rightarrow E_2 = E_1^-$



Proof

Lemma 11.15. Let $f_{a_i}: M(C_1) \to M(C_2)$ with $1 \le i \le s$ be pairwise different which are weakly one-sided. If $f_{a_i} \ne 0$, then the f_{a_i} are linearly independent in $\underline{Hom}(M(C_1), M(C_2))$.

Proof. Let $f_a: M(C_1) \to M(C_2)$ be a two-sided graph map and $\text{Ext}^1(M(C_2), M(C_1)) = 0$. Then $f_a = 0$.

Theorem 11.16. Let $M \in A$ -mod with $\operatorname{Ext}^{1}_{A}(M, M) = 0$. Then $\underline{End}_{A}(M)$ is gentle.

Proof.

• *M* does not contain band modules

- M does not contain projective indecomposables
- $M_i \not\cong M_j$ for all $i \neq j$

 $\Rightarrow M = \bigoplus_{i=1}^n M_i$ with $M_i = M(C_i)$ and $C_i \not\sim C_j$ for all $i \neq j$

Thus Theorem 11.12 and Lemma 11.15 imply that

$$\underline{\mathcal{B}} = \{f_a \, | \, f_a \in \operatorname{End}_A(M) \text{ weakly one-sided with } f_a \neq 0 \ \}$$

is a basis of $\underline{\operatorname{End}}_A(M)$ which behaves multiplicatively:

$$\underline{f_a f_b} = 0$$
 or $\underline{f_a f_b} \in \underline{B}$

 $\begin{array}{l} Q_0 = \{\underline{id}: M(C_i) \to M(C_i) \text{ with } 1 \leq i \leq n \} \\ Q_1 = \underline{B} \setminus (Q_0 \cup \{\underline{f_a} \in \underline{B} \text{ such that } \underline{f_a} = \underline{f_b f_c} \}) \end{array}$

Lemma 11.17 (Key Lemma 1). Let $X, Y, Z \in \{M(C_i) | 1 \le i \le n\}$ and $f_a : X \to Z$, $f_b : Y \to Z$ be different such that $\underline{f_a}, \underline{f_b} \in Q_1$.

Then $f_{a(\ell)}$ is left-sided and $f_{b(\ell)}$ is right-sided or vice versa.

Proof. ...

Lemma 11.18 (Key Lemma 2). Let $X \xrightarrow{f_a} Y \xrightarrow{f_b} Z$ with $\underline{f_a}, \underline{f_b} \in Q_1$. If $f_{a(\ell)}$ and $f_{b(r)}$ are both left-sided or both right-sided, then $f_a f_b \neq 0$. Otherwise, $f_a f_b = 0$.

Proof. . . .

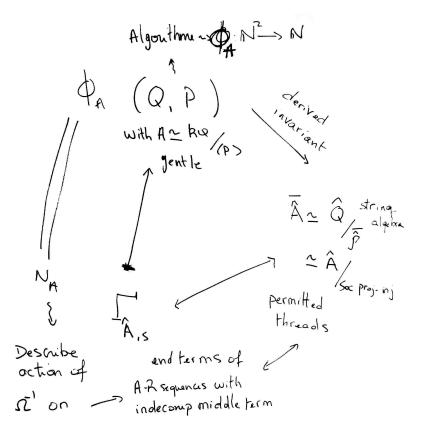
12 Combinatorial Derived Invariants

Wednesday 16th 10:00 – Nicolas Berkouk (Paris, France)

References.

• C. Geiß and Diana Avella-Alaminos.

"Quiver" Plan of the Talk.



12.1 Definitions

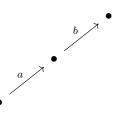
Definition 12.1. Let $A = kQ/\langle \rho \rangle$ be a special biserial algebra of finite dimension over k. Recall that A is a string algebra if ρ is composed only of paths.

Let A be a string algebra.

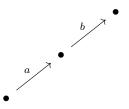
Definition 12.2.

- $C = a_n \cdots a_1$ is a non-trivial permitted thread iff Cb or bC lies in $\langle \rho \rangle$ for all $b \in Q_1$.
- $\Pi = a_n \cdots a_1$ is a non-trivial forbidden thread iff $a_{i+1}a_i \in \rho$ for all $i \in [1, n-1]$ and a_1b and ba_n lie in ρ for all $b \in Q_1$.

For every $v \in Q_0$ such that



and $ba \neq 0$ we formally consider a trivial permitted thread h_v . For every $v \in Q_0$ such that



and ba = 0 we formally consider a trivial forbidden thread p_v .

Notation 12.3. $\mathcal{H}_A = \{\text{permitted threads}\}$

Let $\sigma, \varepsilon : Q_1 \to \{\pm 1\}$ be such that:

- (1) If $b_1 \neq b_2 \in Q_1$, $s(b_1) = s(b_2)$, then $\sigma(b_1) = -\sigma(b_2)$.
- (2) If $b_1 \neq b_2 \in Q_1$, $t(b_1) = t(b_2)$, then $\varepsilon(b_1) = -\varepsilon(b_2)$.
- (3) If $b, c \in Q_1$, $cb \in \rho$, s(c) = t(b), then $\sigma(c) = -\sigma(b)$.

We extend ε, σ to \mathcal{H}_A . For $H = a_n \cdots a_1$ non-trivial in \mathcal{H}_A define

(1) $\sigma(H) := \sigma(a_1), \, \varepsilon(H) := \varepsilon(a_n),$

(2) for trivial threads h_v by connectivity of Q (i.e. $v \xrightarrow{c} \rightsquigarrow \sigma(h_v) = -\varepsilon(h_v) = -\sigma(c)$ and $\xrightarrow{b} v \rightsquigarrow \sigma(h_v) = -\varepsilon(h_v) = -\varepsilon(b)$),

(3) for trivial threads p_v similarly (i.e. $v \xrightarrow{c} \rightsquigarrow \sigma(p_v) = -\varepsilon(p_v) = -\sigma(c)$ and $\xrightarrow{b} v \rightsquigarrow \sigma(p_v) = -\varepsilon(p_v) = -\varepsilon(b)$).

12.2 The Algorithm

- (1)
 - a) First consider $H_0 \in \mathcal{H}_A$.
- b) Suppose that H_i is defined. Consider the forbidden thread Π_i which ends in $t(H_i)$ such that $\varepsilon(H_i) = -\varepsilon(\Pi_i)$.
- c) $H_{i+1} :=$ permitted thread starting in $s(\Pi_i)$ with $\sigma(\Pi_i) = -\sigma(H_{i+1})$.

This process stops when $H_n = H_0$. Define (n, m) and $n = \sum_{i=1}^n \ell(\prod_{i=2})$.

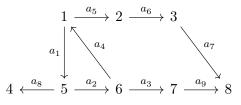
(2) Repeat (1) while all permitted threads haven't been considered.

(3) Add (0, |C|) for every directed cycle C such that each consecutive pair of arrows is a relation.

(4) Define $\phi_A : \mathbb{N}^2 \to \mathbb{N}$ by

 $(n,m) \mapsto$ number of times (n,m) appeared in the previous process.

Example 12.4.



with relations a_1a_4 , a_4a_2 , a_6a_5 , a_8a_1 and

$$\begin{aligned} \sigma(a_1) &= \sigma(a_2) = \sigma(a_3) = \sigma(a_7) = \sigma(a_9) = 1 \,, \\ \sigma(a_4) &= \sigma(a_5) = \sigma(a_6) = \sigma(a_8) = -1 \,, \\ \varepsilon(a_4) &= \varepsilon(a_7) = 1 \,, \\ \varepsilon(a_1) &= \varepsilon(a_2) = \varepsilon(a_3) = \varepsilon(a_5) = \varepsilon(a_6) = \varepsilon(a_8) = \varepsilon(a_9) = -1 \,. \end{aligned}$$

12.3 Interpretation of Permitted Threads of $\overline{\hat{A}}$

 $A = kQ/\langle \rho \rangle$ gentle algebra $\rightsquigarrow \widehat{A} = k\widehat{Q}/\langle \widehat{\rho} \rangle$ repetitive algebra $(\nu : a[z] \mapsto a[z+1])$

Definition 12.5. In $(\widehat{Q}, \widehat{\rho})$ a full path is a path p not involving any relation in $\widehat{\rho}$ such that $t(p) = \nu^{-1}(s(p))$.

Define

- $\overline{\widehat{\rho}} = \widehat{\rho} \cup \{ full \ paths \},\$
- $\overline{\hat{A}} = k\widehat{Q}/\langle \overline{\hat{\rho}} \rangle$ the expansion of A.

Remark 12.6. $\overline{\hat{A}}$ is a string algebra, isomorphic to \widehat{A} /socle of inj.-proj.

Theorem 12.7 (Ringel, Butler). The vertices of the stable AR-quiver $\Gamma_{\widehat{A},s}$ of \widehat{A} which are the end of AR-sequences with indecomposable middle term are in one-to-one correspondence with $\mathcal{H}_{\overline{A}}$.

Remark 12.8. We get an easy description of $\tau_{\widehat{A}}$ through this correspondence.

Proposition 12.9. If (Q, ρ) is not a tree (and gentle) with $A = kQ/\langle \rho \rangle$, we have that

- infinite τ -orbits $\leftrightarrow \mathbb{Z}\mathbb{A}_{\infty}$ -components in $\Gamma_{\widehat{A},s}$
- finite τ -orbits $\leftrightarrow \mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle$ -components in $\Gamma_{\widehat{A},s}$ coming from string modules

12.4 Action of the Cosyzygy Functor

Let $A = kQ/\langle \rho \rangle$ be gentle, not a tree. Define

 $\Omega^{-1}(M) = \operatorname{Coker}(M \to E(M))$ the cokernel of the injective hull as object in $\operatorname{\underline{mod}}(\widehat{A})$.

Remark 12.10. $\Omega \circ \tau = \tau \circ \Omega \implies \Omega^{-1}$ permutes the components of $\Gamma_{\widehat{A},s}$

Definition 12.11. The characteristic components of $\Gamma_{\widehat{A},s}$ are those of the form $\mathbb{Z}\mathbb{A}_{\infty}$ or $\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle$ with $n \geq 1$ coming from string modules.

Proposition 12.12. All components $\mathbb{Z}\mathbb{A}_{\infty}$ and $\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle$ with $n \geq 2$ come from string modules.

Definition 12.13. We say that two characteristic components C_1 and C_2 are equivalent iff they belong to the same Ω^{-1} -orbit.

An equivalence class is called a series of components.

Remark 12.14. Since Ω^{-1} is an equivalence, it preserves the type of components.

 \Rightarrow Only one type of component in each series of components.

Proposition 12.15 (Avella-Alaminos–Geiß). $\Gamma_{\widehat{A},s}$ has only finitely many $\mathbb{Z}\mathbb{A}_{\infty}$ -components.

Let C be of type $\mathbb{Z}\mathbb{A}_{\infty}$ in $\Gamma_{\widehat{A},s}$. $\rightsquigarrow i_{[C]} = (n,m)$ such that |n-m| = #[C] and $\Omega_{\widehat{A}}^{n-m}(M) = \tau_{\widehat{A}}^{n}(M)$ for all $M \in [C]$ Let C be of type $\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^{n} \rangle$ with $n \geq 1$. $\rightsquigarrow i_{[C]} = (n,n)$ such that $(\Omega_{\widehat{A}}^{n-n}(M) =)M = \tau_{\widehat{A}}^{n}(M)$ for all $M \in [C]$ Define $N_{A} : \mathbb{N}^{2} \to N$ by

$$(n,m) \mapsto \#\{[C] \mid i_{[C]} = (n,m)\}.$$

Fact 12.16. $N_A = \phi_A$

12.5 End of Proof

Let $A = kQ/\langle \rho \rangle$ and $B = kQ'/\langle \rho' \rangle$ be gentle algebras.

If Q is a tree, then $D^b(A) \cong D^b(\mathbb{A}_{\#Q_0})$. $\rightsquigarrow \phi_A = \phi_{\mathbb{A}_{\#Q_0}}$

Now assume that neither A nor B is a tree and $D^b(A) \simeq_{\Delta} D^b(B)$.

Theorem 12.17 (Asashiba). $D^b(\widehat{A}) \simeq_{\Delta} D^b(\widehat{B})$.

Theorem 12.18 (Rickard). For self-injective finite-dimensional algebras: derived equivalence \Rightarrow stable equivalence

- \widehat{A} mod $\cong_{\Lambda} \widehat{B}$ mod
- $\rightsquigarrow [\mathbb{Z}\mathbb{A}_{\infty}] \text{ in } \Gamma_{\widehat{A},s} \leftrightarrow [\mathbb{Z}\mathbb{A}_{\infty}] \text{ in } \Gamma_{\widehat{B},s}$
- $\rightsquigarrow [\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle] \text{ in } \Gamma_{\widehat{A}.s} \stackrel{n \geq 2}{\Leftrightarrow} [\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle] \text{ in } \Gamma_{\widehat{B}.s}$
- $\rightsquigarrow \sum_{(n,m)} \phi_A(n,m)m = \#Q_0$ is a derived invariant \rightsquigarrow recover $\phi_A(1,1) = \phi_B(1,1)$

13 Derived Discrete Algebras

Thursday 17th 8:30 – Toshitaka Aoki (Nagoya, Japan)

References.

• D. Vossieck. The algebras with discrete derived category.

Structure.

- (1) Introduction
- (2) Main result in [Vossieck] and sketch of proof
- (3) Derived equivalences

13.1 Introduction and Notation

Aim.

Introduce the algebras with discrete derived category and classify them up to Morita equivalences / up to derived equivalences.

Notation.

- $k = \overline{k}$ an algebraically closed field
- A a finite-dimensional k-algebra
- mod-A the category of finitely generated A-modules
- $D^{b}(A)$ the bounded derived category of mod A
- $D^{b}(A)_{\text{perf}}$ the subcategory of $D^{b}(A)$ formed by perfect complexes
- $K_0(A)$ the Grothendieck group of mod A

Definition 13.1. For $X \in D^b(A)$ define

$$\underline{\operatorname{Dim}} X := (\dim H^i(X))_{i \in \mathbb{Z}} \in K_0(A)^{(\mathbb{Z})}$$

the sequence of dimension vectors of $H^i(X)$.

Definition 13.2 (Vossieck). We say $D^b(A)$ is discrete if for all positive $x \in K_0(A)^{(\mathbb{Z})}$

 $#\{X \in D^b(A) \mid X \text{ indecomposable with } \underline{\text{Dim}}X = x\}/\text{iso.} < \infty.$

Example 13.3. The path algebra A of a quiver of Dynkin type \mathbb{A}_m , \mathbb{D}_n $(n \ge 4)$, \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 has a discrete derived category.

Proof.

- A is representation-finite.
- Any indecomposable complex is a shift of an indecomposable A-module up to isomorphism (see [Happel]).

13.2 Main Result and "Proof"

Theorem 13.4 (Vossieck). Let A be a connected basic finite-dimensional k-algebra. Then the following are equivalent:

(i) The repetitive algebra \widehat{A} is representation discrete, i.e. for every positive $m \in K_0(\widehat{A})$

 $#\{M \in \operatorname{mod}(\widehat{A}) \mid M \text{ indecomposable with } \underline{\dim}M = m\}/iso. < \infty.$

- (ii) $D^b(A)$ is discrete.
- (iii) $D^b(A)_{\text{perf}}$ is discrete.
- (iv) A is either derived hereditary of Dynkin type or there is a presentation $A \xrightarrow{\simeq} kQ/I$ where
 - (Q, I) is a gentle quiver,
 - Q contains exactly one cycle,
 - Q does not satisfy the clock-condition

 $\#\{clockwise \ relations \ C \in I\} = \#\{counter-clockwise \ relations \ C \in I\}.$

Remark 13.5.

- Derived hereditary algebras of type \mathbb{A}_n are precisely the gentle tree algebras [Assem-Happel].
- Derived hereditary algebras of type $\widetilde{\mathbb{A}}_m$ (not discrete) are precisely the gentle onecycle algebras satisfying the clock-condition [Assem-Skowroński].

Proof.

"(i) \Rightarrow (ii)". Use the Happel functor $H: D^b(A) \to \underline{\mathrm{mod}}(\widehat{A})$.

"(ii) \Rightarrow (iii)". Trivial.

"(iv) \Rightarrow (i)". Assume A is derived hereditary of Dynkin type. Then \widehat{A} is locally representation finite, i.e. for each vertex v of the quiver of \widehat{A}

 $\#\{M \in \operatorname{mod}(\widehat{A}) \mid M \text{ indecomposable with } Me_v \neq 0\}/\text{iso.} < \infty.$

Thus \widehat{A} is representation discrete.

Assume now $A \xrightarrow{\simeq} kQ/I$ is a gentle algebra. Then \widehat{A} is special biserial. The indecomposables in $\operatorname{mod}(\widehat{A})$ are

- non-uniserial projective-injectives,
- string modules
- band modules

Note: If there are no bands for \widehat{A} , then \widehat{A} is representation-discrete.

Let $\overline{A} = \widehat{A} / \operatorname{soc}(\text{non-uniserial proj.-inj.}).$

Recall: Each band corresponds to a cyclic word b such that b is not a proper power of a cyclic word and $b^m \neq 0$ for any $m \in \mathbb{N}$.

Lemma 13.6 (Ringel '97). Let \hat{Q} be the quiver with

- vertices v[z] for $v \in Q_0$ and $z \in \mathbb{Z}$,
- arrows $d[z]: v[z] \to w[z]$ for $d: v \to w$ and $\widehat{p}: w[z] \to v[z]$ for maximal paths p.

Then

{cyclic words w in Q with cyclic defect $\delta_c(w) = 0$ } \longleftrightarrow {cyclic words \widehat{w} }

where

$$\delta_c(w) := \#\{ clockwise \ relations \ w \in I \} - \#\{ counter-clockwise \ relations \ w \in I \}.$$

If (Q, I) satisfies the additional condition, then the left set is empty.

 $\rightsquigarrow \widehat{A}$ does not have any band modules.

 $\rightsquigarrow \widehat{A}$ is representation discrete.

"(iii) \Rightarrow (iv)".

Lemma 13.7 (V.4.1). If $D^b(A)_{\text{perf}}$ is discrete, then A is representation finite.

To prove this part, we need "covering theory" (see Gabriel and Roiter) and the "cleaving method" (see "Algebra V III. Rep. of fin. dim. algebras") for k-categories or bound quivers.

Assume $D^b(A)_{perf}$ is discrete. We regard A as a k-category with

- objects: $\{e_1, \ldots, e_n\}$ a complete set of pairwise orthogonal idempotents in A,
- Hom $(e_i, e_j) = e_j A e_i$ for all $1 \le i, j \le n$.

(1) [Vossieck, Lemma 4.2]: If A is simply connected, then A is derived hereditary of Dynkin type. The converse also holds.

(2) If A is not simply connected, we can show that A is a gentle algebra.

Now, there is a presentation $A \xrightarrow{\simeq} kQ/I$ where (Q, I) is a gentle quiver. If Q is a gentle tree, then \widehat{A} is derived hereditary of type \mathbb{A}_m by Remark 13.5, a contradiction.

So Q contains at least one cycle.

Lemma 13.8 (Ringel). If Q contains at least two cycles, then there exists a cyclic word with cyclic defect 0.

Consequently, Q contains exactly one cycle.

If (Q, I) satisfies the clock condition, A is derived equivalent to an algebra of type \mathbb{A}_n , a contradiction.

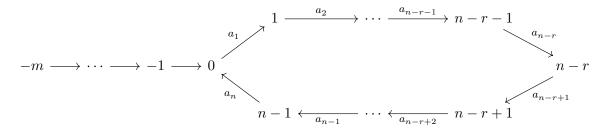
Therefore (Q, I) does not satisfy the clock condition.

Theorem 13.9 (Bobiński–Geiß–Skowroński). Let A be a connected finite-dimensional algebra which is not of Dynkin type. Then the following are equivalent:

- (i) $D^b(A)$ is discrete.
- (ii) $D^b(A) \xrightarrow{\sim} D^b(\Lambda(r, n, m))$ for some (r, n, m).
- (iii) A is tilting-cotilting equivalent to $\Lambda(r, n, m)$

Moreover, $D^b(\Lambda(r, n, m)) \xrightarrow{\sim} D^b(\Lambda(r', n', m'))$ if and only if (r, n, m) = (r', n', m').

The algebra $\Lambda(r, n, m)$ is given by the quiver



with relations $a_1 a_n, a_n a_{n-1}, ..., a_{n-r+2} a_{n-r+1}$.

14 Singularity Categories of Gentle Algebras

Thursday 17th 10:00 – David Pauksztello (Verona, Italy)

References.

- (1) Geiß, Reiten. Gentle algebras are Gorenstein.
- (2) Kalck. Singularity categories of gentle algebras.

Notation.

• A a finite-dimensional k-algebra

14.1 Gorenstein Algebras, Motivation

Definition 14.1. Λ is Gorenstein if inj. dim $\Lambda \Lambda < \infty$ and inj. dim $\Lambda_{\Lambda} < \infty$.

Example 14.2.

- Λ with gl. dim $\Lambda < \infty$
- Λ self-injective

Properties of Gorenstein Algebras.

- [Happel] $K^b(\operatorname{proj} \Lambda) = K^b(\operatorname{inj} \Lambda) \Leftrightarrow \Lambda$ Gorenstein.
- $K^b(\text{proj }\Lambda)$ satisfies Serre duality, i.e. has AR-triangles.
- The full subcategory of *Gorenstein projective modules* is defined by

 $GP(\Lambda) = \{ M \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^{i}_{\Lambda}(M, \Lambda) = 0 \,\forall i > 0 \},\$

an exact Frobenius category whose projective-injectives are the projective Λ -modules.

Theorem 14.3 (Buchweitz). Let Λ be Gorenstein. The embedding $GP(\Lambda) \hookrightarrow D^b(\Lambda)$ induces a triangle equivalence

$$\operatorname{GP}(\Lambda)/\operatorname{proj}\Lambda \xrightarrow{\sim} D_{\operatorname{sg}}(\Lambda) := D^b(\Lambda)/K^b(\operatorname{proj}\Lambda)$$

Remark 14.4.

• GPs are often called maximal Cohen-Macaulay modules.

Simple hypersurface singularities \Leftrightarrow finitely indecomposable GPs.

• When Λ is self-injective, all modules are GP, so the singularity category is $\underline{\mathrm{mod}}\Lambda$.

14.2 Gentle Algebras Are Gorenstein

Let $\Lambda = kQ/I$ be a gentle algebra.

- An arrow $b \in Q_1$ is *gentle* if there is no $a \in Q_1$ with $ba \in I$.
- A direct walk $w = a_n \cdots a_1$ is critical if $a_{i+1}a_i \in I$ for $1 \le i < n$.

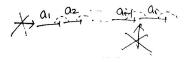
It is called a *critical cycle* if $s(a_1) = t(a_n)$ and $a_1a_n \in I$.

Note.

- There exists at most one arrow a_0 such that $a_n \cdots a_1 a_0$ is critical.
- There exists at most one arrow a_{n+1} such that $a_{n+1}a_n \cdots a_1$ is critical.

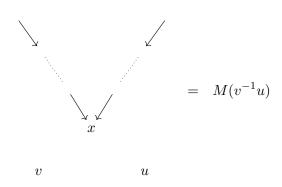
Lemma 14.5. There is a bound $n(\Lambda) \leq |Q_1|$ for the maximal lengths of critical paths starting with a gentle arrow.

Proof. Assume $a_{n+1}a_n \cdots a_1$ is critical with a_1 gentle and a_1, \ldots, a_n pairwise different. Draw a picture ...



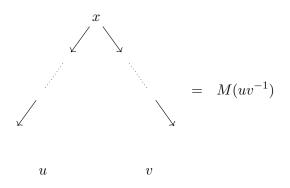
Injectives and Projectives.

The injective I_x is



where u, v distinct maximal directed paths ending (resp. starting) at $x \in Q_0$.

Similary, the projective P_x looks as follows:



For $I_x = M(v^{-1}u)$ consider the unique (if they exist!) arrows a and b such that $v^{-1}ua^{-1}$ and/or $bv^{-1}u$ are defined as strings. Then a, b are gentle arrows.

Definition 14.6. For each $a \in Q_1$ define

r(a) := the unique maximal direct string such that r(a)a is defined as a string.

Define R(a) := M(r(a)).

Proposition 14.7. Let $I_x = M(v^{-1}u)$. For $j \ge 1$ each indecomposable non-projective summand of $\Omega^j M(v^{-1}u)$ is of the form $R(a_j)$ for a critical path $a_j \cdots a_1$ with a_1 gentle.

Proof. Take the projective cover of I_x . $\rightsquigarrow P_t \oplus P_s \to I_x \rightsquigarrow$ Draw a picture ... \Box

Theorem 14.8 (Geiß–Reiten).

$$\operatorname{inj.dim}(\Lambda) = \begin{cases} n(\Lambda) = \operatorname{proj.dim}_{\Lambda} D(\Lambda^{\operatorname{op}}) & \text{if } n(\Lambda) > 0\\ \operatorname{proj.dim}_{\Lambda} D(\Lambda^{\operatorname{op}}) \le 1 & \text{if } n(\Lambda) = 0. \end{cases}$$

In particular, Λ is Gorenstein.

Proof. proj. dim $_{\Lambda}D(\Lambda^{\text{op}}) \leq n(\Lambda) + \delta_{n(\Lambda),0}$.

Suppose $n(\Lambda) > 0$. Let $a_n \cdots a_1$ be a critical path with a_1 gentle. If there is $b \in Q_1$ such that $s(b) = s(a_1)$ then $I_{t(b)}$ looks like

$$\stackrel{v}{\leadsto} t(b) \xleftarrow{b}{a_1}$$

by Proposition 14.7 and proj. dim $I_{t(b)} \ge 1$.

If there is no such b, then $I_{s(a_1)}$ looks like

$$\stackrel{v}{\leadsto} s(a_1) \stackrel{a_1}{\longrightarrow}$$

and proj. dim $I_{s(a_1)} \ge n$.

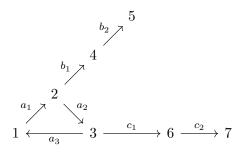
Note: $n(\Lambda) = n(\Lambda^{\text{op}}) \Rightarrow \Lambda$ is Gorenstein

Theorem 14.9 (Kalck).

- (1) ind $\operatorname{GP}(\Lambda) = \operatorname{ind} \operatorname{proj}(\Lambda) \cup \{R(a_1), \dots, R(a_n) \mid c = a_n \cdots a_1 \in \mathcal{C}(\Lambda)\}$
- (2) $D_{sg}(\Lambda) \cong \prod_{c \in \mathcal{C}(\Lambda)} D^b(k\mathbb{A}_1) / \Sigma^{\ell(c)}$ "product of orbit categories" [Keller]

where $\ell(c)$ is the length of the cycle c.

Example 14.10. Let Λ be the algebra given by the quiver



with relations a_1a_3 , a_2a_1 , a_3a_2 , c_2c_1 . Then:

$$R(a_{1}) = \frac{b_{1}}{b_{2}}$$

$$R(a_{2}) = c_{1}$$

$$R(a_{2}) = S_{1}$$

There are short exact sequences

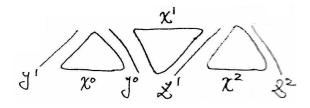
$$0 \to R(a_i) \to P_i \to R(a_{i-1}) \to 0.$$

For example,

$$0 \to \left(\stackrel{c_1}{\leftarrow} \right) \to \left(\stackrel{c_1}{\leftarrow} \stackrel{a_2}{\leftarrow} \stackrel{b_1}{\to} \stackrel{b_2}{\to} \right) \to \left(\stackrel{b_1}{\to} \stackrel{b_2}{\to} \right) \to 0.$$

In particular, $\Omega R(a_{i-1}) = R(a_i)$ and $\Sigma R(a_i) = R(a_{i-1})$ in <u>GP</u>(Λ).

 $D^b(\Lambda)$ looks like:



where

- $\Delta : \mathcal{X}^0, \mathcal{X}^1, \mathcal{X}^2$ are $\mathbb{Z}\mathbb{A}_{\infty}$ components of $K^b(\text{proj }\Lambda)$,
- $\backslash / : \mathcal{Z}^0, \mathcal{Z}^1, \mathcal{Z}^2$ are $\mathbb{A}_{\infty}^{\infty}$ components of $D^b(\Lambda) \setminus K^b(\operatorname{proj} \Lambda)$

(one of an irreducible morphism in a \mathcal{Z} component lies on the boundary of an \mathcal{X} component, i.e. each \mathcal{Z} component is identified in $D_{sg}(\Lambda)$).

Sketch.

Use the following facts to show $R(a_i)$ are all the GPs:

- A GP Λ -module is either projective or of infinite projective dimension.
- M is GP $\Leftrightarrow \Omega M \cong \Omega^d N$ for some $N \in \text{mod } \Lambda$, where $d = \text{inj. dim}_{\Lambda} \Lambda$

 $(\Rightarrow \text{ every GP module is a submodule of a projective})$

The short exact sequences $0 \to R(a_i) \to P_i \to R(a_{i-1}) \to 0$ for $a_i \in c \in \mathcal{C}(\Lambda)$ show $R(a_i)$ are GP.

No submodule of a projective can have a subword of the form $\rightarrow \leftarrow$.

So the worst case is $\leftarrow \rightarrow$. \rightsquigarrow Get a projective.

The remaining GPs are uniserial. The only way to embed into a projective is if they have the form R(a) for some $a \in Q_1$.

By Proposition 14.7 if $a \notin c \in \mathcal{C}(\Lambda)$ then proj. dim $R(a) < \infty$.

Second Statement.

We have $\Sigma R(a_i) = R(a_{i-1})$, so $\Sigma^{\ell(c)} R(a_i) = R(a_i)$.

Fact 14.11. Any semisimple abelian category with autoequivalence Σ admits a unique triangulated structure with shift Σ .

$$\underline{\operatorname{Hom}}(R(a), R(a')) = \delta_{a,a'}k.$$

Remark 14.12. [Chen–Shen–Zhou] have more general versions of these statements for quadratic monomial algebras.

15 Quivers with Potential from Surface Triangulations

Thursday 17th 14:00 – Toshiya Yurikusa (Nagoya, Japan)

Aim.

To introduce a new class of gentle algebras.

- Quivers with potential (QP) and QP-mutations
- QPs from surface triangulations (unpunctured case)

15.1 Quivers with Potential

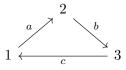
Notation.

- k a field
- Q a finite quiver without loops

Definition 15.1. A potential S on Q is a linear combination of cyclic paths up to cyclical equivalence (i.e. $a_d \cdots a_1 \sim a_1 a_d \cdots a_2$).

The pair (Q, S) is called a quiver with potential (QP).

Example 15.2.



Potential (3-cycle case): $S = cba \sim bac \sim acb, 0, cbacba, \dots$

Definition 15.3. The cyclic derivative ∂_a at $a \in Q_1$ is defined by

$$\partial_a(a_d\cdots a_1) = \sum_{i=1}^d \partial_{a,a_i} a_{i-1}\cdots a_1 a_d \cdots a_{i+1}$$

where $a_d \cdots a_1$ is a cyclic path.

The ideal

$$J(S) := \langle \partial_a(S) \, | \, a \in Q_1 \rangle$$

of the completed path algebra of Q is called the Jacobian ideal.

Following [DWZ '08] we define the Jacobian algebra

 $\mathcal{P}(Q,S) := \text{ the completed path algebra}/J(S).$

15.2 QP-Mutations

Let (Q, S) be a QP and $v \in Q_0$.

Theorem 15.4 (and Definition). If Q has no 2-cycles incident to v, we obtain a new QP

 $(Q', S') = \widetilde{\mu}_v(Q, S)$ "QP-premutation at v"

constructed as follows:

- (1) For each $i \stackrel{b}{\leftarrow} v \stackrel{a}{\leftarrow} j$ add an arrow $i \stackrel{[ba]}{\leftarrow} j$.
- (2) Reverse all arrows incident to $v \iff a^* v \rightarrow a^* v$).

Let

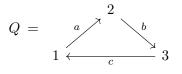
$$S' \ := \ [S] + \sum_{\substack{i \leftarrow v \leftarrow j \ a} j \ in \ Q} a^* b^* [ba]$$

where [S] is obtained from S by replacing all $i \stackrel{b}{\leftarrow} v \stackrel{a}{\leftarrow} j$ with [ba]. By [DWZ, Theorem 4.6] ("splitting theorem") there exists a QP

$$(Q^*, S^*) = \mu_v(Q, S)$$

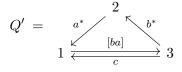
such that S^* has no 2-cycles and $\mathcal{P}(Q^*, S^*) \cong \mathcal{P}(Q', S')$. "Remove 2-cycles in S' and the corresponding arrows." Then $\mu_k(Q, S)$ is a QP-mutation of (Q, S) at v.

Example 15.5. Let (Q, S) be the QP with

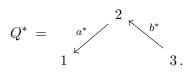


and S = cba.

Then $\widetilde{\mu}_2(Q, S)$ is the QP (Q', S') with

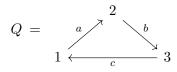


and $S' = c[ba] + a^*b^*[ba]$. Then $\mu_2(Q, S)$ is the QP (Q^*, S^*) with

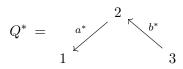


The 2-acyclicity of Q is essential to apply the QP-mutation for every vertex of Q. But 2-acyclicity is not invariant under QP-mutation.

Example 15.6. For (Q, S) with



and S = 0 the QP $\mu_2(Q, S) = \widetilde{\mu}_2(Q, S)$ is (Q^*, S^*) with



and $S^* = a^* b^* [ba]$.

Theorem 15.7 (DWZ, Corollary 7.4). Let k be an uncountable field. Any 2-acyclic quiver has a potential S such that the quiver obtained from (Q, S) after any sequence of QP-mutations is 2-acyclic. Such a potential S is called non-degenerate.

15.3 Surface Triangulations (Unpunctured Case)

Let Σ be a connected oriented Riemann surface with boundary $\partial \Sigma$ and M a finite set of marked points on $\partial \Sigma$ containing at least one point from each connected component of $\partial \Sigma$.

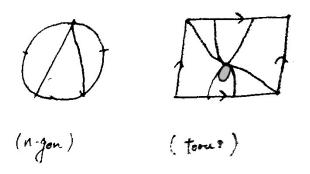
Then (Σ, M) is called a *marked surface* (without punctures).

Definition 15.8. An arc on (Σ, M) is a curve up to isotopy on Σ satisfying:

- Its endpoints lie in M.
- It has no self-intersection (except in the endpoints).
- It is neither contractible nor a boundary segment.

A triangulation of a marked surface is given by a maximal collection of arcs which do not intersect each other.

Example 15.9.



Definition 15.10. Let (Σ, M) be a marked surface and τ a triangulation of (Σ, M) . Define a QP $(Q(\tau), S(\tau))$ as follows:

• $Q(\tau)_0 = \{ arcs \ of \ \tau \}$

•
$$Q(\tau)_1 = \{i \to j \mid \exists : in \tau\}$$

•
$$S(\tau) = \sum_{internal triangles of \tau} \bigwedge$$

Remark 15.11. If $Q(\tau)$ is 2-acyclic, then

$$J(S(\tau)) = \langle \Delta, \Delta \rangle$$
, $\langle \Delta \rangle | \Delta$ internal triangle of $\tau \rangle$.

By [LF '09, Theorem 3.6]

$$\mathcal{P}(Q(\tau), S(\tau)) = kQ(\tau)/J(S(\tau)).$$

is finite-dimensional. This is a gentle algebra [ABCP, '09, Theorem 2.7] (next talk).

Example 15.12. For

$$\tau = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}$$

we have

$$Q(\tau) = \begin{pmatrix} 2 & 1 \\ \uparrow \searrow & \checkmark \\ \downarrow & \checkmark \\ 4 & 5 \end{pmatrix}$$

and

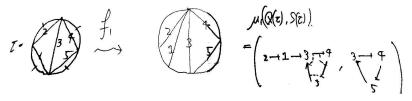
$$S(\tau) = \int_{1}^{2} \sqrt{3} + 3 \sqrt{\frac{4}{5}}.$$

Theorem 15.13 (LF, Theorem 3.0). *QP*-mutations of $(Q(\tau), S(\tau))$ are compatible with flips of τ where a flip of τ at an arc v is

$$f_v(\tau) = (\tau \setminus \{v\}) \cup \{v'\}$$

such that $f_v(\tau)$ is a triangulation with $v \neq v'$.

Since $Q(\tau)$ has no 2-cycles for any triangulation τ , the potential $S(\tau)$ is non-degenerate.



Theorem 15.15 (GLFS '16, Theorem 1.4). If (Σ, M) is not a torus with |M| = 1, then $S(\tau)$ is the only non-degenerate potential up to right equivalence.

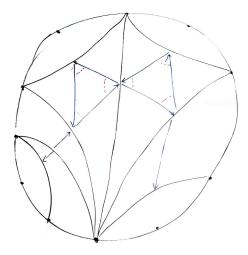
16 Gentle Algebras Arising from Surface Triangulations

Thursday 17th 15:15 – Alexander Garver (Montreal, Canada)

References.

• [Assem-Brüstle-Charbonneau-Jodoin-Plamondon]

Let (S, M) be an unpunctured surface and Γ a triangulation of (S, M).



$$\label{eq:alpha} \begin{split} & \rightsquigarrow \left(Q(\Gamma), W(\Gamma)\right) \\ & \rightsquigarrow A(\Gamma) = kQ(\Gamma)/I(\Gamma) \text{ where } I(\Gamma) = J(W(\Gamma)) \end{split}$$

Questions.

- Properties of $A(\Gamma)$
- Which $A(\Gamma)$ are cluster-tilted?
- Which gentle algebras are cluster-tilted?

16.1 Properties of $A(\Gamma)$

Theorem 16.1. The following hold:

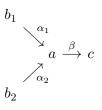
- (i) $A(\Gamma)$ is gentle.
- (ii) $A(\Gamma)$ is Gorenstein of dimension one.
- (iii) If $ab \in I(\Gamma)$ where $x \xrightarrow{a} z \xrightarrow{b} y$, then there is an arrow $y \to x$ in $Q(\Gamma)$.
- (iv) There is a Galois covering $k\widetilde{Q}/\widetilde{I}$ of $A(\Gamma)$ such that:
 - (T1) Every chordless cycle in \widetilde{Q} is a 3-cycle with full relations.
 - (T2) These are the only relations.

Proof. (i)

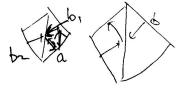
- $A(\Gamma)$ is finite-dimensional [LF].
- $I(\Gamma)$ is generated by 2-paths.
- Any vertex i of $Q(\Gamma)$ has

since the corresponding arc appears in exactly 2 triangles.

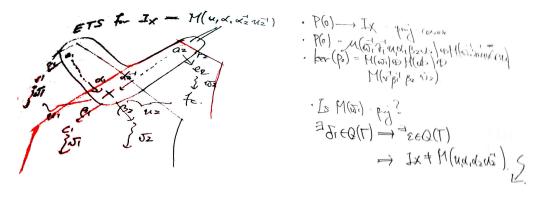
• Suppose



then draw some picture ...



(ii) Drawing a picture ...



16.2 Which $A(\Gamma)$ are cluster-tilted?

Recall that if Q is acyclic, one defines its *cluster category*

$$\mathcal{C}_Q = D^b(kQ)/\tau^{-1}[1].$$

Then ind $\mathcal{C}_Q = \operatorname{ind} kQ \stackrel{\cdot}{\cup} P_i[1]_{i \in Q_0}.$

If $T = T_1 \oplus \cdots \oplus T_n$ is a cluster-tilting object (i.e. $\operatorname{Ext}^1_{\mathcal{C}_Q}(T,T) = 0$ and $n = \#Q_0$), then $\operatorname{End}_{\mathcal{C}_Q}(T)$ is a cluster-tilted algebra.

Theorem 16.2. The following are equivalent:

- (1) $A(\Gamma)$ is cluster-tilted.
- (2) $A(\Gamma)$ is cluster-tilted of type \mathbb{A} or $\widetilde{\mathbb{A}}$.
- (3) S is a disc or an annulus.

Moreover, all cluster-tilted algebras of these types are realizable as $A(\Gamma)$.

Proof. "(2) \Rightarrow (1)": Trivial.

"(1) \Rightarrow (2)": Let $(Q(\Gamma), W(\Gamma))$ be the QP corresponding to $A(\Gamma)$.

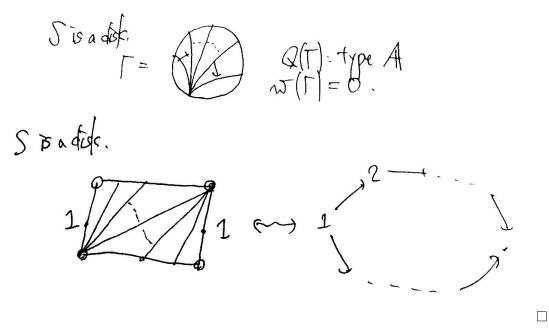
 $(Q(\Gamma), W(\Gamma)) \rightsquigarrow (Q', 0)$ (under a sequence of QP mutations)

 $\Rightarrow A(\Gamma') = kQ'$ hereditary

 \Rightarrow Since $A(\Gamma')$ is gentle, it is of type \mathbb{A} or $\widetilde{\mathbb{A}}$.

"(3) \Rightarrow (2)": Any two triangulations of (S, M) are flip-equivalent [Hatcher, 1991].

Since flips correspond to mutations, it is easy to show that " $(3) \Rightarrow (2)$ " for a particular triangulation:



16.3 Which gentle algebras are cluster-tilted?

Theorem 16.3 (Assem–Brüstle–Schiffler 2008). An algebra Λ is cluster-tilted iff there exists a tilted algebra C (i.e. $C = \operatorname{End}_{kQ}(T)$ for a tilting object in mod kQ) such that

$$\Lambda \cong \widetilde{C} := C \ltimes \operatorname{Ext}_C^2(DC, C).$$

As abelian group

$$\widetilde{C} = C \oplus \operatorname{Ext}_{C}^{2}(DC, C)$$

with addition (c, e) + (c', e') = (c + c', e + e') where e + e' is the Baer sum in $\text{Ext}_C^2(DC, C)$ and multiplication (c, e)(c', e') = (cc', ce' + ec') with $e_1 = ce'$ and

> $e: \qquad 0 \longrightarrow P \longrightarrow M \longrightarrow N \longrightarrow I \longrightarrow 0$ $e': \qquad 0 \longrightarrow P' \longrightarrow M' \longrightarrow N' \longrightarrow I' \longrightarrow 0$

and

where the left-hand square is a pushout.

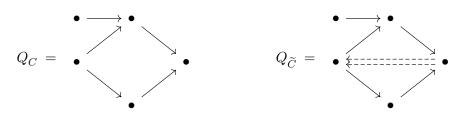
Theorem 16.4. Let $C = kQ_C/I_C$ be a tilted algebra and \tilde{C} the trivial extension. The following are equivalent:

- (1) C is gentle.
- (2) C is tilted of type \mathbb{A} or $\widetilde{\mathbb{A}}$.
- (3) \widetilde{C} is gentle.
- (4) \widetilde{C} is cluster-tilted of type \mathbb{A} or $\widetilde{\mathbb{A}}$.

Proof.

- "(1) \Rightarrow (2)": [Schröer 1999]
- "(3) \Rightarrow (1)": [Assem–Coelho–Trepode]
- "(2) \Leftrightarrow (4)": [Assem–Brüstle–Schiffler]
- "(2) \Rightarrow (3)": Not quite easy.

Important part here is saying what is $I_{\widetilde{C}}$ where $\widetilde{C} = kQ_{\widetilde{C}}/I_{\widetilde{C}}$.



17 Surface (Cut) Algebras

Thursday 17th 17:00 – Raquel Coelho Simoes (Lisbon, Portugal)

References.

• [David-Roesler-Schiffler]

17.1 Cuts of Triangulated Surfaces

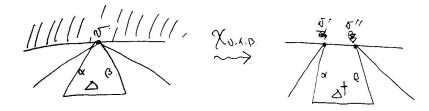
Fix (S, M, T) where ...

- S is a connected oriented unpunctured Riemann surface with boundary ∂S ,
- M is a set of marked points in ∂S intersecting each connected component of ∂S ,
- T is a triangulation of (S, M).

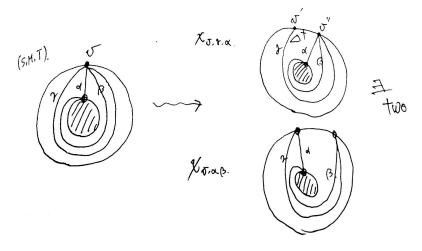
Let Δ be an internal triangle in $T, v \in M$ one of the vertices of Δ , and α, β the arcs of Δ incident to v:

 $(S, M, T) \xrightarrow{\text{cut at } v, \alpha, \beta} (S, \chi_{v,\beta,\alpha}(M), \chi_{v,\beta,\alpha}(T)) \text{ where}$ $\chi_{v,\beta,\alpha}(M) = (M \setminus \{v\}) \cup \{v', v''\}$ $\chi_{v,\beta,\alpha}(T) = T \setminus \{\gamma \mid \gamma \text{ incident to } v\}) \cup \{\gamma^+ \mid \gamma \text{ incident to } v' \text{ or } v''\}$

where γ^+ is the arc obtained from γ by replacing the end of $\overline{\gamma}$ by the concatenation of $\overline{\gamma}$ and δ' (resp. δ'') if $\overline{\gamma} = \overline{\alpha}$ or $\overline{\gamma}\overline{\alpha}\overline{\beta}$ (resp. $\overline{\gamma} = \overline{\beta}$ or $\overline{\alpha}\overline{\beta}\overline{\gamma}$).



Example 17.1.

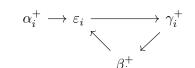


Definition 17.2.

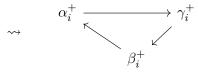
- (1) $\chi_{v,\beta,\alpha}(S,M,T)$ is called the local cut of (S,M,T) at vertex v relative to α and β .
- (2) A cut of (S, M, T) is a partially triangulated surface (S, M^+, T^+) obtained by applying a sequence of local cuts $\chi_{v_1,\beta_1,\alpha_1}, \ldots, \chi_{v_t,\beta_t,\alpha_t}$ in such a way that we cut each internal triangle at most once.
- (3) A cut is admissible if every internal triangle of T is cut exactly once.
- (4) Δ^+ quasi-triangles

17.2 Definition of Surface Algebras

Let (S, M^+, T^+) be the cut of (S, M, T) given by $(\chi_{v_i, \beta_i, \alpha_i})_{i=1, \dots, t}$. First, complete T^+ to a triangulation \overline{T}^+ of (S, M^+) . Second, construct $Q_{\overline{T}^+}$ (see previous talk). Some picture here ...



Third, obtain Q_{T^+} from $Q_{\overline{T}^+}$ by deleting the vertices ε_i .



Locally: (again a picture ...)

Definition 17.3. A (cut) surface algebra of type (S, M) is $A^+ = kQ^+/I^+$ (with I^+ as in the above figure) where (S, M^+, T^+) is a cut of a triangulated surface (S, M, T).

$$\begin{array}{ccc} (S,M,T) & \stackrel{cut}{\longrightarrow} (S,M^+,T^+) \\ & & \downarrow \\ & & \downarrow \\ A(T) & \stackrel{cut "edges"}{\longrightarrow} A(T^+) \end{array}$$

Definition 17.4. Let Q be a quiver and C an oriented cycle in Q.

- (1) C is a chordless cycle if it is a full subquiver of Q and for each $v \in C$ there is a unique $a \in C$ and a unique $b \in C$ such that s(a) = v and t(b) = v.
- (2) A cut of Q is a subset of the set of arrows lying on chordless cycles such that no two arrows lie in the same cycle.
- (3) A cut is admissible if it contains exactly one arrow of each chordless cycle in Q.

(4) Let A = kQ/I. An algebra is said to be obtained from A by a cut if it is isomorphic to $kQ/\langle I \cup \Gamma \rangle$ where Γ is a cut of Q.

[Amiot–Grimeland] In other words, let d be a degree map assigning degree 0 or 1 to each arrow of Q such that:

- Chordless cycles have degree 1.
- Arrows not lying on a chordless cycle have degree 0.
- $\rightsquigarrow d$ describes an admissible cut.

The cut algebra of A with respect to d is the degree zero subalgebra.

Observation 17.5. $\chi_{v,\beta,\alpha} \leftrightarrow$ cutting the arrows between α and β in Q_T

Theorem 17.6. Every surface algebra is gentle.

Proof. Let A be a surface algebra. Then $A = A(T^+)$ with (S, M^+, T^+) a cut of (S, M, T). Now:

- $A(T^+)$ is obtained from A(T) by a cut.
- A(T) is gentle.
- Any cut of a gentle algebra is gentle.

17.3 Motivation

- (see Wassilij's talk) gentle algebra $G \xrightarrow{\text{trivial extension}} BGA T(G) = G \ltimes DG$
- [Schroll] Every gentle algebra is the admissible cut of a unique Brauer graph algebra (its trivial extension).
- The Brauer graph of $A(T^+)$ is T^+ . But the BGA (i.e. $T(A(T^+))$) is not the Jacobian algebra A(T).

Theorem 17.7 (DR–S). If (S, M^+, T^+)

(1) gl. dim $(A^+) \le 2$

(2)
$$A(T) \cong A(T^+) \ltimes \operatorname{Ext}^2_{A(T^+)}(DA(T^+), A(T^+))$$
 (compare [ABS])

17.4 AG-Invariant

Example 17.8. A picture ...

Notation. Let (S, M, T) be a triangulated surface, C the boundary components of S.

- $M_{C,T} = \{ \text{marked points on } C \text{ that are incident to at least one arc in } T \}$
- $n_{C,T} = \# M_{C,T}$
- $m_{C,T} =$ #boundary segments on C that have both endpoints on $M_{C,T}$

Theorem 17.9. Let $A = A(T^+)$ be a surface algebra of type (S, M, T) given by a cut (S, M^+, T^+) . The AG-invariant of A is given as follows:

- (a) $(0,3) \stackrel{1:1}{\leftrightarrow}$ internal triangle in T^+ , and $\not\supseteq (0,m)$ with $m \neq 3$.
- (b) ordered pairs (n,m) in AG(A) with $n \neq 0 \stackrel{1:1}{\leftrightarrow}$ boundary components of S. If C is a boundary component, the corresponding (n,m) is given by $n = n_{C,T} + \ell$ and $m = m_{C,T} + 2\ell$ where

 $\ell = \# local \ cuts \ \chi_{v,\beta,\alpha} \ in \ (S, M^+, T^+) \ such \ that \ v \ is \ a \ point \ on \ C.$

"Proof". permitted threads $\mathcal{H} \stackrel{1:1}{\leftrightarrow}$ non-empty complete fans of (S, M^+, T^+) (picture ...) forbidden threads $\mathcal{F} \setminus$ cycles:

- length $2 \stackrel{1:1}{\leftrightarrow}$ quasi-triangles
- length $1 \stackrel{1:1}{\leftrightarrow}$ triangles with exactly one side on the boundary
- length $0 \stackrel{1:1}{\leftrightarrow}$ triangles with exactly two sides on the boundary

(another picture ...)

18 Derived Equivalence Classification of Surface Algebras

Friday 18th 8:30 – Matthew Pressland (Stuttgart, Germany)

(d'après Ladkani)

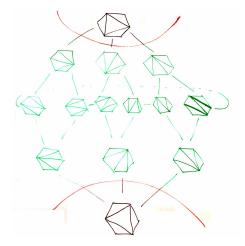
Aim.

Classify surface algebras $A(\Gamma)$ up to derived equivalence.

Approach.

- 1) Separate non-equivalent algebras \rightsquigarrow AG invariants
- 2) Exhibit derived equivalences \rightsquigarrow good mutations

Example 18.1.

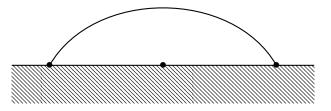


18.1 AG Invariants

Recall 18.2. The AG invariant $\phi_{A(\Gamma)} : \mathbb{N}^2 \to \mathbb{N}$ is a function given by "path counting". In this case, computed by [David-Roesler-Schiffler].

Let (S, M) be a surface with triangulation Γ .

Definition 18.3. A dome in Γ is a triangle with two boundary arcs.



Write d_C for the number of domes incident with the boundary component C and set

 $n_C = \#(M \cap C).$

Parameters of Γ :

- g the genus of S,
- *b* the number of boundary components,
- (n_C, d_C) for each boundary component C.

The parameters determine (S, M) up to homeomorphism.

Proposition 18.4 (David-Roesler–Schiffler, Ladkani).

$$\phi_{A(\Gamma)} = \sum_{C \text{ boundary component}} \mathbb{1}_{(n_C - d_C, n_C - 2d_C)} + t \mathbb{1}_{(0,3)}$$

where $t = 4(g-1) + 2b + \sum_{C} d_{C}$ is the number of internal triangles of Γ .

Since $n_C \neq d_C$ for all C, the AG invariant $\phi_{A(\Gamma)}$ determines all the parameters.

In particular, $A(\Gamma) \stackrel{\text{der.}}{\simeq} A(\Gamma')$ means Γ and Γ' are triangulations of the same surface.

18.2 Good Mutations

Recall 18.5. Flipping an arc v of Γ induces a mutation of $A(\Gamma)$ to $A(\mu_v(\Gamma))$.

Aim.

- Find good mutations such that $A(\Gamma) \stackrel{\text{der.}}{\simeq} A(\mu_v(\Gamma))$.
- Show that if Γ and Γ' have the same parameters $(\Leftrightarrow \phi_{A(\Gamma)} = \phi_{A(\Gamma')})$, then they are linked by good mutations.

Definition 18.6. Let A be an algebra. Then $T^{\bullet} \in K^{b}(\operatorname{proj} A)$ is a tilting complex if

- (i) Hom $(T^{\bullet}, T^{\bullet}[i]) = 0$ for all $i \neq 0$,
- (*ii*) thick $T^{\bullet} = K^b(\operatorname{proj} A)$.

 $\stackrel{[\operatorname{Rickard},\operatorname{Keller}]}{\Rightarrow} \quad A \stackrel{\operatorname{der.}}{\simeq} \operatorname{End}(T^{\bullet})^{\operatorname{op}}$

Example 18.7. Let T be a (classical) tilting module, i.e.

$$\operatorname{proj.dim} T \leq 1 \,, \quad \operatorname{Ext}^1_A(T,T) = 0 \,, \quad \exists \, 0 \to A \to T_0 \to T_1 \to 0 \,\, \text{with} \,\, T_0, T_1 \in \operatorname{add} T \,.$$

Then [Brenner–Butler, Happel], $A \stackrel{\text{der.}}{\simeq} \operatorname{End}_A(T)^{\operatorname{op}}$. Let $0 \to P_1 \to P_0 \to T \to 0$ be a projective resolution.

 $\rightsquigarrow (\cdots 0 \rightarrow P_1 \rightarrow P_0 \rightarrow 0 \cdots) \in K^b(\operatorname{proj} A)$ is a tilting complex.

A vertex v of $A(\Gamma)$ determines complexes:

$$T_v^- = P_v \xrightarrow{(\cdot a)} \bigoplus_{a:j \to v} P_j \oplus \bigoplus_{i \neq v} P_i$$
$$T_v^+ = P_v \xrightarrow{(\cdot a)} \bigoplus_{a:v \to j} P_j \oplus \bigoplus_{i \neq v} P_i$$

Definition 18.8. Say the mutation μ_v is good if T_k^{ε} is a tilting complex with

$$\operatorname{End}_{A(\Gamma)}(T_k^{\varepsilon}) \stackrel{Morita}{\simeq} A(\mu_v(\Gamma))$$

for some $\varepsilon \in \{+, -\}$.

$$\Rightarrow \quad A(\Gamma) \stackrel{\text{der.}}{\simeq} A(\mu_v(\Gamma))$$

Example 18.9. v a sink $\rightsquigarrow T_k^-$ tilting; v a source $\rightsquigarrow T_k^+$ tilting.

Proposition 18.10 (Ladkani). If $\mu_v(\Gamma)$ and Γ have the same parameters, then μ_v is good.

Proof. The number of arrows in $A(\Gamma)$

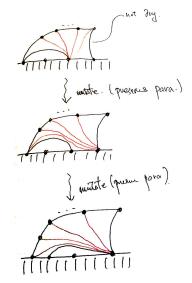
$$12(g-1) + 6b + \sum_{C} (n_{C} + d_{C})$$

can be recovered from the parameters. [Ladkani] showed previously (with computer assistance) that mutations preserving the number of arrows are good. $\hfill \Box$

Theorem 18.11 (Ladkani). If Γ and Γ' have the same parameters, then $A(\Gamma) \stackrel{\text{der.}}{\simeq} A(\Gamma')$.

Proof. Since they have the same parameters, Γ and Γ' are both triangulations of one surface (S, M).

Step 1: Adjust spacing of domes of Γ to match Γ' . Idea:



Repeat this. \rightsquigarrow There is an automorphism of (S, M) taking domes of Γ to those of Γ' . Step 2: Apply this automorphism.

Step 3: Γ and Γ' have the same domes. We want a sequence of good mutations $\Gamma \rightsquigarrow \Gamma'$. Use a combinatorial recipe of [Mosher].

Idea: Pick an arc $a \in \Gamma' \setminus \Gamma$, orient it arbitrarily. Flip first arc of Γ that a intersects.

Observation: We can choose a carefully so that we never create or destroy domes:

- (1) a cannot intersect an arc of a dome since Γ and Γ' have the same domes.
- (2) To avoid creation of domes: (picture)

Example 18.12. In Example 18.1 the green part corresponds to different orientations of \mathbb{A}_3 :

gl. dim = 1 and
$$\phi_{A(\Gamma)} = \mathbb{1}_{(4,2)}$$

For the **red** part:

gl. dim = ∞ and $\phi_{A(\Gamma)} = \mathbb{1}_{(3,0)} + \mathbb{1}_{(0,3)}$