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1 R-orders and Krull-Schmidtness

Monday 12%® 13:00 — Biao Ma (Bielefeld, Germany)

Notation.
e (R,m, k) is always a commutative noetherian local ring

e mod(R) the category of finitely generated R-modules

proj(R) the category of finitely generated projective R-modules

A is a module-finite R-algebra
e mod(A) the category of finitely generated left A-modules

e proj(A) the category of finitely generated left projective A-modules

1.1 Krull-Schmidt categories

Definition 1.1. An additive category A is called a Krull-Schmidt category if each A € A
can be written as a finite direct sum of objects having local endomorphism ring.

Remark 1.2. Let A be a Krull-Schmidt category.

(1) End4(A) local < A indecomposable

Recall that S is (not necessarily commutative) local if S/J(S) is a division ring.
(2) The Krull-Schmidt Theorem holds in A.

(3) Any morphism f: A — B in A has a right minimal version (and similarly also a left
minimal version), i.e. f = (f'0): A= A"® A” — B with right minimal f’, meaning
that f’0 = f’ only if # is invertible.

Definition 1.3. A local ring (R, m, k) is called Henselian if for every module-finite R-
algebra A each idempotent in A/J(A) lifts to an idempotent in A, i.e. for all idempotents
72 =7 € AJJ(A) there exists an idempotent e* = e € A such that T = e.

Theorem 1.4. Let (R, m, k) be Henselian. Then mod(R) is Krull-Schmidt.

Proof. 1t is enough to show that I' = Endg(M) is local for indecomposable modules M
in mod(R). Note that I" is module-finite. Nakayama’s lemma implies m C Ann(I'/J(T")).
Thus I'/J(T') is a finite-dimensional K-algebra, so semisimple. R is Henselian, so idem-
potents lift. Now M is indecomposable, so I' has only the two idempotents 0, 1. Thus by
Wedderburn—Artin I'/J(T") is a division ring. O

Corollary 1.5. Let (R, m, k) be complete local. Then:

(1) mod(R) is Krull-Schmidt.



(2) mod(A) is Krull-Schmidt for every module-finite R-algebra A.

Proof. (1) complete = Henselian

(2) Let M € mod(A) indecomposable. Now I' = Endy (M) C End (M) is module-finite.
Repeat the proof of Theorem 1.4. O

1.2 R-orders

From now on (R, m, k) is a commutative noetherian complete regular local ring with Krull
dimension dim(R) = d (e.g. R = k[[xy,...,x4]]). In this case

gl. dim(R) = inj. dim(zR) = proj. dim(zk) = dim(R) = d.
Definition 1.6.
(i) A module-finite R-algebra A is called an R-order if rA € proj(R).

(ii) Let A be an R-order. A finitely generated A-module M is called (mazimal) Cohen-Macau-
lay (CM) if RM € proj(R).

Example 1.7.

(1) Any finite-dimensional algebra over a field k is a k-order.

(2) Any commutative complete CM local ring containing a field is an R-order.

Denote by CM(A) the category of CM A-modules.
Proposition 1.8. Let A be an R-order. Then:
(1) mod(A) and CM(A) are Krull-Schmidt.

(2) CM(A) is a resolving subcategory of mod(A), i.e. it contains proj(A) and is closed
under extensions and kernels of epimorphisms.

(3) Homp(—, R): CM(A) = CM(A°P) is a duality.
aw = Homp(Ay, R) and wy = Homp(, A, R) are called the canonical modules.

(4) CM(A) is an exact category with enough projectives add(,A) and enough injectives
add(Aw).

Proof. (1) CM(A) is closed under summands.

(2) proj(A) € CM(A) and for 0 - L — M — N — 0 we clearly have L, N € CM(A) =
M € CM(A) and M,N € CM(A) = L € CM(A).

(3) Use the duality Homp(—, R): proj(R) = proj(RP).

(4) CM(A) is closed under extensions, so CM(A) is an exact category. Then use the
duality in (3). O

Proposition 1.9. Let A be an R-order. Then:



(1) inj.dim(,A) > inj. dim(zR).

(2) If gl. dim(A) < oo, then gl.dim(A) = inj.dim(,A) > inj. dim(zR) = dim(R) = d.
Definition 1.10. Let A be an R-order.

(1) A is called non-singular if gl. dim(A) = dim(R) = d.

(2) A is called an isolated singularity if gl. dim(A,) = dim(R,) for all p € Spec(R)\ {m}
where Ay = A ®@p R,.

Remark 1.11. A non-singular = A isolated singularity

Example 1.12. Let R = k[[zy,...,z4]] and G be a finite subgroup of GL,4(k) such that
|G| # 0 in k. Then G acts linearly on R by permuting the variables and the skew group
algebra R#G is a non-singular R-order.

Proposition 1.13. The following are equivalent for an R-order A:
(1) A is non-singular.
(2) CM(A) = proj(A).

Proof. (1) = (2) Let xy,...,z4 be a regular system of parameters of R and M € CM(A).
Then gl. dim(A) = d > proj.dim 5 (M/(zq,...,x4)M) = d = proj.dim(, M), which im-
plies that M € proj(A).

(2) = (1) For each M € mod(A) there is a projective resolution

0-QM—-P, =P, 5P —>M=0
of \M (also pM). So gl.dim(R) = d = Q¢M € proj(R) Nmod(A) = QM € proj(A). O
AR-formulas for A-orders

R-dual. D, :=Hompg(—, R): CM(A) = CM(A°P) induces a duality
CM(A) = CM(A)/ add(A) — 245 TM(A) = CM(A)/ add(wy) -
For X, Y € CM(A) then
Hom,) (X,)Y) = {X Ly f doesn’t factor through proj(A)}.

Matlis dual. D := Homp(—, F) = Ext4(—, R) with E := E(k) the injective envelope of
rk gives a duality
f.1L(R) —2— f.1.(RP).

A-dual. There exists a duality (—)* := Homy (—, A): proj(A) = proj(A°P).



Auslander-Bridger transpose. There exists a duality
mod(A) — = mod(A°P)

given by M — Tr(M) := coker(f*) where P, EN Py — M — 0 is a projective presentation
(and 0 — M* — B; L5 pr).
Theorem 1.14. Let A be an isolated singularity. Then:

(1) CM(A) ={M € mod(A) : Ext} (M, yw) =0 for all i > 0}

= {Tr(X) : X € mod(A°P) such that Extiop(X,Ax) =0 foralli=1,...,d}.

(2) There is a duality Q¢ Tr : CM(A) — CM(A°P).

(8) There is an equivalence T := D Q% Tr : CM — CM(A).

(4) (AR-formula) There exists an isomorphism

Hom, (77 (N), M) = D Ext} (M, N) = Hom, (N, 7(M))

natural for any M, N € CM(A).



2 Maximal and hereditary

orders

Monday 12" 14:15 — Yuta Kimura (Bielefeld, Germany)

Notation.
e R = k[[z]] with maximal

o K := Quot(R) fractional

commutative ring S

ideal m =

field of R (so K = k((x))).

order A (dim(R) =1)

(x) (or complete DVR such as 2p).

f.d. algebra A

CM(S) = proj(S)
regular (gl. dim(S) < o)

CM(A) = proj(A)
non-singular (gl. dim(A) = 1)

mod(A) = proj(A)
semisimple (gl. dim(A) = 0)

CM(S) triangulated
Gorenstein (inj. dim(S) < oo)

CM(A) triangulated
Gorenstein (inj. dim(A) = 1)

mod(A) triangulated
selfinjective (inj.dim(A) = 0)

R

Example 2.1. A =
R

There is an isomorphism

mf\
R

For any £ € Z let m* = (2

A C A overorder
= CM(A) = CM(A).

is an R-order.

)=Ra* C K.

I4

rm L) RR'
et

e CM(A) has an AR-quiver, which will now be computed.

e With e¢; = ((1]8), €y = (8

D) (B), (3, (), oo ()

(2) Applying 7 = (=)* 0 Quop 0 Trp gives 7 (™

M

) we have Ae; = (&),

- S EN
14
~—~

(" )y (%) /rad ()

o rad (Bmw) = (mm'), rad () =
1)

(%)@ (%)

\

L—1
WhereM:(x . 11-).
- —T

A A/l
= mod(A/I) — mod(A).

~ S @S,



e Apply Hom,(—, A), then Hom, (Ae;, A) = ¢;A and with N = (le_i 7"’“"7)

—T

7

0——a((%)A) — (r w)& (R Tr (%)
\ /
t)® (R R)
L /
QTr(“]‘Dz
0///////\r
0

(1z) i

(3) 0= (m) —= (mgl) @ (m;;) — (“}}i) — 0 is an AR-sequence.

e So the AR-quiver of CM(A) is

(%) (&) == (") = (})

Definition 2.2. Let A, A’ be R-orders and A a finite-dimensional K -algebra.

(1) A R-order in A .= K Qpr A= A
(Remark: A - K ®p A= A)

(2) N overorder of A in A= ACAN CA
(8) A mazximal order in A & there is no proper overorder of A in A

Example 2.3.
(a) G finite group ~» RG is an R-order in KG.



(b) For ¢ > 2:
A= My(K)

]

i )

")

(% %

mé-1

(
)/ \(R m
\w >/ |

Proposition 2.4. Let A’ be an overorder of A. Then:
(a) The functor f in the following diagram is fully faithful:

mod(A’) ——=—— mod(A)

J J

OM(A) —— eM(n)
(b) f dense = A=N = ANACA

Hereditary orders

Theorem 2.5. Let A be an R-order in A. The following are equivalent:
(1) A overorder of A in A with rad(A) C rad(A) = A=A’
(2) CM(A) = proj(A).
(3) AA is an hereditary algebra.
(4) rad(A) € proj(A).
Corollary 2.6. Maximal orders are hereditary.
Theorem 2.7. Let A be a finite-dimensional K-algebra. The following are equivalent:
(a) A contains a mazimal order.
(b) A contains a hereditary order.

(c) A is semisimple and the integral closure of R in Z(A) is finitely generated over R.

R 0) . . . K 0
Example 2.8. A = is maximal in A = .
R R K K



3 Backstrom orders
Monday 12" 15:45 — Sebastian Eckert (Bielefeld, Germany)
Setting.

e R complete discrete valuation ring

e [ the residue field of R, i.e. k= R/mTR = R/m

K field of quotients of R

A finite-dimensional separable K-algebra
e A R-orderin A
e CM(A) category of finitely generated left A-lattices

Definition 3.1. An R-order A is a Bdackstrém order provided there exists a hereditary
order I' such that radT' =radA CACT.

Proposition 3.2. A is Backstrom if A is a subhereditary order (A,I') and for any inde-
composable projective A-lattice P

rad(P) = AX
for some indecomposable projective I'-lattice X .

Lemma 3.3. The class of Bdckstrom orders is closed under Morita equivalence.

Remark 3.4. We can thus restrict to basic Backstrom orders A, i.e. A/ rad(A) is a product
of skew fields.

Aim. Understand when in this situation CM(A) is of finite type.

We need some algebraic structure associated to A:

Tensor algebras and valued graphs
Given A and I' we put

A = A/rad(A) = ﬁDi and B =T/rad(l') = [] M,
=1

j=s+1

(D;)-

Then:

e A and B are finitely generated k-algebras with an algebra homomorphism A < B
induced by A C T

e D, are finite-dimensional skew fields over k.



o Let Sj with s + 1 < j <t be a full set of simple B-modules with Endp(Sj) = D;.
Then ;S; = D; ®;, 5; with 1 <i < sand s+ 1< j <t are (D;, D;)-bimodules.

e d;j; =dimp (;5;) for 1 <i<sand s+1<j<tandd; =0 else.
. dgj :diij(iSj) for 1 <i<sands+1<j<tandd; =0 else.

~» Valued graph with vertices k with 1 <k <t and whenever ;5; # 0 an edge

o (dijdiy)
P —
Example 3.5.
i)
R m R R R R
A=|m R R I'=|R R R
m m R m m R
m m R
rad(A) =rad(l') = |m m R
m m m
3
A=T]D B = My(D,) x D D, =k
=1
5, = (™ Ss =D
4 = D, 5 = Ls
The valued graph is
p Dy g D g L, 5

Tensor algebra
Consider the tensor algebra
D - (B BBA>
0 A
with gB 4 viewed as (B, A)-bimodule.
~ rad?(D) = 0, D is the tensor algebra of a species S = S(A,T") and mod(D) = rep(S).
We write D-modules as triples (U, V, ¢) where

e U is a A-module,

10



e I/ is a B-module,

e v: B®,U — V is a B-module homomorphism.

Theorem 3.6 (Ringel-Roggenkamp). The functor F': CM(A) — mod(D) induced by
M — (M/rad(A)M, TM/rad(I')M, ¢)

where ¢ is induced by the natural inclusion M — I'M C A ®x M is a representation
equivalence between CM(A) and the category C of all finitely generated D-modules without
simple direct summands.

Example 3.7.
ii)

rad(A) = rad(l') = <m m)

A:Dl B:MQ(DQ) DIZDQZk

()

k
1S2 - D1®k (k-) :k@]{?

~ valued graph 1 ﬂ 2

b Ly
A= “ , “ ca—a,b—b,c,d em,d,d € R
c d cd d
R R R R
I = X
(m R) (m R)

3 )

~+ valued graph 1 / / A3 1T As

2

™~

Theorem 3.8 (Dlab—Ringel). A tensor algebra D is of finite type iff the associated valued
graph is a finite union of Dynkin diagrams, i.e. one of the following:

iii)

4 6

11



A, ° e — ... — o
B, ° (12) ®e ——— .. — o
Cn (2’1) .7 PR 7.
°
D, = T—e____ ... 4
o/
°
Eg
° ° ° ° °
°
E7
° ° ° ° °
Eg
° ° ° ° ° ° °
F, o ° 2.1) °
Go ° S °

Theorem 3.9 (Ringel—Roggenkamp). CM(A) is of finite type iff:

isoclasses of 1:1 non-simple positive roots
ind. A-lattices of an associated root system

Remark 3.10.
e Finiteness doesn’t depend on R.

e The indecomposable A-lattices are determined uniquely by I'M and M/rad(M).

Proposition 3.11. For arbitrary R-orders A a necessary condition to be of finite type is
that the associated valued graph is a disjoint union of Dynkin diagrams.
(A is contained in a Béckstrom order.)

Aim. Understand indecomposable A-lattices and the AR-quiver.

The AR-species of D has as its vertices the isoclasses of indecomposable D-modules and
irreducible maps correspond to valued edges.

We need more data: Denote by P; the indecomposable projective I'-modules, by o the
permutation of {s+1,...,t} with rad(P;) = P,;), by S; the simple projective D-modules
with s + 1 < j < t. Define ¢(S5;) = Q; iff the D-socle of the indecomposable non-simple
injective D-module Q; is D-isomorphic to ;.

Example 3.12. Continuation of iii) above: o = (3 5)(4 6)

P(S3) = Qs P(Sy) = Q4 #(S5) = Qs ?(S6) = Q¢

12



Theorem 3.13 (Roggenkamp). Let A be a Bdckstrom order with tensor algebra D. Then
the AR-species of CM(A) is obtained from that of D by

o deleting all simple injective D-modules S; with 1 < i < s (and arrows ending there),

e identifying Q; with S, ;) where $(S;) = Q;.
Example 3.14. Continuing iii), delete Sy, S; and identify along dotted lines:

13



4 Tiled orders

Monday 12%* 17:00 — Jan Geuenich (Bielefeld, Germany)

Tiled orders

R com]:\ajc,e DVR with

= quatiend fld K
- residue Feld k

g5 1 Preliminaries

Deb. + An Relabbice in o Fd. K-vsp, V' is & £.9. R-submodule of V.
It M it it jﬁhm}:}@s Vs a K-vsp.

o A R-order in e 1C.A- L(—a\& A is o -’fu\\ R-latice i A that is o Sub'\’l“(\ﬁ QFA,
Mokivakion
sla,uly R-orders n A=K For Fnile Sroups G whee R = Z, o
(> Plesken's ”GrouF ngs of Finike Groups Over P-adicv lnlrejers")
Def, An R-ordes Ainafd Separo\a\e %0\3’ Ais caid Yo be tiled if e, e, are

taximal R-orders in e;Ae, for a covnP\e\e sek ey,

€n n‘mijri e o 'Uno {
idem?ol&vx}s of A, O¥P R

Reduce (N.Lo,g) £
A= MK(D) -F:r a -P&, K-division q\ﬂe\oro_ D

Fads « D conkains a unique moximal Reorder A (= 'm%e%m\ dosare of R in D).

s A is o noncommytakive OVR | ie. o loc| Left and Tig\r& PIO with P= rad () # O,
o = LA = At for some teA,

§2 Classifiakion. of Tiled Ovders

No‘\tAﬁOﬂ— For M :'-(mij) € MY (Z)‘ n= (hu-'nnr) € Z/:o Wil’h Atemdn, =0

A, = (Mm,ng(’pm”)) c A

[Pa

Ay = AM,u,.A,A)
Thegrem [ Zassenhauss, Plesken, Rump]

(@) Ay biled Reorder in A ¢==> - {CD s Yk

® W emy; ¥y =o
() Adiled R-ovder Ay s basic ¥ @ holds woilki shrick ‘mecruab?l'y ond n =(4,., 1),
(c) There is a bijeckion bebween the seb of Eso;\asses (= conjugacy c\asges)
of tiled R-orders in A and the <ot o} equivalence closses of friples Gram)
With o= (0 ) € 20, m=(my) e 2777 SQJ”'S?r)"‘“@ furesiny = and
[ M = Mo+ Mg =Myg >0 Vgl

Bl ey, 20 Vi
B omy =0 Vi
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where {nnm) e (v [L', m‘) Lﬂ: v=v' and r\,: =", m'.jL =

'\T(!’.)}
‘FU" some Permﬂu‘\r\‘on.n o,\: . 'r';,

m\'r(i\rv(p\-r(k)
The csrrésF)nc\en(z {s 3iven \oy :

Am 2 Gem) withomg = o

e~ Ml

A(m;,n.-,J,a i (rnn)
for any Fixed k

Fur_{-s Ld; A= AM be a busic 4:)'[&(] R-order n A with Me MH(ZW)_
[Jotequonker] rj\,d.im A<ee = (qu -1 Vijand M= (Zi) = gldin A -sn-1)

[K:rfc‘ﬂen\(a] . A 1—|wana3w Govengtein &= mijrr(ii =0 Vi ;‘f some P@rmuﬁjn‘oﬂ T
~ Examp(e
$A vy T Agay  YobeZ witharbso it wonige - Garenstein.

e Prile %\u\w\ dimension. 1§15 i} ig \'\wdﬁar\/ i adk = 1.

§% M modules
A basic R-order i A
mob (4) cakequry of Fg A-wodules
CM(A) = L Xemod (A): X R-labkice |
G = (D D) simple A-module
M= (mg) u;&l‘,,‘sg\/,‘-n% @ and s&n‘s%cmj@ sjcﬂ‘cuy
Lo = (Xe(M(A): O#* X ¢S]
Pp = L, o proi(h)

It

i

\
f_M = {tm,m)eZ" moamg ym | ordeed by Mmoo« m' = mwmy Vi

Pu = () xZ ovdered by (5,0) € (j,6) & 1y < a-b
Rernork Z acks on PA and KA by muHﬁFUca)ﬁon, with {:) on ,KM by addition of (4, '1}
and. on. S)M \ay addibon oF A in e secnd ComPomnl:_'

Loromo.  There s o commytabive djq%ram of Z/~e<(u}vam‘an% maps For A:AMx

(i,0) +—————% QLA =: P‘u

The upper IS borizonkal ™maps are
£ isomqrs;\msms of Pasejvs

15



Examgf A= AM with M = (2 3)

{ | /“.\_\,fE AN (

(1,-0) F Y2 (-2 ) \\“ -1) (0o ~1)FRt (a,-2)
A P o7
.\\ Pt f\ A
e ( 1 o) /o/"'-)
P Nl NI
~ p
(,-1) p‘ o (-t n (o oy (4 1) e RE™ (2,-4) Ly
. AN e . l‘\\ /\ |
I (o 1) B (1 0) > P,
3 )~ . M
/ /‘ QY.{‘. ’\ /v B ’\ =
(1,00 P =(o 2) R (2 0)2P (2,0)
™
'R R \'\
Ry= vodlf) 2704 2) R €24y = vod(B) =R,
\ A R
/// /‘ ‘ - .

Theorem [P(cslun, Rump] For Recvders A in A {:.F.Q.é.:

() A s Hled in A,
(2) A s an indersechion of mox. R-ovders in A and 'EA forme w drshebubive lathee,
(3) " = ol Lh A-u‘d«ds %)cw\ —

Fo._c{_ Adiled R-ordes A in A is huedﬂcu!y iﬂf ?A is a dnain.

§4 Finvle-Type Clossifiohion,
A:AH bosic R-order in A

Def. ~rer°(?,i') is the cu\e%crry with
v objecds V= (VP)P‘M :;u\nue V, ove subspaces of o fid kevsp. \/,
- VP= o VP-.-(c,a) with acco
- Ve Verq oy
- VF = V‘,,a VP= (C, o) with a» o

* movpisms kelinear aps V., ‘%v‘,; s.4h ?(\/P) QVP' Y

Remorle ves® (PL ) s Weull-Scnrmidt and 'has an awtoequivolene o given on dhjecls Viby
(VV)(i.o.\ = \(i,a-n ’
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Theovem, [ Zavadskij- Kiridenko] TiF e
(1) CM(AY is of Finsle +ype,
(2) Tep(R) is oF finide bype up to +he Z-ackion of o
(3) P, condaing none of the &l!ow}mj as o full su\oFosd: '

SRR I B

“Wiemers CRITICAL Five'
Cc*m\\(rry ngd = MA) b %mkﬂ}w
Remorle  The prosf i [2K] uses maksx protlems ond “differenbibin of Pose%s”,

65 ldeo o%\ ﬁ)foo‘F ‘FOY R= A=l and K=ki®)

BQ:E_ Lakt (M) is the cc&esm*y with

e Sjeds X= (X,,.., Xa) tuples of full Relothes o KX = = KX,
5&55Fy£mb X; ‘{:W\z; QXJ \7/51,],

o MQTE\MSM$ F=(F,., 50 ) whet the fae movphisms X, —» X .
Lommo.  These s an equiva\m(e o¥ cqlfe%cm‘eg

G: Latb(M) ——=> CM(A)
X 2 SZ-_—@X‘

where CeA oets on e X as (xC); = 21Xy

Def. Deroke by T the furcloy- oblained by precomposing 6 with
Fiorep' () ——> Latb(M)

Vo Flv) with Fv), =TTy

ae¥ b

eherre '{:‘ma?s XEF(V)i to (Xa.1\%z,'
‘ﬂ'\eo e, \:Qo%m\mmp -W CQC\{MO.N\‘:]
(o) T2 Tev
(&) On o\o\jec‘ks T preserres ihc\ccomPosa\)iliW and Teflecks Pro\jecjn'v'ﬁy el méec){:vily,
(&) On me\u’sms T presarves |‘rrec[ua"b1(4#y,
(@) Dﬂno\'i'r\cd \‘3\/ r“:“ and. Q the AR~ quivers of reﬁ(?r:") and CM(A) resp.,
T foduces o morp\u‘sm o]E trans Labon quivers
e
Gl T

whose Trauge s A union oF Gomnecked u:mf;onen)cs,
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Cordlary IF CM(A) has findke e, bhen T, T an isomorphism,
Remark Al ﬂ oll, s casy o decide algorishimically

@ whethor CMIAY has Foile bype and. in buis cose

@ compute [ by Lenibing l_;n,

Example A=Ay wih M= (2 2

2 o

@ Consider l:‘M Posz% 300_ o‘ohmec‘k ﬁ-om MP ‘oY wﬂkac;\lmfj 'H\e

Foséwe ver%ces ko o_ Sm3< vw‘;ex oo

,/—'OO'\

(4,-1)
(4,-13‘(
i
(4,-2)
T

@ kit the AR- c‘@lvu' o¥ T@Fb(P::_ ) :

R
1 T T
Ve e I &
\ ) /R\4 Tl,i
a1 .
04 € - e }Quz-
Vh, A /\ﬁl ~
S TR ;

Remark [Sfmsonl
\f & is olgcoraically closed, thege is @ rotion for CM(A) 4o be of Lame
bype {of FO\A/Y\OWL»Q\ timwjr\«), ue,in;\ Hhe ﬁmclw T one can prove
Ehen the equivaltice ofs

(4) CMIA) has +ame "'\/Pe c‘; Fo\‘fnamm\ 3ruw¥\\

Q) P, conding none of “NazARova-ZAvabsKiy's HypercriTiCAL Segven'
as o full suoposed

CA complabe c\u;s»%w%m wiher, CMLAY oy Fame § T/FC" ¢ unbnown.
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5 Commutative CM-finite type of dimension 0 and 1

Tuesday 13" 9:30 — William Crawley-Boevey (Bielefeld, Germany)

Setting.

e R commutative noetherian local ring (R, m, k)

5.1 Dimension 0
e dim(R) = 0 < R artinian
e All finitely generated modules are CM.

Theorem 5.1. R has finite representation type < R is a principal ideal ring.

Proof. If m/m? has dimension 1 over k, then R is a principal ideal ring.

If m/m? has dimension > 2, reduce to the case m? = 0 and dim(m) = 2.
Then it looks like k[x,y]/(z,y)?, i.e. it is given by the quiver with one vertex and two
loops z and y subject to the relations zy = yz = 0 and 22 = y? = 0, whose representation

theory is essentially equivalent to the one of the Kronecker quiver. O

5.2 Dimension 1

e Henceforth dim(R) = 1.

e For finitely generated R-modules M:
M is CM
< there is £ € m which is a non-zero divisor on M, ie.2m=0=m =0

<  Hom(k,M) =0, i.e. M doesn’t have a copy of k as a submodule

If R is reduced (i.e. it has no nilpotent elements), then M is CM iff M is torsion-free.

Total quotient ring K = {non-zero divisors in R} 'R.

e K # R < there exists a non-zero divisor which is not a unit < R is CM

e R = integral closure of R in K

The following implications hold:

nr(R) = e(R)
_ () .
rR fin. gen. . R CM
” / . \H Hcf. Matsumura
R reduced R reduced v R CM

cf. stacks project 032Y

e.g. kllzy]/(y?)
(“R analytically unramified”) ) o
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Example 5.2.

e Non-example: k[z,y]/(zy), i.e. it is given by the quiver with two loops z and y and
relations zy = yx = 0.

e Example: R = k[[z,y]]/(zy).

Definition 5.3. A finite birational extension of R is a ring S with R C S C K and pS
finitely generated.

Proposition 5.4. In the situation of the definition with R, S 1-dimensional local rings:
R CM-finite = S CM-finite

Definition 5.5. An artinian pair is A — B with A and B commutative artinian rings
and 4B finitely generated.

Rep(A — B) = {AV — gW of f.g. A-modules with gW proj. and BV = W}

Vv A 0
is a -module and B® 4 V — W B-module homomorphism.
w B B

Definition 5.6. Let R be a CM ring and let S be a finite birational extension of R. Then
the conductor C of R in S is the largest subset of R which is an ideal in S, i.e.

C ={reR:SrCR}.
Conductor square, a pullback diagram:

R——— S

! I

A=R/C —— S/C =B
Example 5.7.
R = kllz,y]/(zy) = {(a,b) € k[[z]] ® k[[y] - ap = bo} < Kl[z]] & k[[y]]

K = k((z)) @ k((y))
R = k[[z]] ® K[[y]]
C = zk[[z]] ® yk[[y]]

A=R/C=k—B=R/C=kdk
A0\ [k 0
B B k2 k2
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0 k/k
L
0

0

k -
™~

o

0
e M CM R-module
o M — S ®p M/torsion =: SM
e R reduced (then: R CM-finite <> Rep(A < B) is representation-finite)
e S=R
Theorem 5.8. Let (A — B) and (A, m, k) be as before. Then:

(dr1) dimg(B/mB) <3

(A — B) representation-finite =
(dr2) dimy((mB+ A)/(m?B+ A)) <1

If B is a principal ideal ring and if either B/ rad(B) is separable over k or B is reduced,
then < holds.

Theorem 5.9. R reduced. Then:

(dr1) up(R) <

R CM-finite < _ ;
(dr2) pr((mE+R)/R) <1

5.3 Simple plane curve singularities
o k[[z,y]]/(f) with k algebraically closed of characteristic 0
Simple.
Hproper ideals I in k[[z,y]] with f in I2}| < 0
f must be one of:

A, 2?2 4+y"t withn>1
D, 2*y+y* ! withn >4

Eg 3 + y4
E; 234 xy3
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Theorem 5.10 (Greuel-Knorrer). Let R be the complete local ring of a reduced curve
stngularity. Then:

(i) R CM-finite < R finite birational extension of a simple plane curve singularity

(ii) R Gorenstein: R CM-finite < R simple plane curve singularity
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6 Auslander-Reiten theory for lattices |

Tuesday 13" 11:00 — Kunda Kambaso (Aachen, Germany)

Setting.
e R commutative noetherian with dim(R) = d
o dim(X) = dim(R/Ann(X)) for X € mod(R)
e depth(X) = inf{i > 0 : Ext’(R/rad(R), X) # 0}
o depth(X) < dim(R)
e CM;(R) ={X € mod(R) : X # 0 and depth(X) =i = dim(X)}
e CM(R) = CMy(R)
e R Gorenstein :< inj. dim(R) < 0o

e R equidimensional :& dim(R,,) = dim(R)

e R equidimensional
e A a noetherian R-algebra
e A A-module M is CM iff it is finitely generated and CM as an R-module.
e CM(A) ={M € mod(A) : M € CM(R)}
Definition 6.1. M € mod(A) is called a lattice if M € CM(A) and for non-mazimal p
(i) M, is a A,-projective module,
(1) Homp(M, R), is a A,P-projective module.
Denote by L(A) the category of lattices, a subcategory of noeth(A).
Definition 6.2. A is an R-order if A € CM(A).

Example 6.3.

(a) R field (0-dimensional Gorenstein ring):

R-orders are noetherian R-algebras and £(A) = CM(A) = artin(A).

(b) R equidimensional Gorenstein ring:

R is an R-order and R-lattices are all CM R-modules such that Mp is Rp—free.

Let A be an R-order and d = dim(R).
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Properties.
1. If A is an R-order, then so is A°P.
2. M € L(A) = M is CM and Hompg(M, R) is in L(A°P).
3. Homp(—, R): L(A) — L(A°P) is a duality.
Remark 6.4. J7(A) the full subcategory of noeth(A) consisting of all M such that
(1) M, is Ay-projective for all non-maximal p,
(2) Exti(M,A)=0foralli=1,...,d.
J(A) is the full subcategory of noeth(A) with objects in J(A).

There is a functor €2 : noeth(A) — noeth(A), M — ker(P(M) — M).
In general, Q° the identity, Q' = Qo QF, then Q¥(M) is in L(A).
Q% induces a functor J(A) — £(A), which is fully faithful.

Theorem 6.5. Q%: J(A) — L(A) is an equivalence.
Theorem 6.6. The duality Tr: noeth(A) — noeth(A°P) induces the duality

Tr: £(A) — J(AP).

Remark 6.7. We get Tr, : L(A) — L(A°P) from L(A) LN J(A°P) LN L(A°P).
Proposition 6.8. Tr, : L(A) — L(AP) and Trz : L(AP) — L(A) are inverse dualities.
Definition 6.9.

(a) -+ — M, EIN M, ELN My — -+ in L(A) is exact if it is exact as a sequence of
A-modules and im(f;) in L(A).

(b) C in L(A) is projective if all exact 0 - A — B — C — 0 split.

Z(L(A)) denotes the full subcategory of £L(A) whose objects are injectives.
Z(A,C) is the R-submodule of Hompz(A, C) of morphisms factoring through Z(L(A)).
Define £(A) with Homy (A4, C) = Hom, (A, C)/Z(A,O).

Proposition 6.10.
(a) Homp(—, R): L(A) — L(AP) induces L(A) — L(AP).

(b) L(A) 5 £(aop) 2,

L(A) is an equivalence of categories.
Proposition 6.11. Let X,C be in L(A). Then

Ext} (C, X) = Homp(Hom, (Tr, X*,C), 1,)
18 functorial in X and C. We get

Ext} (C,Homp(Tr, X, R)) = Homp(Hom, (X, C), I,) .
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Consequently:
Proposition 6.12. Let C, X be in L(A) and n € Z.y. Then there is

Ext} (C, Homp(Tr, X, R")) = Homp(Hom, (X,C),I7).
Let

z: 0 —— Homp(Tr, X,R") —— B UNYy

be an exact sequence in £(A) and v : Hom, (X, C) — I}.

Theorem 6.13. Let H be an R-submodule of (X, C) containing P(X,C) with H/P(X,C) =
ker(v). Then:

(a) h: L — C in L(A) can be written as ft = h for somet: L — B

&< im(—,h)(X): Hom(X,L) - Hom(X,C) C H.

(b) fis right X -determined in L(A) and im(—, f)(X) is a mazimal End(X)°P-submodule.

Let f: B— C. Forall f': B' — C, then f' factors through f and for all ¢: X — B/,
f'o factors through f:

x *.p I
X%C

(c) im(—, f)(X) =H < H is a X-submodule of (X,C) where ¥ = End(X)°P.
Use A = Homp(Try(Trp A)*, R) to see that f is right (Tr, A)*-determined.
Theorem 6.14. Let X,C be in L(A) and suppose Hle S}t is isomorphic to the socle of

(X,C)/H with S; simple non-isomorphic ¥-modules, n; € Z~q. Let n = max{nq,....n;}.
There is an ezact

z:0 —— Homp(Tr, X,R") —2 B 7

C 0
satisfying

(a) im(—, f)(X) = H and f is right X -determined.
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7 Auslander-Reiten theory for lattices Il
Tuesday 13" 14:00 — Jasper van de Kreeke (Amsterdam, Netherlands)

Auslander-Reiten ...

e sequences
translates

e quivers

duality

in the commutative and noncommutative setting.

Yesterday: R = k[[z]] and A an arbitrary R-order.
Now: By convention, R is a commutative noetherian local complete Gorenstein ring
which is an isolated singularity (~ AR-sequences exist).

Example 7.1.
o R= K]

e Kleinian singularities in all dimensions (A4; surface singularity: R = C[[2?, 32, zy]])

Theorem 7.2 (Auslander '86). A local complete Gorenstein ring R has AR-sequences for
all non-free indecomposable modules M € CM(R) iff R is an isolated singularity.

7.1 AR-sequences and AR-translates

Definition 7.3. Let M € mod(R) and let P, — Py — M — 0 be a minimal projective
presentation for M. Then Tr(M) := coker(Py — Py).

Definition 7.4. Let M € mod(R) and0 - N — P, | — -+ — Py = M — 0 be ezxact
with P; finitely generated projective, then N is an n-th syzygy for M.

The following is uniquely defined up to isomorphism

redsyz" (M) = “N minus its free summands”.

Definition 7.5. Let M € CM(R) be indecomposable. Then a short exact sequence
0O—-N—-E—-M=0

with N indecomposable is an AR-sequence for M if E — M is not a split surjection and
every X — M which is not a split surjection factors through E — M.
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Theorem 7.6. For any non-free indecomposable M € CM(R) there exists a unique AR-
sequence. In fact N = 7(M) := Hom(redsyz" (Tr(M)), R) where n = dim(R).

Example 7.7. The theory is trivial for a regular ring, e.g. C[[x]].
Exercise 7.8. Check that Tr(Tr(M)) = M for non-projective indecomposable M.
Remark 7.9. If dim(R) = 2, 7(M) = M for non-projective indecomposable M € CM(R).

(Look at 0 = M* — Py — P — Tr(M) — 0.)
7.2 AR-quivers

Definition 7.10. Let M = @ M; and N = @ N; be decompositions into indecomposables
of M, N € CM(R). Define

rad(M,N) = {(g;) : each @;; : M; — N; not an isomorphism},
rad’ (M, N) := {fog:gcrad(M,X),f crad(X,N)},
Irr(M,N) := rad(M,N)/rad*(M,N).

Exercise 7.11. Check that rad(M, N) and rad?(M, N) are R-modules. In fact Trr(M, N)
becomes a k-vector space where k = R/m.

Definition 7.12. Assume k is algebraically closed. Then the AR-quiver Qgr has
o vertices M for all indecomposable CM modules M,
e dimy, Irr(M, N) many arrows from M to N,
o remembers the AR-translates.

Theorem 7.13. The AR-quiver of a 2-dimensional Kleinian singularity (over C) is the
McKay double quiver.

Example 7.14. A, case (C?/Z,): We have R = C[[z2,y?, zy]]. Then R and M = Rz + Ry
(= power series in odd degrees) are the 2 indecomposable CM modules and

Homg(R,R) = R
Homp(R,M) = M
Homgr(M,R) = M
Hompr(M,M) = R
rad(R, R) = {z € R with constant term 0}
rad?(R, R) = {z € R starting 22, y?, vy onward}
Irr(R, R) =0
Irr(R, M) = Cx+Cy
Irr(M, R) = Cx+Cy
Irr(M, M) =0
So the AR-quiver is
R M
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Exercise 7.15. Check that redsyz?(M) = M using 0 — ker — R®? — R®2 — M — 0.

7.3 AR-duality
Theorem 7.16. We have

Homp(771(Y), X)/{maps factoring through some R®"}

(
= Hompg (Y, 7(X))/{maps factoring through some R®"}
= BExt!(X,Y)*.
Example 7.17. “cluster category”: D?(mod(A,))/7 =2 CM (2-dimensional A,)

Exercise 7.18. Using this equality check AR-duality.

7.4 Noncommutative case

Let R be a local complete noetherian commutative Gorenstein ring.
Let A be an R-order (i.e. A € CM(R)). Then we have CM(A).

Fact 7.19. CM(A) finite type = A isolated singularity, i.e. gl. dim(A®pR,) = gl. dim(R,)).
Fact 7.20. AR-sequences exist < A isolated singularity

Fact 7.21. AR-duality for isolated singularities A:

Hom, (771(Y), X)/{maps factoring through some A®"}
= Homy (Y, 7(X))/{maps factoring through some (A*)®"}.
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8 Auslander-Buchweitz approximations

Tuesday 13" 15:15 — Manuel Flores Galicia (Bielefeld, Germany)

(following notes by Ryo Kanda)

Setting.

e R Iwanaga-Gorenstein (left and right noetherian and inj. dim(zR) and inj. dim(Rp)
finite, actually then inj. dim(zR) = inj. dim(Rp))

e For M € Mod(R) there exists a short exact sequence 0 - K — N — M — 0 where
N € CM(R) and K has finite projective dimension.

8.1 Approximations and cotorsion pairs

e 3 additive category

e X C B closed under finite sums and direct summands and extensions

Definition 8.1. A morphism f: X — M with X € X is a right X-approximation of M
iff for every f': X' — M with X' € X the map Hom(X, X) — Hom(X', M) is surjective:

X is said to be contravariantly finite in B if every B € B has a right X -approximation.

Dually, define left X -approximations and covariantly finite.

Proposition 8.2. Y CBand0 —-Y — X i) M — 0 a short exact sequence with X € X.
IfExt!(X,Y) =0, then f is a right X -approzimation.

Definition 8.3. B C A with A abelian, X,Y C B additive.

We say that (X,Y) is a cotorsion pair in B with special approzimations if:

(a) Exty4(X,Y)=0forall X e X, Y €Y,i>0,
(b) for all B € B there are
05Ys = Xg B0  and 0-BLYB o xB o
with Yg, Y2 €Y and X5, XP € X.

Proposition 8.4. Proposition 8.2 = f is a right X-approximation of B and g is a left
Y-approzimation of B.
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Definition 8.5. For X,) C A let
xt = {MeA:Ext*(X,M) =0},
1y = {MeA:Ext}°(M,Y)=0}.

Definition 8.6. w C X is a cogenerator of X if for all X € X there exists a short exact
sequence 0 > X - W =Y -0 withW €w andY € X.

w is an injective cogenerator if Ext>0(X,w) =0.

Recall 8.7. w C A additive. Then A/w has the same objects as A and morphisms

HomA/w(M,N) = HomA(M,N)/ {M i)N : f factors through some W Ew} .

Proposition 8.8. Let (X,)) be a cotorsion pair in B and w = X NY. Then:
(1) Yy=XtnB=xhnNBand X =YynB=11YynBandw=xNnxt=ynty,
(2) w is an injective cogenerator of X,
(8) forall f: X =Y with X € X, Y €Y we have f =0 in A/w,
(4) Xg, YB are unique up to isomorphism in Ajw.

Proof. (1) Y C X+t nBCxthnB.
If Be X11nB, then0 — B — YP — XB — 0 splits, so B is a direct summand of YZ,
soBeY. ThusY =Xt nBandw=XNY=XNXhNnB=XNXL.

(2) For all X € X thereis 0 — X — Y¥* — XX — 0 with Y* € Y and XX € X. Since
X is closed under extensions we get YX € X, so Y¥X € w.
Since w C X+ by (1) we get Ext™%(X,w) = 0. O

8.2 Auslander-Buchweitz approximations
e A abelian category
e X C A additive, closed under extensions and kernels of epimorphisms
e w C X additive, injective cogenerator of X

o)?::{ME.A:thereisnandanexactO—>Xn—>---%X0—>M—>0withXi€X}

Theorem 8.9 (Auslander, Buchweitz). Under the above assumptions:
(1) (X,&) C X is a cotorsion pair,
(2) X={MecA:30 =Yy — Xy > M—0 withYy; €& and X3y € X} and
X={MecA:30> MYy - Xy — 0 with Yy €& and X, € X},

(3) w=xnxt.
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Definition 8.10. The morphism p: X,y — M is called an Auslander- Buchweitz approxi-
mation of M (or CM approximation) and j: M — Y, is called an @-hull of M.

Proof. Let M € X. Then there is an exact 0—-X, —-- d—O>XO — M — 0 with X, € .
Ifn=0take 0 -0 — M — M — 0 where 0 € W and M € X. Now w C X cogenerating
gives0 > M - W - X - 0with Wewand X € X.
If n > 1, set K =im(dy) and consider 0 - K - Xy = M - 0and 0 - X, - --- —
X, = K — 0. By induction hypothesis there is 0 = K — Y& — XK 5 0 with Y& € @.
Consider

0
0 K yE YE —— 0
0 X, E XK ——o0
M s M
0 0
The third column yields a right X-approximation of M. O
8.3 Examples
1.

R Iwanaga-Gorenstein

A = mod(R)
e X =CM(R) =+R={M € mod(R) : Ext”°(M, R) = 0}

e w = proj(R) finitely generated projective R-modules

CM(R) 7= CM(R°P)

q q

proj(R) =~ proj(R°?)

o = M = M** for all M € CM(R), i.e. M is reflexive.

proj(R) € CM(R) is cogenerating.

Let M € CM(R). Then

0 —— QM) P} M* 0




where M*, Q(M*) € CM(R°P), P € proj(R°P) and

0 M** » (P —— (M) —— 0
where (Q(M*))* € CM(R), (P;)* € proj(R).
e X =CM(R)
e X =mod(R):
Let M € mod(R). Since n = inj. dim(Rp) < oo, we have
Ext”" (M, R) = Ext™" "' (Q(M),R) = --- = Ext™°(Q"(M),R) = 0,
so Q" (M) € CM(R). So we have
0—-Q"M)—P, ,—--—>F—>M=0
with Q"(M) € CM(R) and P; € proj(R) C CM(R).
o & = proj(R) = {M € mod(R) : proj. dim(M) < 0o} =: P<
e = (CM(R),P<*>°) C mod(R) is a cotorsion pair.

e w=CM(R)NP<> = proj(R)

e R commutative noetherian local Cohen-Macaulay ring with canonical module wg
(i.e. wp € mod(R) with Ext”°(wp,wg) = 0, inj. dim(wg) < oo, R = End(wg))

e CM(R) := {M € mod(R) : Ext”°(M,wg) = 0}

e = (CM(R),Z=%) is a cotorsion pair in mod(R) and CM(R) N Z<*> = add(wg).
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9 Algebraic McKay correspondence

Wednesday 14" 8:30 — Sarah Kelleher (Glasgow, United Kingdom)

Goal.
o k field

e G < GL(n, k) finite with |G| invertible in k£ and G having no pseudoreflections

S polynomial ring or power series ring with G acting linearly

R =8¢

e The natural morphism v: S#G — Endg(S), (s - 0)(t) = so(t), is an isomorphism.
Example 9.1. n =2, S = C[[z,y]].

Definition 9.2. Invariant ring R = S with s € R iff o(s) = s for all o € G.

€3

0
Example 9.3. G = %(1, 2) = < ( )> acting by = — 32, y > e3y.

0 &3
Then 23 = 23, 42 — 3, 2y — zy. So R = C[[23,4>, zy]] = C|[a, b, c]]/(ab — ¢3).

Definition 9.4. Skew group ring S#G, group homomorphism ¢: G — Aut(S), then

S#G = Zagg:ages,geG

geG
with multiplication ag - bh = ap(g)(b)gh for a,b € S, g,h € G.
Example 9.5. S#G =S ®c CG, (a®g)(b®h) = (a-g(b)) @ gh.

Theorem 9.6. G < SL(n,C), S = C[[zy,...,,]], R = S¢. Then:

SH#G = Endp (@ eru(c) (S @ p)%) )

Definition 9.7. o € GL(n, k) is a pseudoreflection if rank(c — 1) < 1 for all o # id.

1 0
Example 9.8. G = << >>
0 -1
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Example 9.9. There are 3 one-dimensional representations pg, py, pa.
g acts on e; with e, €1, €5 by weight 4.
My = (Cllz,yll®@py)® = R
My = (Cllz,y]] ®p1)©
My = (Cllz,y)] ® pp)¥
So
S#G = Endr(R® M, @ M,).
McKay quiver

Definition 9.10. G a finite group acting on a fived space V (= C2).

Then the McKay quiver of V' is the directed graph with vertices Vj, ..., Vy (non-isomor-
phic representations of G) and arrows V; — V; with multiplicity

dimc HOHlCG(‘/Z', V] & V) .

(5 3)

P1 D po

Example 9.11.

PV = py®py
POV = py®ps
P2 @V = py®py

So the McKay quiver is:
Po

VRN

P1 ©p2

Proposition 9.12. R normal surface. Then CM(R) = add(gS).
Fact 9.13. If M € mod(R), then

Hompz(M,—): mod(R) — mod(Endg(M))
induces add(M) = proj(Endz(M)).

projectivization ~~

CM(R) = proj(Cl[z, y]]#G)

Lemma 9.14. Let G < GL(V) be a finite subgroup.
Then CIV|#G is Morita equivalent to the McKay quiver with relations.

proj(S#G) = CM(R) = add(gS) = proj(Endg(S))
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Theorem 9.15. The AR-quiver of CM(R) is the McKay quiver of G.

Sketch of proof.

(1) No pseudoreflections.

~» R — S is unramified, R, — S, with p height one prime ideal.
(2) Define a right-splitting from Endz(S) — S#G for v and show this is a surjection.

(3) Everything is torsion-free, R-modules have rank |G|2.

~ 7 isomorphism

Definition 9.16. {E,} of exceptional P ’s in minimal resolution X — Spec(R).
The dual graph is as follows:

e Draw a dot for each E;.
o If two E; intersect, connect the dots.
Example 9.17. X — Spec(R) = C?/G.

Ey E,

SN TN

~> dual graph e — e
Theorem 9.18. There are correspondences:
{dual graph} «—— {McKay quiver} «—— {AR-quiver}
o M — D by killing trivial representations and merging arrows

e D — M by adding vertices and doubling arrows

Po

/ \ 6 ere

2B e ——
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10 Knorrer’s periodicity and hypersurface singularities

Wednesday 14" 9:45 — Shiquan Ruan (Bielefeld, Germany)

10.1 Matrix factorizations

Notations.
e (S,n, k) regular local ring
e R=S/(f) and m = n/(f) with 0 # f € n?
e dim(R) =d=dim(S) —1

Definition 10.1. A matriz factorization of f in S is a pair (p, )

%)
G __F
P

where F', G are free S-modules of the same rank n such that
f
f

A homomorphism between (p, 1) and (¢, ") is a pair of (o, B) € mod(S) such that the
following diagram commutes:

©
G *ﬁ) F
| b
G — F
w/
We obtain the category MFg(f) of matriz factorizations of f with direct sums
(0o @) = (o). (Yy))
Remark 10.2.
(1) ¢, ¥ are both injective.
(2) p=fl e pp=fI
Be=¢'ae ap=9p
(3) (¢, ¥) € MFg(f) < (¥, ) € MFg(f)

(4) (17f)7(f71) € MFS(f)

For any (p,9) € MFg(f) write (¢, ) = (¢',9") & (1, f)*P & (f, 1) and call (¢', ¢’
reduced (any entry in ¢’ and ¢ is not a unit).
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Example 10.3.

o S=k{z,y}, f=2>+y' = (z+iy*)(z —iy?)
) (1,f)’(f71)EMFS(f)

e jc S

S

e With A= (i 2, ) = fland B= (i ,):

52 r 52
Proposition 10.4. Assume R = S/(f).

(i) For all M € CM(R) there is (p,v) € MFg(f) such that coker(y) = M.
(ii) For all (p,v) € MFg(f) we have coker(¢) € CM(R).

Proof. (i) For M € CM(R) we have by Auslander-Buchsbaum

proj.dim(gM) = depth(S) — depth(¢M) =(d+1)—d=1.

0 S —— gn) T

> M 0
P

So fM =0, so M € tor(S).
w(fx) = fr(x) € fM =0 = fzx€ker(r) =im(p) = fz = ¢(y) for a unique y

Define ¢: x — y (satisfying fx = p(y) = p(x) = fI = pp = Yo = fI).
= (%w) € MFS(f)

(i) (p,0) € MFg(f) = G H% F with gy = f1, = g

The sequence

F-Y,Gg- 2, F Y, ..

in mod(R) is exact. ... = coker(y) € CM(R)

Define coker((p, 1)) := coker(yp).

Remark 10.5. coker((1, f)) = 0 and coker((f,1)) = S/(f) = R.

%)
G ' F —— coker(yp)

c{ Z/ lﬁ i

G' —— F' —— coker(¢)
,wl

~ additive functor MF4(f) — MFg(f), (¢,v) — coker(p)
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Theorem 10.6 (Eisenbud). R = S/(f). Then
coker: MFg(f)/{(1, f)} — CM(R)

and between the category of reduced matriz factorizations and stable CM modules

coker: MFg(f)/{(L, f), (f, 1)} — CM(R)/{R} = CM(R).

10.2 Double branch covering
Definition 10.7. The double branch covering of R = S/(f) is

RF = S]]/ (f +2%).
Remark 10.8.
e There is a surjection Rf — R killing the class of z.
e Rfis a free S-module generated by T and Z (S is complete).
Definition 10.9.
e For each M € CM(R) set M* := syz{zu(M).

e For each N € CM(R!) set N’ := N/zN.

S]] > S

| l

R = S[[2))/(f + 2%) —2 R=5/(f)

@ ~ _
Lemma 10.10. Let G | ; * F bein MFg(f) and M = coker(y). Letm: F — F — M.

i) There exists an exact sequence of Rf-modules
(i) q

FoG —2——CGaoF (&2 F z M 0

~

A
where A = (4 ~21).

@) ((473)(57%)) & MFspy(F +2)

(iii) M* = coker (572"

(iv) piM?* stable & zM stable, in which case Syzfzﬁ (M*) = M?,
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Proposition 10.11. Let M € CM(R). Then (M*) = M @ syz{(M).
Proof. ... O

Dually:
Proposition 10.12. Let N € CM(R?) and char(k) # 2 Then (N°)! = N @ syz{%ﬁ (N).
Corollary 10.13. M € CM(R) indecomposable and stable. Then:

(i) M*¥ is a direct summand of either one or two indecomposable R*-modules.

(ii) M is a direct summand of N’ for some indecomposable non-free Rt-module.
Theorem 10.14 (Knorrer’'s Theorem). Let R = S/(f) and char(k) # 2. Then:

R* CM-finite < R is CM-finite

Example 10.15.

o R,g=Fk[z,z,...,24]/(a" T + 2§+ -+ 23) withn > 1, d > 0 is CM-finite.
(since R, o = k[[z]]/(2""1) is CM-finite)

eick, RR=kuz,...,20,y1,- -,y }/(@y1 + - - + zy,) is CM-finite.

(Write z;y, = u? + UJZ where x; = u; +iv; and y; = u; —iv;. Then R = Ry 54.4.)

10.3 Knorrer's periodicity

#
R SR
b

Proposition 10.16. Assume char(k) # 2.
(1) M € CM(R) indecomposable non-free:
M?! decomposable
& M =syzlt (M)
= M'z=Nog syz{zﬁ(N) with indecomposable N % syz{z#(N)
(2) N € CM(R?) indecomposable non-free:

N’ decomposable
& N= syz{%n (N)
= N>2Mo syzit(M) with indecomposable M % syzit(M)

Definition 10.17. Set R¥ = S{u,v}/(f +uv) = S{z, 20} /(f + 22 + 22).
%)
For M € CM(R) corresponding to G " F in MFg(f) define
P

MX = Coker((fﬁ?f) ) (—z]ﬂ 1:01)) '
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Theorem 10.18 (Knérrer). M +— MX defines a bijection between isoclasses of indecom-
posable non-free CM modules over R and R*.

Proposition 10.19.
(i) M# = MX @ syaf™ (MY)
(ii) (MX)" = M @ syzf(M)

(iii) (syzR(M))" = syaf™ (M)
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11 What is (should be) a noncommutative resolution of singularities? — |
...and why should it have to do with MCM modules?

Wednesday 14" 11:00 — Graham Leuschke (Syracuse, United States)

Goal. Global dominations for algebra over algebraic geometry.
Can we completely remove the geometry from resolution of singularities?

Recall 11.1. A resolution of singularities of an algebraic variety X is a morphism

T X =X
with
(1) X is smooth (nonsingular),

(2) m is proper (e.g. projective or finite),

(3) = is birational (induces an isomorphism on function fields).

The dictionary “algebra <> geometry” reverses arrows, so we might want to consider a
ring homomorphism R % S “resolving” the singularities of R. It should satisfy:

(1) S is regular / nonsingular,
(2) S is a finitely generated R-module (probably stronger than necessary),
(3) R and S share a quotient field: Quot(R) ®p S = Quot(R).

Problem. These don’t exist, e.g. R = C[[z,y, 2]]/(z® + y* + 22) has no such algebras S.
Let’s allow S = A to be a noncommutative ring and require (R — A sends R — Z(A))

(1) A has finite global dimension,
(2) A is a finitely generated R-module,

(3) Quot(R) ®p A is Morita equivalent to Quot(R):

Quot(R) ®r A = M, (Quot(R)) .

Weakest Possible Definition. A (weak) noncommutative resolution of singularities of a
ring R is a module-finite R-algebra A of finite global dimension with

Quot(R) ®p A = M, (Quot(R)) “birational” .

Example 11.2 (McKay Correspondence).
[ ) S = k[[ml, e ,xd]]
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o G C GL,4(k) finite with |G| € kX
R =8¢,

Technical assumption: no pseudoreflections.

e Ris a complete local Cohen-Macaulay (Hochster-Roberts Theorem) normal domain.
e R is Gorenstein iff G C SL;(k) (since no primitive roots).

As an R-module S is finitely generated (and MCM).

(By the way: They have different fraction fields.)

Take the skew group ring S#G.

e It has finite global dimension!

e It is finitely generated free as an S-module, hence finitely generated (and MCM) as
R-module,

e It is birational: we know

S#G = Endg(S)

and passing to Quot(R)
Endg(S) ®p Quot(R) = Endquer(r) (Quot(R)') = Mg (Quot(R)).

Remark 11.3. Homgyq(—, —) = Homg(—, —)¢ and (—)¢ is exact (|G| € k*), so
Extfg#G(—,—) >~ Extly(—, )",

so gl. dim(S#G) = dim(S) = d (the smallest possible finite global dimension for an S-
algebra).

Example 11.4 (Finite Cohen-Macaulay Type).

Let (R, m) be a CM local ring of finite CM-representation type.
E.g. k[t?,t"] (with n odd), k[t3,t%, %], k[z,y]/(zy) (A, singularity).
Let My,..., M, be the indecomposable MCM R-modules.

G = @MZ a CM-generator ~» CM(R) = add(G)
i=1

Set
A = EndR(G)

an Auslander algebra for R.

Fact (Iyama, Leuschke, Quarles 2005; Auslander 1980’s).
gl.dim(A) < max{dim(R),2} < oo.

e It is birational over R (same proof),
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e [t is module-finite over R.
So A is a weak noncommutative resolution of singularities.

Remark 11.5. More precisely, Iyama proves A has one simple module for each M; and

2 if M, % R,

proj.dim(,.S;) =
. {1 if M, 2 R,

So gl. dim(A) = d when d > 2 but A is not homologically homogeneous (simples have same

projective dimension) if d > 3.
The best case is d = 2.

Theorem 11.6 (Auslander 1986). The 2-dimensional complete local C-algebras of finite
CM type are precisely the invariant rings C[[u,v]]¢ for G € GLy(C).

So in this case Example 11.4 = Example 11.2.

Complaints (from a commutative algebraist)

For noncommutative rings, finite global dimension is not strong enough for most purposes.
Particular issues:

(a) No Auslander-Buchsbaum formula for proj.dim(,M). In fact, we don’t even know
the finitistic dimension conjecture.

(b) We don’t have analogs of the implications
regular = Gorenstein = CM

for noncommutative rings.

(c) Finite global dimension doesn’t localize well.

Strengthen the definitions to address (a), (b), (c).

(c) Say A is nonsingular if gl. dim(A,) = dim(R,) for all p € Spec(R).
(Biao defined it on Monday for orders as gl. dim(A) = dim(R).)

From now on: R is a Cohen-Macaulay normal domain, for simplicity, and assume that
R has a canonical module wr. Most important things:

i) R is Gorenstein < wp = R
ii) Homp(—,wg) gives a duality on CM(R).

iii) CM(R) = {M € mod(R) : Ext;*(M,wg) =0}
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(b) A is a Gorenstein R-algebra if
Homp(A, wg) =: wy
is a projective (left) A-module. It is symmetric if
Homp(A,R) = A
as A-bimodules.

When R is Gorenstein
symmetric = Gorenstein

but not conversely.
If R is not Gorenstein, they are independent, so we may have to impose both.
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12 Buchweitz’s Theorem
Thursday 15" 8:30 — Simon May (Leeds, United Kingdom)

(after Happel ’88)

APC(S)
y T<k
CM(S) = D, (S)

Setting.
e 3 additive category, fully and extension closed embedded in an abelian category A

e S set of exact sequences in A such that terms are in B

A morphism a: Y — Z in B is a proper epimorphism if there exists an exact sequence

0-X—>Y S Z-0.

An object P in B is called S-projective if for all proper epimorphism «: Y — Z and
f: P — Z in B there exists g: P — Y such that f = ag:

P

gi&

Y —— 7

(B, S) has enough S-projectives if for every Z in B there exists a proper epimorphism
a: P — Z with P an S-projective.

Definition 12.1. (B,S) is called a Frobenius category if it has enough S-projectives and
enough S-injectives and they are the same.

Let I(X,Y) be the subgroup of morphisms X — Y such that they factor through an
S-projective.

Definition 12.2. Let (B,S) be a Frobenius category, then B is the stable category with
e 0bj(B) = obj(B),
e Homg(X,Y) = Hompg(X,Y)/I(X,Y).

Triangulated structures.

e 3 additive category

e T automorphism of B, the translation functor
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e a sextuple (X,Y, Z, u,v,w)

X Y ‘=7 "5 TX

e morphism:
LY Yt Z 2 TX

bl

/

vy Yy g W

e A set of sextuples A is called a triangulation of B if the following hold:
(TR1) Every sextuple isomorphic to a triangle is a triangle.
Every morphism u: X — Y can be embedded into a triangle (X, X,0,1x,0,0).
(TR2) (X,Y, Z,u,v,w) € A = (Y, Z,TX,v,w,—Tu) € A
(TR3) If we have f, g in the diagram, we can extend to a morphism.

(TR4) octahedral axiom.

Triangulation of the stable category.
e 3 additive
e 3 stable category

Lemma 12.3. Let

0 X r X' 0

0 X I X" 0

with I' and I" S-injective. Then X' and X" are isomorphic.

Let 0 - X — I' - Y’ — 0. Assume there is a bijection vy : [X] — [X']. For all objects
X in B we choose elements

0 X I(X) TX — 0
where TX = vx(X).
X —uy rx) YL rx
I R
Y i% TY

T is an automorphism of B.

Let (B,S) be Frobenius. Define a set of sextuples in B via X, Y € B, u: X —» Y:
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Y
[
) —— Cu

l 5

~ (X,Y,Cu,u,v,w) standard in B is standard in B.

Theorem 12.4. Let A be the set of all isomorphic sextuples of a standard triangle.
Then A is a triangulation of B.

Proof. Checking axioms. O

Derived category.
e A abelian

e C(A) category of complexes

i—1 ;
. Xz'f 1 dx Xz dly Xi+1

e K(A) homotopy category with

Homy(4)(X,Y) := Homg(4)(X,Y)/null(X,Y).

e D(A) := K(A)[quasi™!]
e D’(A) subcategory of D(A) with all complexes isomorphic to bounded complexes
b X[l] = (Xn+1a _d}+1)n

e X LY — cone(g) = TX

Singularity category.
e S ring

e A complex is perfect if in D(mod(S)) =: D(S) it is isomorphic to a finite complex
of finitely generated projective S-modules.

b
* Dperf

o DZ(S) = D'(S)/Dpeys(S)

(S) category of perfect complexes
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Now:

S Gorenstein ring

e APC(S) full subcategory of IC(A) of chain complexes that are isomorphic to an
acyclic projective complex

e mod(S) finitely generated S-modules
e mod(S) projectively stabilized category of mod(S)

e CM(S) the full subcategory of mod(S) of (maximal) Cohen-Macaulay modules in

the sense
CM(S) = {X € mod(S) : Ext4(X,S) =0 for i # 0}

e CM(S) is Frobenius, so CM(S) has a natural triangulated structure.

Theorem 12.5 (Buchweitz’s Theorem). If we take S to be an Iwanaga-Gorenstein ring,

then there is a triangulated equivalence

A

Dl (S) = CM(S).

o APC(S) = CM(S):

— Let k € Z.
— Consider Q;,: APC(S) — CM(S), X — coker (d}kA: Xh1 X_k).
— A module M = M** is CM iff it has a projective coresolution.

— A complex A in APC(9) is acyclic,

coker(d™%) = im(d'™*) = ker(d>™"),

so we get a projective coresolution

0 —— coker(d™F) —— A, _ « Ay e

so coker(d~*) is CM.
o APC(S) = Dgg(S):
— For X € APC and k € Z:

ocp(X) = oo —— XML Xk 0
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13 Stably semisimple Gorenstein orders in dimension one

Thursday 15" 10:00 — Wassilij Gnedin (Bochum, Germany)

(0) orders in dimension one
(1) stably semisimple
(2) Gorenstein
(0) Setup
e k=k, R=k[z]], K = k((X))
e A a basic ring-indecomposable R-order in a semisimple K-algebra A

e ~» CM(A) = Q(mod(A)) has an AR-quiver.

A is Gorenstein if w = Homp(A, R) € proj(A).
~ inj(CM(A)) = proj(CM(A)), so

CM(A) :) [1j=0-1 .

Example 13.1. T hereditary with two simples
T

~ D= [gm §k@where@ = o

e w= [ B B] 2 (B 2] = rad(T) € proj(T)
Remark 13.2. I" Gorenstein such that CM(I') = 0 < I' hereditary
(1) rad CM(A) = 0

Lemma 13.3. The following are equivalent:

(a) CM(A) is semisimple, that is, for all L, M € ind(CM(A))

k L=M,
Hom (L, M) =
0 L%M.
(b) For all L € ind(CM(A))
0—QL)—P(L)—-L—0,
where P(L) — L is the projective cover, is the AR sequence ending in L.

In this case, CM(A) = add(A @ rad(A) @ w).
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Example 13.4 (Zh. ’57, GP ’67).

_ | Klly,2l/ (y2) (y) y+2 0
R A= Mo Gl [V

P,%p 5P 5P,

~» AR-quiver of CM(A):

To obtain the AR-quiver of CM(A) remove P; and Ps.

(2) Rejection Lemma

Lemma 13.5 (Drozd-Kirichenko '67). Let A be a non-mazximal order and B; an inde-
composable projective-injective CM module.

Then there is a unique overorder I'y of A in A such that

ind(CM(A \ [By])) +—— ind(CM(T,))

AN #N

Moreover, I'y is the minimal overorder such that
0—=A—= Ty —=S,4—0 By = D(e,1)A)
where D = Hompg(—, R).
Recall 13.6. A — I'; = CM(I';) — CM(A)
Remark 13.7. /(,T'; ® S;) < 2 where S; = top(B;).

Idea of proof. By has a unique maximal overmodule C; = D (rad (D(By)))
~ 0= B =0 = 5,1 —0.

Set I'y = End, (C; & P)°P where A = B; & P. O
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Example 13.8 (Gelfand ’72).

R
A= [g R nm};} with columns corresponding to projective modules Fy, P, , P_.
m

b d
+7 0 T = [/(ba—do)
1’\71/ \Ej

mm
w = |:Rm
RR

3 3

] with columns corresponding to injective modules

Iy = rad(F,) I, = P I_ =P,

CM(A):

(3) Gluing some orders

e Choose cyclic quiver.

e Attach the sinks of:



Ay o —— e %)
[ ]
A, o — “gluing”
\ .
[ ]
Af T “blow-up”
° —
Q=00 x Q®

/TVN _ R
ka:F_[gR

=3
= 32

~~ Béckstrom species Sy

The outcome.

nodal orders / quadratic orders
= Béckstrom orders of type Ay, A5, or A}

= Béckstrom orders such that /(,I' ® §) <2 VS

Theorem 13.9 (Roggenkamp ’85). Let A be Gorenstein and non-hereditary.

Then the following are equivalent:
(a) CM(A) is semisimple.
(b) CM(A) = add(A @ rad(A)).
(¢) A is Bdickstrom.
(d) A is nodal without Ay.

Remark 13.10. (a) = (b) and (d) = (c) are clear. (d) = (b) by Rejection Lemma.

A nodal Gorenstein, A — I' with gl. dim(I") = 1 and rad(A) C rad(I")
= CM(A) = add(A @ rad(A))
= rad(A) = rad(T")
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(4) Ribbon graph orders

A is a ribbon graph order if A is Backstrom of type Aj (“gluing”).

o A X I@/I for some (@, I) such that for all i € Q:

v I = (bp(b) : b € Q1)

>
Q=72 Q1 pao=id,a® =id,a(j) # j
~ (0, a, ) “combination map” = “ribbon graph” < surface

Example 13.11.

o = (abe)(zyz)

a = (zc)(ay)(bz)
© = (zazcyb)

ax =0=za="--

Proeposition 13.12.

QC ind(CM(A)) — 5 @, e

Aa i a

e S, has genus g where
2-2g = c(¢) - ela) + (o)
In the example: =1 —-3+2=0 = g=1.

Summary.

projective resolutions of arrow ideals
= AR-sequences in CM(A)

= “Green walks around the ribbon graph”
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14 What is (should be) a noncommutative resolution of singularities? — Il

Thursday 15" 11:15 — Graham Leuschke (Syracuse, United States)

Last time:

Maybe a noncommutative resolution of CM local R is an R-algebra A which is

o of finite-global-dimension nonsingular (gl. dim(A,) = dim(R,) for all p € Spec(R))
e birational

e module-finite

+ Gorenstein 7

+ symmetric ?
Definition 14.1. Say A is an R-order if A is MCM as an R-module.
Why?

1) lyama—Wemyss 2010 [Auslander 1984]

The following are equivalent for an order over CM local R:

(Biao proved (i) = (ii).)

So for orders, finite global dimension ~» much better behaved than in general.
2) Stangle 2015, generalizing lyama—Reiten 2008
Orders of finite global dimension satisfy a version of the Auslander-Buchsbaum formula:
dim(R) < depth(zX) + proj.dim(, X) < dim(R) +n

where n = proj. dim(, (wy)).

In particular, if A is a Gorenstein R-order of finite global dimension (nonsingular by
(1)), then 5 (wy) is projective, and we get an A-B equality on the nose [Iyama-Reiten].
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3) van den Bergh 2004

If A is a nonsingular order, then A is homologically homogeneous (all simples have the

same projective dimension).

Definition 14.2 (Stronger definition). A (medium-strength) noncommutative resolution

of singularities of a CM local ring R is a nonsingular, birational R-order A.

Back to the examples.

il

McKay Correspondence:
Endg(S) & S#G

is an R-order (last time) and has global dimension d = dim(R), so is nonsingular by
Iyama—Wemyss and is birational (last time).

The Auslander algebra of a ring of finite CM type might not be an order.
(If dim(R) > 3 it’s not! It has simples of different projective dimensions.)

E.g. A; in dimension 2:
R = K[[z,y,2])/(zy — 2°)

Then
ind(CM(R)) = {R,I = (x,2)}.

R 1 \_ (R I
A = Endg(G) = (I* EndR(I)> N (I R> '

So A= R® @ I® is an order.

SoG=R®I,

E.g. A; in dimension 3:

R = k‘[[x,y,u,v]]/(xy - UU)

Then
ind(CM(R)) = {R,p = (z,u),q = (z,v)}
and
R p q
A=EndRop®q) =g R (pq) |
p (a.p) R

where p = q* and (q,p) = Homp(q,p). But

(p,q) = Homp(p,q) = <:vu Z)

: : : w. o ay
(a fractional ideal) is not MCM (gv === ).
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Connection with “classical orders” and the symmetric property:

Definition 14.3 (Auslander—Goldman 1960). Let R be a normal domain.

An order (classical order) over R is a module-finite R-algebra in a semisimple algebra D.
Mazimal means mazximal.

Remark 14.4. Yuta (et al.) defined this when R = k[[z]]. We allow dim(R) > 1

Proposition 14.5 (Auslander-Goldman). Let R be a normal domain and A an order in
M, (Quot(R)). If

(i) A is nonsingular,
(ii) A @p Quot(R) = M, (Quot(R)),
(iii) A is a symmetric R-algebra, i.e. Homp(A, R) = A A,,

—~

then A is a mazimal order.
Remark 14.6. Yuta stated a version of this when R = k[[z]]. (hereditary = maximal)

Theorem 14.7 (Auslander-Goldman). If A is a mazimal order in M, (Quot(R)), then
A= EHdR(M)
for some reflexive R-module M .

Corollary 14.8 (van den Bergh 2004). The following are equivalent for a module-finite
algebra A over a_Gorenstein normal domain R:
(1) A is a symmetric birational R-order.

(2) A= Endgr(M) for some reflexive R-module M, is an R-order, and is homologically
homogeneous.

(3) A = Endg(M) as above and gl. dim(A) < oco.

Definition 14.9 (van den Bergh). A noncommutative crepant resolution (NCCR) of a

Gorenstein normal domain R is a symmetric birational R-order A.

Equivalently, an R-order of the form Endr(M) with finite global dimension.
Suddenly R became Gorenstein. That is essential for the corollary.

Example 14.10.
(1) R =k[[z,y,z,u,v]]/I where I = I, (5 %%) (scroll of type (2,1)).

Then R is a 3-dimensional normal domain, not Gorenstein (w = (z,y) not projec-
tive), but R has finite CM type [Yoshino, 16.12]:

ind(CM(R)) = {R,w,Q'w, Q%w, (Q'w)V}
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By Example [2], the Auslander algebra
A = Endp(Rew e Q'wa Qwe (Q'w)Y)

has global dimension 3. It is not homologically homogeneous and is not an order.
So A is an endomorphism ring and has finite global dimension but is not an order.
So (3) # (2) when the base ring is not Gorenstein.

(2) R =K% 2y,y? yz,22,2%)] = K[[z,y, 2] ®).

Then R is a 3-dimensional CM normal domain, not Gorenstein. It does have finite
CM type [Yoshino, 16.10]:

ind(CM(R)) = {R,w,Q'w}.

Two noncommutative resolutions:

(a) The Auslander algebra A = Endg(R @ w ® Q'w) has global dimension d = 3,
but has bad depth (depth(Homp(w, R)) =2 < 3), so is not an order.

(b) McKay Correspondence I' = End g (k[[z, v, 2]]) = Endr(R & R(x,y, 2)) and the
fractional ideal
(z,y,2)R = (2%, 2y, x2)

is isomorphic to wg. So
I' = Endp(R® w)

is an order of finite global dimension and (if the definition allowed non-Gorenstein
R) qualifies to be an NCCR.

Point:

These two examples (Veronese and scroll) are the only two known examples of CM local
rings of finite CM type in dimension > 3 other than the ADE hypersurfaces.
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15 Orlov’s Theorem

Thursday 15" 14:00 — Maximilian Hofmann (Bonn, Germany)

Setting.

e A noetherian graded ring:

A =P,

i>0
e gr(A) category of finitely generated graded A-modules

i HOHlA<—, _) - Homgr(A)<_a _)

15.1 The category qgr(A)

Definition 15.1. For M € gr(A), m € M is torsion if m - As,, = 0 for some p > 1.
Denote by 7(M) C M the submodule of all torsion elements.
M s torsion iff T(M) = M.

tors(A) = {M € gr(M) : M torsion}

Proposition 15.2. tors(A) is a Serre subcategory of gr(A), i.e. for short exact sequences

0—-X' X —-X"=0

in gr(A) we have X € tors(A) iff X', X" € tors(A).
The same is true for Tors(A) in Gr(A) (Serre subcategory, but also closed under []).

Definition 15.3. Define the category
qer(A) = gr(A)/ tors(A)
Similarly, QGr(A) := Gr(A)/ Tors(A).
e qgr(A) has the same objects as gr(A).
e qgr(A) is abelian and there is an exact IT: gr(A) — qgr(A).
e For morphisms f in gr(A): IIf isomorphism < ker(f), coker(f) € tors(A)

Remark 15.4.

e A commutative noetherian graded ring
e A is generated in degree 1, Ag = k a field
e X = Proj(A)

[Serre]:
QCoh(X) ~ QGr(A)
coh(X) =~ qer(A)
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15.2 Semiorthogonal decompositions

Let T be a triangulated category.

Orlov’s Theorem.

Definition 15.5. Let NV C T be a full triangulated subcategory and let I: N — T the
inclusion functor.

We say that N is right admissible if I has a left adjoint.
Dually, define left admissible.

N+ = {Y €T :Homs(N,Y) =0}
LN = {X €T :Homy(X,N) =0}

Definition 15.6. Let N C T be thick and right admissible, then T has the SOD (semiorthogonal

decomposition)

T = (NLN).
If N C T is thick and left admissible, then T has the SOD

T = (N,2N).
Remark 15.7. Equivalently, an SOD is a pair A,B C T of thick subcategories with A
left admissible and B right admissible and + A = B and B+ = A. We write
T =(ADB).
For this observe:

N right admissible = LN =N
N left admissible = (tAN)f =N

Definition 15.8. We say that T has an SOD
T =WMN,....N,,)
if N; €T are thick subcategories and there exist
Th=MCThLC<---CT,=T
where T, are left admissible in T and
Ti = (Ti-1, Ni) -
Example 15.9. (N, Ny, N3) = (N1, N), N3).

Warning 15.10. Orlov calls this weak semiorthogonal decomposition.
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Example 15.11. Suppose T is k-linear.
A full exceptional collection is a sequence (Fy, ..., E,) with E; € T

k i=j,p=0,
Hom(E;, Ej[p]) = {0 i=4j,p+#0,
0 2>7.

Write &; := thick(E;).
Example 15.12 (Beilinson’s collection). D°(coh(P")) = (O, O(1),...,0(n)).
15.3 The graded singularity category and Orlov’s theorem
e Aasin § 15.1
o gl.dim(Ag) < o0
e grading shift on gr(A) via M — M (1) with M(1); = M; 4

Definition 15.13. M € D’(gr(A)) is perfect if M € thick{A(e) : e € Z} C D’(gr(A)).
~ thick triangulated subcategory perf(A) C Db(gr(A))

Definition 15.14. The graded singularity category is the Verdier quotient

DE(A) = D¥(ar(A))/ perf(4).

Hom, (M, N) := @5 Hom(M, N(n))
neZ
is in gr(A) for all M, N € gr(A).

Definition 15.15. A is called (Artin-Schelter-)Gorenstein if:

e inj.dim(,A) < oo and inj. dim(A,) < co.
e There are n,a € Z such that
RHom, (Ag, A) ~ Ag[n](a)
where [n] is the shift in D®(gr(A)).

The integer a is called the Gorenstein parameter of A.
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Notation: We have two induced functors:
II: D*(gr(A)) —— D’(qgr(A))
q: D°(gr(A)) ——— Dg(A)
Theorem 15.16 (Orlov '09). Let A = P,5¢ A; be a graded noetherian ring such that
o A is (AS-)Gorenstein with Gorenstein parameter a,
[ ] gl dlm(Ao) < oo,
e there exists a commutative ring k such that A is a flat k-algebra.
Then the following hold:
(1) If a > 0, there are fully faithful exact functors
®;: D5 (A) — DP(qgr(A)) forallie Z
and SODs

Db (qgr(A)) = <7rA(—z' —a+1),... ,WA(—i),@.Dgg(A)>.

(2) If a <0, there are fully faithful exact functors
U;: D*(qgr(A)) — DE(A) forallicZ
and SODs
DE(A) = (aho(—i),. . aho(—i+a+1),8;D"(qzr(A))).
(3) If a =0, then there is an exact equivalence
D’(qgr(A)) = DE(A).

Application:
o A =Ek[xg,...,x,] with |z;| =1 is (AS-)Gorenstein with a = n + 1, gl. dim(A) < oco.
~ D&(A) =0
~~ DP(coh(P™)) = DP(qgr(A)) = (A(0), ..., 7A(n))
o A = k[z]/(z"!) with |z| = 1 is (AS-)Gorenstein with parameter a = —n.

(gk(0),...,qk(a + 1))
D (kA,)

s 'Dsgé (A)
~ Dg(A)

I

I
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16 Tilting theory for Gorenstein rings in dimension one

Thursday 15" 15:15 — Umamaheswaran Arunachalam (Prayagraj, India)

Umamaheswaran:

The study of maximal Cohen Macaulay (CM) modules is one of the central subjects

in commutative algebra and representation theory [1,2,4-6]. A Frobenius category is
an exact category in which the notion of injective objects coincide with the projective
objects and there are enough injectives (or equivalently enough projectives). When the
ring R is Gorenstein, the category

CM(R) = {X € mod(R) : Ext%(X, R) =0 for all i > 1}

of CM(R)-modules forms a Frobenius category and its stable category CM(R) has a
natural structure of a triangulated category.

Tilting theory controls triangle equivalence between derived categories of rings, and
plays an important role on various areas of mathematics. Tilting theory also gives a
powerful tool to study the stable categories of Gorenstein rings.

If dim(R) = 0, then CM&(R) = mod?(R) always has a tilting object.

Our main aim of this notes is to study about the following problem:

Question: Let R = @ R; be a Z-graded Gorenstein ring such that Ry is a field. When
does the stable category CM&(R) of Z-graded CM R-modules have a tilting object?

Umamaheswaran:

Recently, Ragnar-Olaf Buchweitz, Osamu Iyama and Kotya Yamaura gave a complete
answer to the above problem when dim(R) = 1.

Definition 16.1. A graded ring is a ring that is a direct sum of abelian groups R; such
Setting.
(R1) R is a Z-graded commutative Gorenstein ring of Krull dimension one.

(R2) R=D,;5o R and k := Ry is a field.

Setting.
e mod? (R) the category of Z-graded finitely generated R-modules
° modg (R) the category of Z-graded finitely generated R-modules of finite length

° pron(R) the category of Z-graded finitely generated projective R-modules
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Remark 16.2. Clearly, mod4(R) C mod?(R).

Consider the quotient category
qgr(R) := mod?(R)/ mod§(R).
Let perf(qgr(R)) be the thick subcategory generated by proj%(R).

Definition 16.3.

Umamaheswaran:

Let T be a triangulated category with suspension functor. A full subcategory of T is
thick if it is closed under cones, [£1] and direct summands. We call on object T € T
tilting (resp. silting) if Homy(T,T[i]) = 0 holds for all integers i # 0 (resp. i > 0), and
smallest thick subcategory of T containing T is T .

For X € mod4(R) and n € Z let

X, = PX;.

i>n
Let S be the set of all homogeneous non-zero divisors in R and
K = RS™! the Z-graded total quotient ring of R.
There exists an integer p > 0 such that K(p) = k as graded R-module.
Theorem 16.4. Under the settings (R1) and (R2) the following are true:

(a) qgr(R) has a progenerator
P P
U= PK(i)so = @ K(i)5(i)
i=1 i=1

and perf(qgr(R)) has U as a tilting object.

(b) We have an equivalence
qgr(R) = mod(A)

and a triangle equivalence
perf(qgr(R)) = K’(proj(A)).

¢c) We have A = End%(U) with
R

K, K, Ky, K,
K, K, Ks_, Ky,
A . .
K, o K, K, K_,
K, K, K, K,
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(d) A is a finite-dimensional selfinjective k-algebra.

(e) If R is reduced, then A is a semisimple k-algebra.

Otherwise, A has infinite global dimension.
Proposition 16.5.
(a) P=@"_ | K(i) is a progenerator of mod*(K) such that End%(P) = A.
(b) There is an equivalence
Hom%(P, —): mod?(K) = mod(A).

(¢c) U=@" | K(i)so is a progenerator in qgr(R).

Therefore U is a tilting object in perf(qgr(R)).
(d) A is a finite-dimensional selfinjective k-algebra.

(e) If R is reduced, then A is a semisimple k-algebra.

Otherwise, A has infinite global dimension.

Proof of theorem.

Umamaheswaran:

Theorem follows from the following Proposition.

Proof of proposition.

(a) Since {K (i) : i € Z} is a progenerator of mod?(K) and K (i + p) = K (i) for all i, it
follows that P is a progenerator. Since Endg(P) = End g (P), we have

End%(P) = End%(P) = A.

(b) Use:

Theorem (Morita). Two rings R and S are Morita equivalent iff there is a progenerator P
of mod(R) such that S = Endg(P).

By (a) and Morita’s Theorem, A = End4%(P) and then
Hom%(P, —): mod?(K) = mod(A).
(c) Considering the functors
(=)s>o0: mod?(K) — mod?(R)

and
K ® —: mod4(R) — mod?(K),
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one can check that they induce mutually quasi-inverse equivalences
mod?(K) = qgr(R).

Quasi-equivalence relation: Let F': C — D be an equivalence of categories, i.e. there is
a functor G: D — C (called quasi-inverse of F') such that

FoG = idp and GoF = ide.
Since P € mod?(K) corresponds to U € qgr(R), U is a progenerator in qgr(R) by (a).
= U is a tilting object in perf(qgr(R)).
(d)
Lemma. For anyi € Z, K(i)> € mod4(R) holds.
By the lemma for any X € mod?(K) we have K ®p RX>o = X.
Proposition. K is an injective object in mod?(K).

Proof. Let X € mod?(K). Then we have X5 € mod?4(R). Since dim(R) = 1, we have
X5 € CM#(R). Thus Ext} (X, K) & Extf (K ®z X>0, K) 2 K®Ext}(X50, K) =0. O
By the proposition, P is injective in mod? (k).
= A is injective in mod(A).

(e) R reduced < K reduced < Any homogeneous element of K is invertible.
This is equivalent to that any object in modZ(K ) is projective.

= gl. dim(mod?(K)) = 0. By (b), A is semisimple.
On the other hand, by a classical result of Eilenberg and Nakayama, a selfinjective
algebra is either semisimple or of infinite global dimension.

(e) follows from (d). O

a-invariant: There exists an integer a € Z such that
Exth(k, R(a)) = K

in mod?(R). We call a the a-invariant or the Gorenstein parameter of R.

CM4(R) = {Xe mod?(R) : X € CMy(R) as an ungraded R-module}
with stable category CMZ(R).

Umamaheswaran:

Notations:
It is known in representation theory that the following subcateogory

CMy(R) = {X € CM(R) : X, € proj(R,) Vp € Spec(R)} .

65



Theorem 16.6. Under the settings (R1) and (R2). Assume moreover that the a-invariant
of R is negative. Then:

(a) CME(R) has a silting object
a-+p

P R(i)so-
=1
(b) We have a triangle equivalence
CMG(R) = K'(proj(A))/ thick(P),

where A is given as in Theorem 16.4 and P is the projective A-module corresponding
to the first —a rows.

(c) CMZ(R) has a tilting object < R is reqular.

Umamaheswaran:
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17 Stable categories of Cohen-Macaulay modules and cluster categories

Thursday 15" 17:00 — Julia Sauter (Bielefeld, Germany)

Literature:

[AIR 15|

[I1] Auslander-Reiten theory revisited
[

[

1
2] Tilting Cohen-Macaulay representations
IY 08|

17.1 Quotient singularities
e V affine variety
e G C Aut(V) finite subgroup
e ~ V/G “quotient singularity”

Here only:
e finite subgroup G C GL (k) acting on V = k¢
o V = Spec(k[zq,...,z4])
e V/G = Spec((k[zy,...,24)%)
~ complete rings:
Main setup:
o S =Fk[xy,...,24]]
e R =S¢ and assume k = k with char(k) = 0 and G has no pseudoreflections
e R Gorenstein < G C SLy(k)
R isolated singularity < rank(c —1) =d Vo #1in G

Recall in general:

e R a commutative noetherian, local Gorenstein ring with d = dim(R)
(CM with p(wg) = gR)

e A an R-order

e A Gorenstein R-order (= Gorenstein R-algebra in the sense of Leuschke)
< wy = Hompg (A, R) = A as left A-module

e A symmetric
= wp = A as A-A-bimodule [<I:2>] A d-Twanaga-Gorenstein R-order

For any Iwanaga-Gorenstein ring A there is the Frobenius category

gp(A) = o<tA4,
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Warning 17.1. In general CM(A) # gp(A).

But if A is an R-order which is Iwanaga-Gorenstein, then:
CM(A) = o<twy = o<*A = gp(A)
< alwp) 2 AA < A Gorenstein order
Example 17.2.
1) R=k:
A R-order < A finite-dimensional k-algebra
A Gorenstein order < A selfinjective
2) Assuming the main setup:
R Gorenstein order, symmetric over R
= CM(R) = o<* R Frobenius category
CM(R) = DL, (R) according to Buchweitz
R also Z-graded (S Z-graded, deg(z;) = 1, G action by graded automorphisms)
CM%(R) := mod?(R) N CM(R) Frobenius category
CM?#(R) = DZ(R) by [12, 2.10]

Definition 17.3. Let £ be an ezact category and n € N>;.
Then E € £ is an n-cluster tilting object if

n—1 n—1
add(E) = ﬂ ker Extl(—, E) = ﬂ ker Exts(E, —).
i=1 i=1
Theorem 17.4 (IY08, Theorem 8.4). Assume the main setup.
Then rS € CM(R) is a (d—1)-cluster tilting object iff Endr(S) is a NCCR by [11,3.17].
The “quiver” of add(pS) is the McKay quiver of G with respect to V = k<.
In case d = 2: add(rS) = CM(R) (cp. Sarah’s talk).

Definition 17.5. Let T be a triangulated category with functorially finite subcategory C.

Then C is an n-cluster tilting subcategory iff

n—1 n—1

c = (Cl-i*" = () *chl.

i=1 i=1
Corollary 17.6. Assume the main setup.

add(pS) C CM(R) is a (d — 1)-cluster tilting subcategory.
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Definition 17.7. Let T be an R-linear triangulated category with Hom+(X,Y) € f.1.(R)
forall XY € T.

We call an autoequivalence S: T — T a Serre functor if there is a bifunctorial isomor-
phism for all X, Y € T
Hom+(X,Y) — DHom+(Y,SX)
where D: f.1.(R) — f.1.(R) is the Matlis duality.

We call T an n-Calabi-Yau triangulated category if S = [n] is a Serre functor where [n]
s the shift by n.

Theorem 17.8 (I1, 3.21, 3.22). Assume the general setup.

(1) Let A be a Gorenstein R-order that is an isolated singularity.

Then CM(A) is a triangulated category with respect to [1] = Qxl and has the Serre
functor QXl oT.

(2) Let A be as above and symmetric over R.
Then 7 = Q> and [d — 1] is a Serre functor of CM(A).
So CM(A) is a (d — 1)-Calabi- Yau triangulated category.

Proof. For X, Y € CM(A)

Hom(X, Q" '7Y) = Hom(QX,rY) = Ext!(X,7Y)

where (*) follows by applying (—,7Y") to
0-QX —>P—-X—0

with P projective. By AR-duality Ext!(X,7Y) = DHom(Y, X). O

17.2 Cluster categories

[Amiot 09, Guo 10] for finite-dimensional k-algebras A with gl.dim(A) < n defined an
n-Calabi-Yau triangulated category C, (A) together with a triangle functor

T Db(A) = Db(mod(A)) —C,(A)
where add(7(A)) is an n-cluster tilting subcategory and 7 factors through the fully faithful
D*(A)/S, = Cu(A)

where S = — ®, DA and S,, := So [—n].
The category on the left hand side is not necessarily triangulated!
([Keller 05] investigates when it is.)

Example 17.9.

e A= KQ ~» [Happel]:
C(KQ) = D*(KQ)/S,
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o A= KQ where @ is an ADE Dynkin quiver, for all d > 1:
Co(KQ) = D"(KQ)/Sq
(C1(KQ) = D*(KQ)/7)

Question: Find a Z-graded ... R-order A and a finite-dimensional ... algebra A such
that there is a commutative diagram:

CM#(A) —=— DP(A)

| iy

CM(A) —— C,(4)

Example 17.10. Q = A, and A = K[X]/(X"*!) Gorenstein order:
Then CM(A) = mod(A) has the AR-quiver with rightmost vertex deleted:

N '-

K — K[T]/V(TQ) ; ; K([T)/(T")

See the poster of the summer school for a picture of DY(K A,)) — C,(K A,) = D*(KA,)/.
Example 17.11.
1) @ Dynkin, R = S, G of some Dynkin type, d = 2:

CM(R) ] mesh category of the double quiver Q = C;(KQ)

(Knorrer’s periodicity: CM(A) =2 CM(k[[z, y, 2]]/(z" ! 4+ y2)))
2) This generalizes for G cyclic ([AIR 15]). They also have examples from dimer models.

3) [DL] for certain tiled orders (see David’s talk tomorrow).

17.3 AIR construction
Setting.
e B= @1220 B, a graded noetherian k-algebra
o dim(,By) < o
e There is an idempotent 1 # e = e? € By, such that
B/(e) is a finite-dimensional k-algebra and
(A1*) B is bimodule d-Calabi-Yau with Gorenstein parameter 1.

e = (' = eBe Iwanaga-Gorenstein
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e Beg is a (d — 1)-cluster tilting object in CM(C)
e B EndC(Be)
e A= By is a (d— 1)-representation-infinite algebra

(i.e. gl.dim(A) < d and S;* | A € mod(A) for all i > 0)
o B =1I,(A) d-preprojective algebra of A where
My(A) == Ty (4 Ext YDA A)y) = AD AMud A(MOM)y & -

o A:=A/(e) (d—1)-Auslander

alg. deg.0 /(e
C g B g A (=)/(e) A
e(—)e Iy (-)

e d =2, () Dynkin and Q extended Dynkin:
R=5% 7= S#G =End(S) ~I(KQ) — KQ —— KQ

Theorem 17.12. Let gl.dim(A) <d—1 and A - A. Then:

~

CM?4(0) Db(gr(C)) +—— DY(A) «+—— DP(A)

CM(C) = Cq-1(4)

Theorem 17.13. Assume the main setup.

Let  be an n-th primitive root of unity.
Let aj € {1,...,n— 1} with }_,;a; = n and ged(aj,n) =1 and

()

and S %Z—gmded with deg(x;) = 4. Then:
e C=R=S=@,., 5
o T := @?:_01 T' € CM?(R) where T* = @ SH%
e B = Endy(T) = S£G
o A= Endy, g (T)
e B = Endcys)(T)

[ ] A = Endmz(R) (T)
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modulo xy = yx, yz = zy, zo = xz describes mod(A). Deleting 0 gives mod(A).
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18 Triangulations, ice quivers and Cohen-Macaulay modules over orders

Friday 16" 8:30 — David Ferndndez Alvarez (Bielefeld, Germany)

Goal. Give a survey of Demonet—Lu: “Ice quivers with potential associated with triangu-
lations and Cohen-Macaulay modules over orders”, Trans. AMS 368(6), 2016, 4257-4293.

Notations.
o k field
e R=klz]
e P, regular polygon of n sides and n vertices

e Q =(Qy,Qq,h,t) finite connected quiver without loops, Qo = {1,...,n}

a b
~ kQ with multiplication ab = - * -

18.1 Introduction

Representation theory: If you want to study a k-algebra A, you should study mod(A)
(maybe with some restrictions).

Fruitful idea: Associate to mod(A) certain combinatorial invariants:

~» Auslander-Reiten quiver, exchange graph

s [Goomerry

(hard) (hopefully easier)

However, in geometry ...

[Caldero—Chapoton—Schiffler]
[Fomin—Shapiro-Thurston
[Labardini-Fragoso]

> | “Combinatorics” | »

triangulated surface quiver with potential Jacobian algebra
J = kQ/<aaW>aeQ1
in this talk: [Demonet-Lul

triangulated polygon P, ice quiver with potential --- + W, frozen Jacobian algebra I,
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Idea: Study I', from the viewpoint of CM-representation theory; a lot of properties can
be deduced from the triangulation of P,,.

18.2 Ice quivers with potential associated to triangulations
Triangulations of polygons

A diagonal of P,, is a line segment connecting two vertices of P,, and lying in its interior.

\7

non-crossing diagonals crossing diagonals

Definition 18.1. A triangulation of P, is a decomposition of P, into triangles by a

mazximal set of non-crossing diagonals.

not triangulations:

\T \=
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Quivers associated to triangulations
e vertices: middle points of diagonals and sides (edges)

e internal arrows: if two edges a and b are sides of a common triangle in o there is an
arrow a — b if a is a predecessor of b with respect to the anti-clockwise orientation

centered at the common vertex.

o external arrows: there is a — b where a and b are incident sides at a common vertex
(with at least one incident diagonal) such that a is a predecessor of b.

Algorithm

. Draw the triangulation.

. Tag the vertices.

1
2
3. Put the vertices of the quiver.
4. Draw internal arrows.

5

. Draw external arrows.

Example 18.2.

~ triangulation o

~ quiver Q,
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Definition 18.3. A minimal cycle of Q, is a cycle in which no arrow appears more than
once and which encloses a part of the plane whose interior is connected and does not
contain any arrows of o.

Example 18.4. Non-examples: abcSygh, cBdehab

Two types of minimal cycles:

e cyclic triangles:
abe, def, ghi

e big cycles: internal arrows and one external arrow around a vertex of P,,:

abeh, Bdc, vgf

Ice quivers with potential associated to triangulations

In the previous situation:
e frozen vertices: F'={1,...,n} C (Qs)o

o frozen arrows: (Q,)f = {a € (Q,)1 : h(a) € F and t(a) € F}

Example 18.5. F = {1,...,5} and (Q,)} = {a,4,a, 8,7}

Definition 18.6. An ice quiver (associated to a triangulation o) is the pair (Q,, F).

Potentials (in general)
e () arbitrary quiver

e k(Q); k-vector space with basis the paths of length ¢

o kQ; oye = kQ/[kQ;, kQy];11—; spanned by cycles in kQ;

Definition 18.7. An element W € ;> kQ; cyc is a potential.

Kontsevich defined the cyclic derivative for each arrow a € )1 as the k-linear maps

@ in,cyc — kQ

defined on cycles as

dalay - aq) = Zaiﬂ'”adal'“ai—l-

a;=a

Example 18.8. J,(abeh) = hab.
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Ice quivers with potential

We define the potential W, of (Q,, F') as

W, = Z (cyclic triangles) — Z (big cycles) .

Definition 18.9. An ice quiver with potential is a triple (Qg, F, W,).

Example 18.10. W_ = abc + def + ghi — abeh — Bdc — ~vgf.

Frozen Jacobian algebras

Definition 18.11. Let (Q,, F,W,) as above. We define the frozen Jacobian algebra as

r, = ng/@aWo%e(an\(Qa){'

18.3 T', is a tiled R-order

Theorem 18.12. The frozen Jacobian algebra I, has the structure of a tiled R-order.

Now set
er = sum of idempotents at all frozen vertices in @,

and define the suborder
AO’ = eFFO'eF .

Theorem 18.13. The R-order I', is isomorphic to

R R R R (27
(ry R R R R
_— (96_2) (x) R R R
(%) (%) (2?) R R
(%) (2%) (2*) (zr) R

18.4 CM-modules over A
Theorem 18.14.

(i) For any triangulation o and (P, P,) € o with 1 < s <t <n the vertex j = (P,, P,)
satisfies

erloer = () = [R - R (@) - (@) @) 0 (@)

where there are s entries R, t — s entries (x), and n —t entries (22).
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(ii) The construction in (i) induces 1:1 correspondences:

{edges of Pn} {z’nd. objs. of CM(A)}

{sides of Pn} {ind. projs. of CM(A)}

{triangulations of Pn} —_— {basic cluster tilting objs. of CM(A)}

18.5 Relation to cluster categories

Question: If we view the cluster algebra as a combinatorial invariant associated to the
cluster category. Is the category determined by this invariant?

Using [Keller-Reiten ’08]:
Theorem 18.15. Let A be the R-order given above.
(i) The stable category CM(A) is 2-Calabi- Yau.

(ii) If k is perfect, then there exists a triangle equivalence C(kQ) = CM(A) for a quiver
Q of type Ap,_3.
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19 What is (should be) a noncommutative resolution of singularities? — IlI

Friday 16" 10:00 — Graham Leuschke (Syracuse, United States)

Last time:

[van den Bergh]: An NCCR of a | Gorenstein | normal domain R is an R-algebra A which

isa

symmetric birational nonsingular order .

Equivalently™,
A = Endg(M) for some reflexive pM with gl. dim(A) < co and A MCM over R.
*These are not equivalent if R is not Gorenstein (example last time).

The following implication fails:

symmetric + )
. . = nonsingular
finite gl. dim

Perhaps we can improve the situation for non-Gorenstein rings by considering totally
reflexive modules rather than MCMs.

Several times this week, the distinction between CM(R) and GP(R) has come up.

Definition 19.1. An R-module M (where R is any commutative ring) is totally reflexive

(or Gorenstein projective) if

o M = M** (reflexive),
° EXtEO(M, R) =0,
e Extz’(M*, R) = 0.

Fact 19.2. For a Gorenstein local ring R, this is equivalent to M being MCM.
For CM rings, total reflexivity is stronger.

So let’s consider totally reflexive R-algebras A.

Definition 19.3. A strong noncommutative resolution of singularities of a Cohen-Macaulay

normal domain R is an R-algebra A of the form A = Endr(M) for some reflexive g M
with gl. dim(A) < oo and w totally reflexive as R-module.

Observation 19.4. If R is Gorenstein, this is just an NCCR.
Theorem 19.5 (Stangle '15). If R has a strong NC resolution, then R is Gorenstein.

(so “strong” means “too strong”)
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Proof. Enough to consider local (R, m, k) and show
Ext%(k, R) = 0 for i > 0.

Let A be a strong NC resolution. Then A/mA is a k-vector space of finite dimension, so
it is enough to show
Extl(A/mA, R) =0 for i > 0.

Since A is totally reflexive as R-module, we know
Ext,(A, R) = 0 for j > 0.
One can show (spectral sequence or by hand)
Ext%(A/mA, R) = Ext’ (A/mA, Homg(A, R))

but A has finite global dimension, so that vanishes for ¢ > 0. O

That word “crepant”

Let X be a CM algebraic variety.
Let wy be the canonical sheaf (dualizing sheaf) of X.

< and in fact

If X 5 X is a resolution of singularities, there is also a canonical sheaf wg

wg = Homp, (Og,wx) (wg is “co-induced” from wy) .

We could also induce wx up to X

W*WX “_» Wy ®(9X O_ff .

The resolution 7 is crepant if

T'wy & wg.

The discrepancy divisor of 7 is the difference between m*wx and wy.

Miles Reid
not—discrepant [ = eid] crepant

In the special case where X is Calabi-Yau, i.e. w, = Ox we get
wg = Homp (O%,0x).

So 7 is crepant iff
HOHIOX(O)?,OX) = (9)?

i.e. Og is a symmetric Oy-algebra (sheaf).
Fact 19.6 (from Algebraic Geometry). If X over C has a crepant resolution of singular-

ities, then it has at worst rational (“nice” / “mild”) singularities.

Question If a (Gorenstein) ring R has an NCCR, must Spec(R) have at worst rational
singularities?
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Answer Yes.

Theorem 19.7 (Stafford—van den Bergh).

Let k be an algebraically closed field of characteristic 0 and A a prime affine k-algebra
which is finitely generated as a module over its center Z(A). If A is a nonsingular order
over Z(A), then Spec(Z(A)) has at worst rational singularities.

In particular, if a Gorenstein normal domain R has an NCCR A, then R = Z(A) and
so Spec(R) has at worst rational singularities.

What are NCCRs good for?

The minimal model program (MMP) is a strategy for carrying out a birational classifi-

cation of algebraic varieties.

It consists of “moves” which are intended to improve the variety until you can’t improve
it further (terminal singularities).

Bondal & Orlov suggest to view the “moves” as operations / functors on the bounded
derived category.

Example 19.8. Blowing up a smooth subvariety (that’s one of the “moves”) induces a
fully faithful functor (even an SOD) on the bounded derived category.

Example 19.9. Another “move” is a flop: replace Y by Y’

y y/
X

where f and f’ are both crepant resolutions of singularities of X (+ some other technical
condition).

Conjecture 19.10 (Bondal-Orlov '99). If Y and Y’ are related by a flop, then they are
derived equivalent:
Db(coh(Y)) ~ DP(coh(Y"))

Theorem 19.11 (Bridgeland 2002). The BO Conjecture holds for dim(Y') = 3.

Bridgeland’s proof uses Fourier-Mukai transforms.

Around the same time, Bridgeland—King—Reid ['01] described an approach to the McKay
Correspondence based on Fourier-Mukai transforms.

[van den Berghl: “An essential feature of the McKay Correspondence is the appearance
of a noncommutative ring S#G, the twisted group ring.”

Theorem 19.12 (van den Bergh 2004). Let R be a Gorenstein normal C-algebra and let
X = Spec(R) and w: X — X a crepant resolution of singularities. Assume the fibers of w
are at most 1-dimensional (automatic if dim(X) < 3). Then R has an NCCR A and

D(mod(A)) ~ D’(coh(X)).
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Corollary 19.13. The BO Congjecture holds in dimension 3:

Db(coh(Y)) DP(coh(Y))

D’(mod(A))
One can strengthen the BO Conjecture:

Conjecture 19.14 (Iyama—Wemyss, “ncBO Conjecture”). All crepant resolutions of a
given variety/ring are derived equivalent, the commutative and the noncommutative ones.

Known in dimension < 3 by [Lyama-Wemyss].
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