Summer School on Cohen-Macaulay Modules

Notes of the Talks (taken by Jan Geuenich)

BIREP

12–16 August 2019

Contents

1	R-orders and Krull–Schmidtness	2
2	Maximal and hereditary orders	6
3	Bäckström orders	9
4	Tiled orders	14
5	Commutative CM-finite type of dimension 0 and 1 $\ldots \ldots \ldots \ldots \ldots \ldots$	19
6	Auslander-Reiten theory for lattices I	23
7	Auslander-Reiten theory for lattices II	26
8	Auslander-Buchweitz approximations	29
9	Algebraic McKay correspondence	33
10	Knörrer's periodicity and hypersurface singularities	36
11	What is (should be) a noncommutative resolution of singularities? – I \ldots .	41
12	Buchweitz's Theorem	45
13	Stably semisimple Gorenstein orders in dimension one	49
14	What is (should be) a noncommutative resolution of singularities? – II	54
15	Orlov's Theorem	58
16	Tilting theory for Gorenstein rings in dimension one	62
17	Stable categories of Cohen-Macaulay modules and cluster categories	67
18	Triangulations, ice quivers and Cohen-Macaulay modules over orders	73
19	What is (should be) a noncommutative resolution of singularities? – III \ldots .	86

1 *R*-orders and Krull–Schmidtness

Monday 12th 13:00 – Biao Ma (Bielefeld, Germany)

Notation.

- (R, \mathfrak{m}, k) is always a commutative noetherian local ring
- mod(R) the category of finitely generated *R*-modules
- $\operatorname{proj}(R)$ the category of finitely generated projective *R*-modules
- Λ is a module-finite *R*-algebra
- $mod(\Lambda)$ the category of finitely generated left Λ -modules
- $\operatorname{proj}(\Lambda)$ the category of finitely generated left projective Λ -modules

1.1 Krull-Schmidt categories

Definition 1.1. An additive category \mathcal{A} is called a <u>Krull-Schmidt category</u> if each $A \in \mathcal{A}$ can be written as a finite direct sum of objects having local endomorphism ring.

Remark 1.2. Let \mathcal{A} be a Krull-Schmidt category.

- (1) $\operatorname{End}_{\mathcal{A}}(A)$ local $\Leftrightarrow A$ indecomposable Recall that S is (not necessarily commutative) local if S/J(S) is a division ring.
- (2) The Krull-Schmidt Theorem holds in \mathcal{A} .
- (3) Any morphism $f: A \to B$ in \mathcal{A} has a <u>right minimal</u> version (and similarly also a left minimal version), i.e. $f = (f' \ 0) : A = A' \oplus A'' \to B$ with <u>right minimal</u> f', meaning that $f'\theta = f'$ only if θ is invertible.

Definition 1.3. A local ring (R, \mathfrak{m}, k) is called <u>Henselian</u> if for every module-finite Ralgebra Λ each idempotent in $\Lambda/J(\Lambda)$ lifts to an idempotent in Λ , i.e. for all idempotents $\overline{x}^2 = \overline{x} \in \Lambda/J(\Lambda)$ there exists an idempotent $e^2 = e \in \Lambda$ such that $\overline{x} = \overline{e}$.

Theorem 1.4. Let (R, \mathfrak{m}, k) be Henselian. Then mod(R) is Krull-Schmidt.

Proof. It is enough to show that $\Gamma = \operatorname{End}_R(M)$ is local for indecomposable modules M in $\operatorname{mod}(R)$. Note that Γ is module-finite. Nakayama's lemma implies $\mathfrak{m} \subseteq \operatorname{Ann}(\Gamma/J(\Gamma))$. Thus $\Gamma/J(\Gamma)$ is a finite-dimensional K-algebra, so semisimple. R is Henselian, so idempotents lift. Now M is indecomposable, so Γ has only the two idempotents 0, 1. Thus by Wedderburn-Artin $\Gamma/J(\Gamma)$ is a division ring.

Corollary 1.5. Let (R, \mathfrak{m}, k) be complete local. Then:

(1) mod(R) is Krull-Schmidt.

(2) $\operatorname{mod}(\Lambda)$ is Krull-Schmidt for every module-finite R-algebra Λ .

Proof. (1) complete \Rightarrow Henselian

(2) Let $M \in \text{mod}(\Lambda)$ indecomposable. Now $\Gamma = \text{End}_{\Lambda}(M) \subseteq \text{End}_{R}(M)$ is module-finite. Repeat the proof of Theorem 1.4.

1.2 *R*-orders

From now on (R, \mathfrak{m}, k) is a commutative noetherian complete regular local ring with Krull dimension $\dim(R) = d$ (e.g. $R = k[[x_1, \ldots, x_d]])$. In this case

gl. dim
$$(R)$$
 = inj. dim $(_R R)$ = proj. dim $(_R k)$ = dim (R) = d.

Definition 1.6.

- (i) A module-finite R-algebra Λ is called an R-order if $_{R}\Lambda \in \operatorname{proj}(R)$.
- (ii) Let Λ be an R-order. A finitely generated Λ -module M is called <u>(maximal) Cohen-Macau-</u> lay (CM) if $_{R}M \in \operatorname{proj}(R)$.

Example 1.7.

- (1) Any finite-dimensional algebra over a field k is a k-order.
- (2) Any commutative complete CM local ring containing a field is an R-order.

Denote by $CM(\Lambda)$ the category of CM Λ -modules.

Proposition 1.8. Let Λ be an *R*-order. Then:

- (1) $\operatorname{mod}(\Lambda)$ and $\operatorname{CM}(\Lambda)$ are Krull-Schmidt.
- (2) CM(Λ) is a <u>resolving</u> subcategory of mod(Λ), i.e. it contains proj(Λ) and is closed under extensions and kernels of epimorphisms.
- (3) $\operatorname{Hom}_R(-, R) \colon \operatorname{CM}(\Lambda) \xrightarrow{\sim} \operatorname{CM}(\Lambda^{\operatorname{op}})$ is a duality. $\Lambda \omega = \operatorname{Hom}_R(\Lambda_{\Lambda}, R)$ and $\omega_{\Lambda} = \operatorname{Hom}_R(\Lambda \Lambda, R)$ are called the canonical modules.
- (4) CM(Λ) is an exact category with enough projectives $\operatorname{add}(_{\Lambda}\Lambda)$ and enough injectives $\operatorname{add}(_{\Lambda}\omega)$.

Proof. (1) $CM(\Lambda)$ is closed under summands.

(2) $\operatorname{proj}(\Lambda) \subseteq \operatorname{CM}(\Lambda)$ and for $0 \to L \to M \to N \to 0$ we clearly have $L, N \in \operatorname{CM}(\Lambda) \Rightarrow M \in \operatorname{CM}(\Lambda)$ and $M, N \in \operatorname{CM}(\Lambda) \Rightarrow L \in \operatorname{CM}(\Lambda)$.

(3) Use the duality $\operatorname{Hom}_R(-, R)$: $\operatorname{proj}(R) \xrightarrow{\sim} \operatorname{proj}(R^{\operatorname{op}})$.

(4) $CM(\Lambda)$ is closed under extensions, so $CM(\Lambda)$ is an exact category. Then use the duality in (3).

Proposition 1.9. Let Λ be an *R*-order. Then:

- (1) inj. dim $(_{\Lambda}\Lambda) \ge$ inj. dim $(_{R}R)$.
- (2) If gl. dim(Λ) < ∞ , then gl. dim(Λ) = inj. dim($_{\Lambda}\Lambda$) ≥ inj. dim($_{R}R$) = dim(R) = d.

Definition 1.10. Let Λ be an *R*-order.

- (1) Λ is called non-singular if gl. dim $(\Lambda) = \dim(R) = d$.
- (2) Λ is called an <u>isolated singularity</u> if gl. dim $(\Lambda_{\mathfrak{p}}) = \dim(R_{\mathfrak{p}})$ for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$ where $\Lambda_{\mathfrak{p}} = \Lambda \otimes_R R_{\mathfrak{p}}$.

Remark 1.11. Λ non-singular $\Rightarrow \Lambda$ isolated singularity

Example 1.12. Let $R = k[[x_1, \ldots, x_d]]$ and G be a finite subgroup of $GL_d(k)$ such that $|G| \neq 0$ in k. Then G acts linearly on R by permuting the variables and the skew group algebra R # G is a non-singular R-order.

Proposition 1.13. The following are equivalent for an R-order Λ :

- (1) Λ is non-singular.
- (2) $CM(\Lambda) = proj(\Lambda)$.

Proof. (1) \Rightarrow (2) Let x_1, \ldots, x_d be a regular system of parameters of R and $M \in CM(\Lambda)$. Then gl. dim $(\Lambda) = d \ge \operatorname{proj.dim}_{\Lambda} (M/(x_1, \ldots, x_d)M) = d = \operatorname{proj.dim}_{\Lambda} M)$, which implies that $M \in \operatorname{proj}(\Lambda)$.

 $(2) \Rightarrow (1)$ For each $M \in \text{mod}(\Lambda)$ there is a projective resolution

$$0 \to \Omega^d M \to P_{d-1} \to \dots \to P_1 \to P_0 \to M \to 0$$

of $_{\Lambda}M$ (also $_{R}M$). So gl. dim $(R) = d \Rightarrow \Omega^{d}M \in \operatorname{proj}(R) \cap \operatorname{mod}(\Lambda) \Rightarrow \Omega^{d}M \in \operatorname{proj}(\Lambda).$

AR-formulas for Λ -orders

R-dual. $D_d := \operatorname{Hom}_R(-, R) \colon \operatorname{CM}(\Lambda) \xrightarrow{\sim} \operatorname{CM}(\Lambda^{\operatorname{op}})$ induces a duality

$$\underline{\mathrm{CM}}(\Lambda) = \mathrm{CM}(\Lambda)/\operatorname{add}(\Lambda) \xrightarrow{D_d} \overline{\mathrm{CM}}(\Lambda^{\mathrm{op}}) = \mathrm{CM}(\Lambda^{\mathrm{op}})/\operatorname{add}(\omega_\Lambda).$$

For $X, Y \in \underline{CM}(\Lambda)$ then

 $\underline{\operatorname{Hom}}_{\Lambda}(X,Y) \;=\; \{X \xrightarrow{f} Y : f \text{ doesn't factor through } \operatorname{proj}(\Lambda)\}\,.$

Matlis dual. $D := \text{Hom}_R(-, E) \cong \text{Ext}_R^d(-, R)$ with E := E(k) the injective envelope of R^k gives a duality

f.l. $(R) \xrightarrow{D}$ f.l. (R^{op}) .

Λ-dual. There exists a duality $(-)^* := Hom_Λ(-, Λ): proj(Λ) \xrightarrow{\sim} proj(Λ^{op}).$

Auslander-Bridger transpose. There exists a duality

 $\underline{\mathrm{mod}}(\Lambda) \xrightarrow{\mathrm{Tr}} \overline{\mathrm{mod}}(\Lambda^{\mathrm{op}})$

given by $M \mapsto \operatorname{Tr}(M) := \operatorname{coker}(f^*)$ where $P_1 \xrightarrow{f} P_0 \to M \to 0$ is a projective presentation (and $0 \to M^* \to P_0^* \xrightarrow{f^*} P_1^*$).

Theorem 1.14. Let Λ be an isolated singularity. Then:

- (1) $\operatorname{CM}(\Lambda) = \{ M \in \operatorname{mod}(\Lambda) : \operatorname{Ext}^{i}_{\Lambda}(M, {}_{\Lambda}\omega) = 0 \text{ for all } i > 0 \}$ = $\{\operatorname{Tr}(X) : X \in \operatorname{mod}(\Lambda^{\operatorname{op}}) \text{ such that } \operatorname{Ext}^{i}_{\Lambda^{\operatorname{op}}}(X, \Lambda_{\Lambda}) = 0 \text{ for all } i = 1, \dots, d \}.$
- (2) There is a duality $\Omega^d \operatorname{Tr} : \underline{CM}(\Lambda) \to \overline{CM}(\Lambda^{\operatorname{op}}).$
- (3) There is an equivalence $\tau := D_d \Omega^d \operatorname{Tr} : \underline{\mathrm{CM}} \to \overline{\mathrm{CM}}(\Lambda).$
- (4) (AR-formula) There exists an isomorphism

$$\underline{\operatorname{Hom}}_{\Lambda}(\tau^{-}(N), M) \cong D\operatorname{Ext}_{\Lambda}^{1}(M, N) \cong \overline{\operatorname{Hom}}_{\Lambda}(N, \tau(M))$$

natural for any $M, N \in CM(\Lambda)$.

2 Maximal and hereditary orders

Monday 12th 14:15 – Yuta Kimura (Bielefeld, Germany)

Notation.

- R = k[[x]] with maximal ideal $\mathfrak{m} = (x)$ (or complete DVR such as $\widehat{\mathbb{Z}}_p$).
- K := Quot(R) fractional field of R (so K = k((x))).

commutative ring S	order Λ (dim(R) = 1)	f.d. algebra A	
$\operatorname{CM}(S) = \operatorname{proj}(S)$	$\operatorname{CM}(\Lambda) = \operatorname{proj}(\Lambda)$	mod(A) = proj(A)	
regular (gl. $\dim(S) < \infty$)	non-singular (gl. $\dim(\Lambda) = 1$)	semisimple $(gl. \dim(A) = 0)$	
$\underline{\mathrm{CM}}(S)$ triangulated	$\underline{CM}(\Lambda)$ triangulated	$\underline{\mathrm{mod}}(A)$ triangulated	
Gorenstein (inj. $\dim(S) < \infty)$	Gorenstein (inj. $\dim(\Lambda)=1)$	selfinjective (inj. $\dim(A) = 0$)	
	$\Lambda \subseteq \Lambda'$ over order	$A \twoheadrightarrow A/I$	
	$\Rightarrow \operatorname{CM}(\Lambda') \hookrightarrow \operatorname{CM}(\Lambda).$	$\Rightarrow \operatorname{mod}(A/I) \hookrightarrow \operatorname{mod}(A).$	

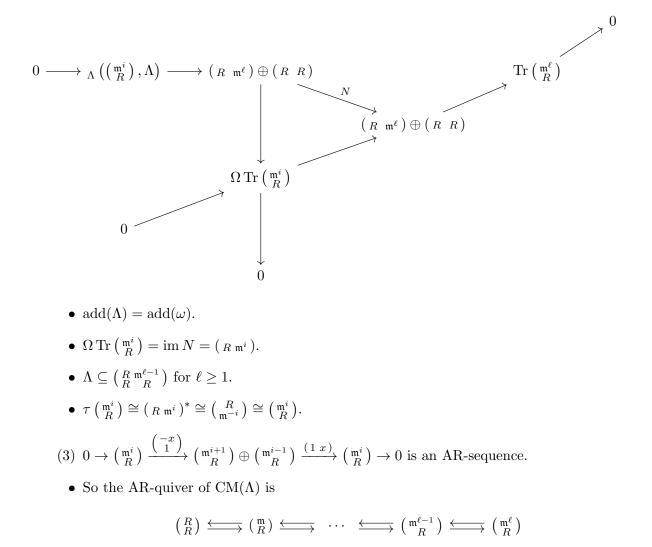
Example 2.1.
$$\Lambda = \begin{pmatrix} R & \mathfrak{m}^{\ell} \\ R & R \end{pmatrix}$$
 is an *R*-order.

- For any $\ell \in \mathbb{Z}$ let $\mathfrak{m}^{\ell} = (x^{\ell}) = Rx^{\ell} \subseteq K$.
- There is an isomorphism ${}_R\mathfrak{m}^\ell\xrightarrow[]{\sim} RR$.
- $\operatorname{CM}(\Lambda)$ has an AR-quiver, which will now be computed.
- $(-)^* = \operatorname{Hom}_R(-, R).$
- With $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ we have $\Lambda e_1 = \begin{pmatrix} R \\ R \end{pmatrix}$, $\Lambda e_2 = \begin{pmatrix} \mathfrak{m}^{\ell} \\ R \end{pmatrix}$.
- (1) $\binom{R}{R}$, $\binom{\mathfrak{m}}{R}$, $\binom{\mathfrak{m}^2}{R}$, ..., $\binom{\mathfrak{m}^\ell}{R} \in CM(\Lambda)$.
- (2) Applying $\tau = (-)^* \circ \Omega_{\Lambda^{\mathrm{op}}} \circ \operatorname{Tr}_{\Lambda}$ gives $\tau \begin{pmatrix} \mathfrak{m}^i \\ R \end{pmatrix} \cong \begin{pmatrix} \mathfrak{m}^i \\ R \end{pmatrix}$ for all $1 \le i \le \ell 1$.
 - $\operatorname{rad}\left(\begin{smallmatrix} R & \mathfrak{m}^{\ell} \\ R & R \end{smallmatrix}\right) = \left(\begin{smallmatrix} \mathfrak{m} & \mathfrak{m}^{\ell} \\ R & \mathfrak{m} \end{smallmatrix}\right), \operatorname{rad}\left(\begin{smallmatrix} \mathfrak{m}^{i} \\ R \end{smallmatrix}\right) = \left(\begin{smallmatrix} \mathfrak{m}^{i+1} \\ R \end{smallmatrix}\right), \left(\begin{smallmatrix} \mathfrak{m}^{i} \\ R \end{smallmatrix}\right) / \operatorname{rad}\left(\begin{smallmatrix} \mathfrak{m}^{i} \\ R \end{smallmatrix}\right) \cong S_{1} \oplus S_{2}.$

$$\begin{pmatrix} R \\ R \end{pmatrix} \oplus \begin{pmatrix} \mathfrak{m}^{\ell} \\ R \end{pmatrix} \xrightarrow{M} \begin{pmatrix} R \\ R \end{pmatrix} \oplus \begin{pmatrix} \mathfrak{m}^{\ell} \\ R \end{pmatrix} \xrightarrow{(x^{i-1})} \begin{pmatrix} \mathfrak{m}^{i} \\ \mathfrak{m}^{\ell-i} \end{pmatrix} \xrightarrow{(1)} \begin{pmatrix} 1 \\ -x^{i} \end{pmatrix}$$

where $M = \begin{pmatrix} x^{\ell-i} & 1 \\ -x^{\ell} & -x^i \end{pmatrix}$.

• Apply $\operatorname{Hom}_{\Lambda}(-,\Lambda)$, then $\operatorname{Hom}_{\Lambda}(\Lambda e_i,\Lambda) \cong e_i\Lambda$ and with $N = \begin{pmatrix} x^{\ell-i} & -x^{-\ell} \\ 1 & -x^i \end{pmatrix}$



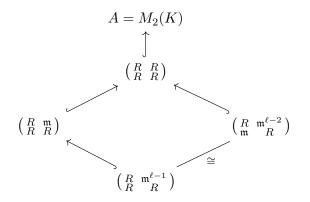
Definition 2.2. Let Λ , Λ' be *R*-orders and *A* a finite-dimensional *K*-algebra.

- (1) $\Lambda \underline{R\text{-order}}$ in $A :\Leftrightarrow K \otimes_R \Lambda \cong A$ (Remark: $\Lambda \hookrightarrow K \otimes_R \Lambda \cong A$)
- (2) Λ' <u>overorder</u> of Λ in $A :\Leftrightarrow \Lambda \subseteq \Lambda' \subseteq A$
- (3) Λ maximal order in $A :\Leftrightarrow$ there is no proper overorder of Λ in A

Example 2.3.

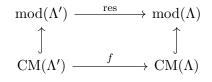
(a) G finite group $\rightsquigarrow RG$ is an R-order in KG.

(b) For $\ell \geq 2$:



Proposition 2.4. Let Λ' be an overorder of Λ . Then:

(a) The functor f in the following diagram is fully faithful:



(b) $f \ dense \Rightarrow \Lambda = \Lambda' \Rightarrow \Lambda' \Lambda \subseteq \Lambda$

Hereditary orders

Theorem 2.5. Let Λ be an *R*-order in *A*. The following are equivalent:

- (1) Λ' overorder of Λ in A with $rad(\Lambda) \subseteq rad(\Lambda') \Rightarrow \Lambda = \Lambda'$.
- (2) $CM(\Lambda) = proj(\Lambda)$.
- (3) $_{\Lambda}\Lambda$ is an hereditary algebra.
- (4) $\operatorname{rad}(\Lambda) \in \operatorname{proj}(\Lambda)$.

Corollary 2.6. Maximal orders are hereditary.

Theorem 2.7. Let A be a finite-dimensional K-algebra. The following are equivalent:

- (a) A contains a maximal order.
- (b) A contains a hereditary order.
- (c) A is semisimple and the integral closure of R in Z(A) is finitely generated over R.

Example 2.8.
$$\Lambda = \begin{pmatrix} R & 0 \\ R & R \end{pmatrix}$$
 is maximal in $A = \begin{pmatrix} K & 0 \\ K & K \end{pmatrix}$.

3 Bäckström orders

Monday 12th 15:45 – Sebastian Eckert (Bielefeld, Germany)

Setting.

- R complete discrete valuation ring
- k the residue field of R, i.e. $k = R/\pi R = R/\mathfrak{m}$
- K field of quotients of R
- A finite-dimensional separable K-algebra
- Λ *R*-order in *A*
- $CM(\Lambda)$ category of finitely generated left Λ -lattices

Definition 3.1. An *R*-order Λ is a <u>Bäckström order</u> provided there exists a hereditary order Γ such that rad Γ = rad $\Lambda \subseteq \Lambda \subseteq \Gamma$.

Proposition 3.2. Λ is Bäckström if Λ is a subhereditary order (Λ, Γ) and for any indecomposable projective Λ -lattice P

$$\operatorname{rad}(P) \cong {}_{\Lambda}X$$

for some indecomposable projective Γ -lattice X.

Lemma 3.3. The class of Bäckström orders is closed under Morita equivalence.

Remark 3.4. We can thus restrict to basic Bäckström orders Λ , i.e. $\Lambda/\operatorname{rad}(\Lambda)$ is a product of skew fields.

Aim. Understand when in this situation $CM(\Lambda)$ is of finite type.

We need some algebraic structure associated to Λ :

Tensor algebras and valued graphs

Given Λ and Γ we put

$$\mathcal{A} = \Lambda/\operatorname{rad}(\Lambda) = \prod_{i=1}^{s} D_i$$
 and $\mathcal{B} = \Gamma/\operatorname{rad}(\Gamma) = \prod_{j=s+1}^{t} M_{n_j}(D_j)$.

Then:

- \mathcal{A} and \mathcal{B} are finitely generated k-algebras with an algebra homomorphism $\mathcal{A} \hookrightarrow \mathcal{B}$ induced by $\Lambda \subseteq \Gamma$.
- D_i are finite-dimensional skew fields over k.

- Let S_j with $s + 1 \leq j \leq t$ be a full set of simple \mathcal{B} -modules with $\operatorname{End}_{\Gamma}(S_j) = D_j$. Then ${}_iS_j = D_i \otimes_k S_j$ with $1 \leq i \leq s$ and $s + 1 \leq j \leq t$ are (D_i, D_j) -bimodules.
- $d_{ij} = \dim_{D_i}({}_iS_j)$ for $1 \le i \le s$ and $s + 1 \le j \le t$ and $d_{ij} = 0$ else.
- $d'_{ij} = \dim_{D_j}({}_iS_j)$ for $1 \le i \le s$ and $s+1 \le j \le t$ and $d_{ij} = 0$ else.
- \leadsto Valued graph with vertices k with $1 \leq k \leq t$ and whenever $_iS_j \neq 0$ an edge

$$i \xrightarrow{(d_{ij},d_{ij}')} j$$

Example 3.5.

i)

$$\Lambda = \begin{pmatrix} R & \mathfrak{m} & R \\ \mathfrak{m} & R & R \\ \mathfrak{m} & \mathfrak{m} & R \end{pmatrix} \qquad \Gamma = \begin{pmatrix} R & R & R \\ R & R & R \\ \mathfrak{m} & \mathfrak{m} & R \end{pmatrix}$$
$$\operatorname{rad}(\Lambda) = \operatorname{rad}(\Gamma) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} & R \\ \mathfrak{m} & \mathfrak{m} & R \\ \mathfrak{m} & \mathfrak{m} & \mathfrak{m} \end{pmatrix}$$
$$\mathcal{A} = \prod_{i=1}^{3} D_{i} \qquad \mathcal{B} = M_{2}(D_{4}) \times D_{5} \qquad D_{i} = k \,.$$
$$S_{4} = \begin{pmatrix} D_{4} \\ D_{4} \end{pmatrix} \qquad S_{5} = D_{5}$$

The valued graph is

$$1 \xrightarrow{(1,1)} 4 \xleftarrow{(1,1)} 2 \qquad \qquad 3 \xrightarrow{(1,1)} 5.$$

Tensor algebra

Consider the tensor algebra

$$\mathcal{D} = \begin{pmatrix} \mathcal{B} & _{\mathcal{B}}\mathcal{B}_{\mathcal{A}} \\ 0 & \mathcal{A} \end{pmatrix}$$

with $_{\mathcal{B}}\mathcal{B}_{\mathcal{A}}$ viewed as $(\mathcal{B}, \mathcal{A})$ -bimodule.

 $\rightsquigarrow \operatorname{rad}^2(\mathcal{D}) = 0, \mathcal{D}$ is the tensor algebra of a species $\mathbb{S} = \mathbb{S}(\Lambda, \Gamma)$ and $\operatorname{mod}(\mathcal{D}) \cong \operatorname{rep}(\mathbb{S})$. We write \mathcal{D} -modules as triples (U, V, φ) where

• U is a \mathcal{A} -module,

- V is a \mathcal{B} -module,
- $\varphi \colon \mathcal{B} \otimes_k U \to V$ is a \mathcal{B} -module homomorphism.

Theorem 3.6 (Ringel–Roggenkamp). The functor $F: CM(\Lambda) \to mod(\mathcal{D})$ induced by

 $M \mapsto (M/\operatorname{rad}(\Lambda)M, \Gamma M/\operatorname{rad}(\Gamma)M, \varphi)$

where φ is induced by the natural inclusion $M \hookrightarrow \Gamma M \subseteq A \otimes_{\Lambda} M$ is a representation equivalence between $CM(\Lambda)$ and the category C of all finitely generated \mathcal{D} -modules without simple direct summands.

Example 3.7.

ii)

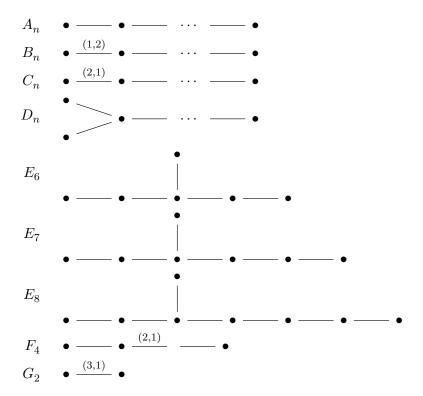
$$\Lambda = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a - d, b, c \in \mathfrak{m} \right\} \qquad \Gamma = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$$
$$\operatorname{rad}(\Lambda) = \operatorname{rad}(\Gamma) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix}$$
$$\mathcal{A} = D_1 \qquad \mathcal{B} = M_2(D_2) \qquad D_1 = D_2 = k$$
$$S_2 = \begin{pmatrix} k \\ k \end{pmatrix}$$
$${}_1S_2 = D_1 \otimes_k \begin{pmatrix} k \\ k \end{pmatrix} = k \oplus k$$

 \rightsquigarrow valued graph $\ 1 \xrightarrow{(2,2)} 2$

iii)

$$\Lambda = \left\{ \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right) : a - a', b - b', c, c' \in \mathfrak{m}, d, d' \in R \right\}$$
$$\Gamma = \begin{pmatrix} R & R \\ \mathfrak{m} & R \end{pmatrix} \times \begin{pmatrix} R & R \\ \mathfrak{m} & R \end{pmatrix}$$
$$\sim \text{valued graph} \quad 1 \underbrace{\checkmark}_{4}^{3} \quad 2 \underbrace{\checkmark}_{6}^{5} \quad A_{3} \amalg A_{3}$$

Theorem 3.8 (Dlab–Ringel). A tensor algebra \mathcal{D} is of finite type iff the associated valued graph is a finite union of Dynkin diagrams, i.e. one of the following:



Theorem 3.9 (Ringel—Roggenkamp). $CM(\Lambda)$ is of finite type iff:

$$\left\{\begin{array}{c} isoclasses \ of\\ ind. \ \Lambda-lattices \end{array}\right\} \xleftarrow{1:1} \left\{\begin{array}{c} non-simple \ positive \ roots\\ of \ an \ associated \ root \ system \right\}$$

Remark 3.10.

- Finiteness doesn't depend on *R*.
- The indecomposable Λ -lattices are determined uniquely by ΓM and $M/\operatorname{rad}(M)$.

Proposition 3.11. For arbitrary R-orders Λ a necessary condition to be of finite type is that the associated valued graph is a disjoint union of Dynkin diagrams.

 $(\Lambda \text{ is contained in a Bäckström order.})$

Aim. Understand indecomposable Λ -lattices and the AR-quiver.

The AR-species of \mathcal{D} has as its vertices the isoclasses of indecomposable \mathcal{D} -modules and irreducible maps correspond to valued edges.

We need more data: Denote by P_j the indecomposable projective Γ -modules, by σ the permutation of $\{s+1,\ldots,t\}$ with $\operatorname{rad}(P_j) = P_{\sigma(j)}$, by S_j the simple projective \mathcal{D} -modules with $s+1 \leq j \leq t$. Define $\phi(S_j) = Q_j$ iff the \mathcal{D} -socle of the indecomposable non-simple injective \mathcal{D} -module Q_j is \mathcal{D} -isomorphic to S_j .

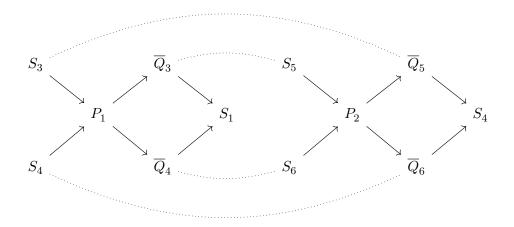
Example 3.12. Continuation of iii) above: $\sigma = (3 5)(4 6)$

 $\phi(S_3) = Q_3 \qquad \phi(S_4) = Q_4 \qquad \phi(S_5) = Q_5 \qquad \phi(S_6) = Q_6$

Theorem 3.13 (Roggenkamp). Let Λ be a Bäckström order with tensor algebra \mathcal{D} . Then the AR-species of $CM(\Lambda)$ is obtained from that of \mathcal{D} by

- deleting all simple injective \mathcal{D} -modules S_i with $1 \leq i \leq s$ (and arrows ending there),
- identifying Q_j with $S_{\sigma(j)}$ where $\phi(S_j) = Q_j$.

Example 3.14. Continuing iii), delete S_1 , S_4 and identify along dotted lines:



4 Tiled orders

Monday 12th 17:00 – Jan Geuenich (Bielefeld, Germany)

Tiled orders

R complete DVR with

- quatient field K - residue field k

\$1 Preliminaries

- <u>Def</u>. An <u>R-lattice</u> in a f.d. K-vsp. V is a f.g. R-submodule of V. It's <u>full</u> if it generates V as a K-vsp.
 - An <u>R-order</u> in a f.d. K-alg. A is a full R-lattice in A that is a subring of A.

Motivation

Study R-orders in A=KG for finite groups G where $R = \mathbb{Z}_p$.

(Plesken's "Group Rings of Finite Groups Over p-adic Integers")

<u>Def.</u> An R-order Λ in a f.d. separable K-olg. A is said to be <u>tiled</u> if $e_i \Lambda e_i$ are maximal R-orders in e: Ae_i for a complete set $e_1, ..., e_n$ of primitive orthogonal idempotents of Λ .

Reduce (w.L.o.g.) to

 $A = M_n(D)$ for a f.d. K-division algebra D

<u>Facts</u> • D contains a unique maximal R-order Δ (= integral closure of R in D).

Δ is a <u>noncommutative DVR</u>, i.e. a local left and right PID with p := rad (Δ) ≠ 0.

• $p = t\Delta = \Delta t$ for some $t \in \Delta$.

§2 Classification of Tiled Orders

<u>Notation</u> For $M = (m_{ij}) \in M_r(\mathbb{Z})$, $\underline{n} = (n_{i},...,n_r) \in \mathbb{Z}_{>0}^r$ with $n_1 + \dots + n_r = n$:

$$\begin{split} \Delta_{\mathsf{M},\underline{\mathsf{n}}} &:= \left(\mathsf{M}_{\mathsf{n}_{i},\mathsf{n}_{j}}\left(\mathfrak{p}^{\mathsf{m}_{ij}}\right)\right) \quad \subseteq \quad \mathsf{A}\\ \Delta_{\mathsf{M}} &:= \Delta_{\mathsf{M},(\mathfrak{q},\ldots,\mathfrak{q})} \end{split}$$

Theorem [Zassenhaus, Plesken, Rump]

(a) $\Lambda_{M,n}$ tiled R-order in A \iff $\begin{cases} @ m_{ij} + m_{ik} \gg m_{ik} \\ @ m_{ij} + m_{ji} \gg m_{ii} = 0 \end{cases}$ (i.j. k

- (b) A tiled R-order $\Lambda_{M,\Omega}$ is basic iff (2) holds with strict inequality and $\underline{n} = (1,...,1)$.
- (c) There is a bijection between the set of isoclasses (= conjugacy classes) of tiled R-orders in A and the set of equivalence classes of triples $(r, \underline{n}, \underline{m})$ with $\underline{n} = (n_1, ..., n_{\tau}) \in \mathbb{Z}_{>0}^{\times}$, $\underline{m} = (m_{ijk}) \in \mathbb{Z}^{r \times r \times r}$ satisfying $n_t + ... + n_{\tau} = n$ and

1	mijle	Ξ	mije + mjke - mike	70	Vist
2	mili		J- JKC (KC		Vi≠j
3	miii				Vi

1

where $(r, \underline{n}, \underline{m}) \sim (r', \underline{n}', \underline{m}')$ iff r = r' and $n'_i = n_{\pi(c)}, m'_{ijk} = m_{\pi(c)\pi(j)\pi(k)}$ for some permutation π of $\{1, ..., r\}$. The correspondence is given by :

$$\Delta_{M,\underline{n}} \qquad \longmapsto \qquad (r,\underline{n},\underline{m}) \quad \text{with } m_{ijk} = m_{ij} + m_{jk} - m_{ik}$$

 $\Delta_{(m_{ijk})_{ij},\underline{n}} \quad \longleftarrow \quad (r,\underline{n},\underline{m})$ for any fixed k

Facts Let $\Lambda = \Lambda_{M}$ be a basic tiled R-order in A with $M \in M_{n}(\mathbb{Z}_{n0})$.

[Jategaonkar] • gldim $\Lambda < \infty \implies (m_{ij} \le n-1 \forall i, j \text{ and } M = \begin{pmatrix} \circ & * \\ \circ & \circ \end{pmatrix} \implies \text{gldim } \Lambda \le n-1 \end{pmatrix}$ [Kirichenko] • Λ 1-Iwanaga-Gorenstein $\iff m_{ij\pi(i)} = O \forall i, j$ for some permutation π

Example

• $\Lambda_{(b,a)} \cong \Lambda_{(b,a)}$ $\forall a, b \in \mathbb{Z}$ with a+b>0 is 1-Iwanaya-Gorenstein. It has finite global dimension iff it is hereditary iff a+b=1.

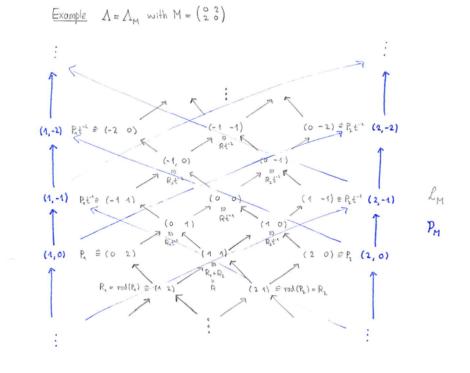
\$3 CM modules

A basic R-order in A mod (A) category of f.g. A-modules $CM(A) = \{X \in mod(A): X \text{ R-lattice}\}$ $S = (D \cdots D) \text{ simple A-module}$ $M = (m_{ij}) \text{ catisfying } \oplus \text{ and satisfying } \oplus \text{ strictly}$ $L_A = \{X \in CM(A): O \neq X \in S\}$ $P_A = L_A \cap \text{ proj}(A)$ $L_M = \{(m_{ij},...,m_n) \in \mathbb{Z}^n: m_i + m_{ij} \ge m_i\} \text{ ordered by } \underline{m} \le \underline{m}' \iff m_i \ge m'_i \forall i$ $P_M = \{A,...,n\} \times \mathbb{Z}$ ordered by $(i,a) \le (j,b) \iff m_{ji} \le a-b$

<u>Remark</u> Z acts on P_{Λ} and L_{Λ} by multiplication with t, on L_{M} by addition of (1, ..., 1)and on P_{M} by addition of 1 in the second component.

Lemma There is a commutative diagram of Z-equivariant maps for Λ = Λ_{M} :

The upper two horizontal maps are isomorphisms of posets. 0



Theorem [Plesken, Rump] For R-orders A in A t.F.a.e.:

A is tiled in A,

(2) A is an intersection of max. R-orders in A and LA forms a distributive lattice.
 (3) ______ and the A-ideals form ______.

Fact. A tiled R-order A in A is hereditary iff $\mathcal{P}_{\!A}$ is a chain.

§4 Finite-Type Classification

 $\Lambda = \Lambda_{M}$ basic R-order in A

<u>Def.</u> rep^o(\mathbf{P}_{M}^{op}) is the category with • objects $V = (V_p)_{peP_M(io)}$ where V_p are subspaces of a f.d. k-vsp. V_{∞} - $V_p = 0$ $\forall p = (i, a)$ with acco - $V_p = V_q$ $\forall p \approx q$ in \mathbf{P}_M - $V_p = V_{\infty}$ $\forall p = (i, a)$ with a ∞ 0

· morphisms k-linear maps V_∞ + V_∞' s. th. f(V_p) ∈ V_p' ∀p

Remark rep (\mathcal{P}^{op}_{M}) is Krull-Schmidt and has an autoequivalence σ given on objects V by

$$(\nabla V)_{(i,\alpha)} = V_{(i,\alpha-1)}$$

3

Theorem [Zavadskij-Kirichenko] T.F.a.e.:

- (1) CM(A) is of Finite type.
- (2) rep⁽(P^P_µ) is of finite type up to the Z-action of σ.
- (3) PM contains none of the following as a full subposet :

"KLEINER'S CRITICAL FIVE"

Corollary n < 2 => CM(A) has finite type.

Remark The proof in [ZK] uses matrix problems and "differentiation of posets".

- \$5 Idea of proof for $R = \Delta = k[[t]]$ and K = k((t))
 - Def. Latt (M) is the category with
 - objects $X = (X_{i_1}, ..., X_n)$ tuples of full R-lattices in $KX_1 = \cdots = KX_n$ satisfying $X_i t^{m_{i_j}} \subseteq X_j$ $\forall i, j$,
 - · morphisms F= (f.,..,f.) where the fore morphisms X: -> X'.

Lemma There is an equivalence of categories

$$\begin{array}{ccc} G: Latt(M) & \xrightarrow{\simeq} & CM(\Lambda) \\ & \times & \longmapsto & \widetilde{X} := \bigoplus X_i \end{array}$$

where $C \in \Lambda$ acts on $x \in \tilde{X}$ as $(x C)_j = \sum_{i} x_i c_{ij}$.

<u>Def.</u> Denote by π the functor obtained by precomposing G with

$$F: \operatorname{rep}^{\circ}(\mathcal{P}_{M}^{\operatorname{sr}}) \longrightarrow \operatorname{Latt}(M)$$

$$\bigvee \longmapsto F(V) \quad \text{with } F(V)_{i} = \prod_{a \in \mathcal{U}} V_{(i,a)}$$

where t maps XEF(V); to (Xan)acz.

Theorem [Roggenkamp-Wiedemann]

- (a) TT ≅ TT ∘ σ
- (b) On objects TT preserves indecomposability and reflects projectivity and injectivity.
- (c) On morphisms TT preserves irreducibility.
- (d) Denoting by $\Gamma_{P_{M}}$ and Γ_{Λ} the AR-quivers of rep (\mathcal{P}_{M}^{op}) and CM(Λ), resp., TT induces a morphism of translation quivers

$$\Gamma_{\mathcal{P}_{\mathcal{M}}}/\sigma \xrightarrow{\pi_{\star}} \Gamma_{\mathcal{A}}$$

whose image is a union of connected components.

Corollary IF $CM(\Lambda)$ has finite type, then TT_* is an isomorphism.

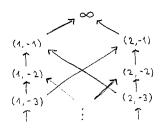
Remark All in all, it's easy to decide algorithmically

(1) whether $CM(\Lambda)$ has finite type and in this case

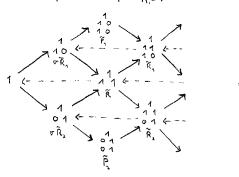
(2) compute Γ_{Λ} by knitting $\Gamma_{P_{\Lambda}}$.

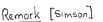
Example $\Lambda = \Lambda_{M}$ with $M = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$

(1) Consider the poset $\mathcal{P}_{M_{-}}^{op}$ obtained from \mathcal{P}_{M}^{op} by contracting the "positive" vertices to a single vertex ∞ :



2) Knit the AR-quiver of rep" (P"):





If k is algebraically closed, there is a notion for $CM(\Lambda)$ to be of tame type (of polynomial growth). Using the functor π one can prove then the equivalence of:

- (1) CM(A) has tame type of polynomial growth.
- (2) Pm contains none of "NAZAROVA-ZAVADSKIJ'S HYPERCRITICAL SEVEN" as a full subposet.
- . A complete classification when CM(A) has take type is unknown.

5 Commutative CM-finite type of dimension 0 and 1

Tuesday 13th 9:30 – William Crawley–Boevey (Bielefeld, Germany)

Setting.

• R commutative noetherian local ring (R, \mathfrak{m}, k)

5.1 Dimension 0

- $\dim(R) = 0 \Leftrightarrow R$ artinian
- All finitely generated modules are CM.

Theorem 5.1. R has finite representation type \Leftrightarrow R is a principal ideal ring.

Proof. If $\mathfrak{m}/\mathfrak{m}^2$ has dimension 1 over k, then R is a principal ideal ring.

If $\mathfrak{m}/\mathfrak{m}^2$ has dimension ≥ 2 , reduce to the case $\mathfrak{m}^2 = 0$ and $\dim(\mathfrak{m}) = 2$.

Then it looks like $k[x, y]/(x, y)^2$, i.e. it is given by the quiver with one vertex and two loops x and y subject to the relations xy = yx = 0 and $x^2 = y^2 = 0$, whose representation theory is essentially equivalent to the one of the Kronecker quiver.

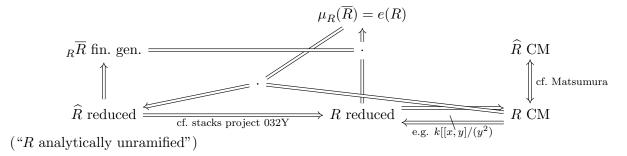
5.2 Dimension 1

- Henceforth $\dim(R) = 1$.
- For finitely generated R-modules M:

M is CM

- \Leftrightarrow there is $x \in \mathfrak{m}$ which is a non-zero divisor on M, i.e. $xm = 0 \Rightarrow m = 0$
- \Leftrightarrow Hom(k, M) = 0, i.e. M doesn't have a copy of k as a submodule
- If R is reduced (i.e. it has no nilpotent elements), then M is CM iff M is torsion-free.
- Total quotient ring $K = \{\text{non-zero divisors in } R\}^{-1}R$.
- $K \neq R \Leftrightarrow$ there exists a non-zero divisor which is not a unit $\Leftrightarrow R$ is CM
- \overline{R} = integral closure of R in K

The following implications hold:



Example 5.2.

- Non-example: k[x, y]/(xy), i.e. it is given by the quiver with two loops x and y and relations xy = yx = 0.
- Example: R = k[[x, y]]/(xy).

Definition 5.3. A finite birational extension of R is a ring S with $R \subseteq S \subseteq K$ and $_RS$ finitely generated.

Proposition 5.4. In the situation of the definition with R, S 1-dimensional local rings:

$$R \ CM$$
-finite $\Rightarrow S \ CM$ -finite

Definition 5.5. An <u>artinian pair</u> is $A \hookrightarrow B$ with A and B commutative artinian rings and _AB finitely generated.

$$\operatorname{Rep}(A \hookrightarrow B) = \left\{ {}_{A}V \hookrightarrow {}_{B}W \text{ of f.g. A-modules with } {}_{B}W \text{ proj. and } BV = W \right\}$$
$$\binom{V}{W} \text{ is a } \begin{pmatrix} A & 0 \\ B & B \end{pmatrix} \text{-module and } B \otimes_{A} V \to W \text{ B-module homomorphism.}$$

Definition 5.6. Let R be a CM ring and let S be a finite birational extension of R. Then the conductor C of R in S is the largest subset of R which is an ideal in S, i.e.

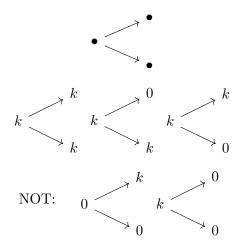
$$C = \{r \in R : Sr \subseteq R\}.$$

Conductor square, a pullback diagram:

$$\begin{array}{c} R & \longrightarrow S \\ \downarrow & \downarrow \pi \\ A = R/C & \longrightarrow S/C = B \end{array}$$

Example 5.7.

$$R = k[[x, y]/(xy) = \{(a, b) \in k[[x]] \oplus k[[y]] : a_0 = b_0\} \subseteq k[[x]] \oplus k[[y]]$$
$$K = k((x)) \oplus k((y))$$
$$\overline{R} = k[[x]] \oplus k[[y]]$$
$$C = xk[[x]] \oplus yk[[y]]$$
$$A = R/C = k \hookrightarrow B = \overline{R}/C = k \oplus k$$
$$\binom{A \quad 0}{B \quad B} = \binom{k \quad 0}{k^2 \quad k^2}$$



- $M \ \mathrm{CM} \ R$ -module
- $M \to S \otimes_R M / \text{torsion} =: SM$
- \widehat{R} reduced (then: R CM-finite $\Leftrightarrow \operatorname{Rep}(A \hookrightarrow B)$ is representation-finite)

•
$$S = \overline{R}$$

Theorem 5.8. Let $(A \hookrightarrow B)$ and (A, \mathfrak{m}, k) be as before. Then:

$$(A \hookrightarrow B) \text{ representation-finite } \Rightarrow \begin{array}{c} (dr1) & \dim_k(B/\mathfrak{m}B) \leq 3\\ (dr2) & \dim_k((\mathfrak{m}B + A)/(\mathfrak{m}^2B + A)) \leq 1 \end{array}$$

If B is a principal ideal ring and if either B/rad(B) is separable over k or B is reduced, then \leftarrow holds.

Theorem 5.9. \hat{R} reduced. Then:

$$\begin{array}{ll} R \ CM\ finite \ \Leftrightarrow & (dr1) \quad \mu_R(R) \leq 3 \\ (dr2) \quad \mu_R((\mathfrak{m}\overline{R}+R)/R) \leq 1 \end{array}$$

5.3 Simple plane curve singularities

• k[[x, y]]/(f) with k algebraically closed of characteristic 0

Simple.

$$\left|\left\{\text{proper ideals } I \text{ in } k[[x, y]] \text{ with } f \text{ in } I^2\right\}\right| < \infty$$

f must be one of:

$$A_n \quad x^2 + y^{n+1} \quad \text{with } n \ge 1$$
$$D_n \quad x^2 y + y^{n-1} \quad \text{with } n \ge 4$$
$$E_6 \quad x^3 + y^4$$
$$E_7 \quad x^3 + xy^3$$
$$E_8 \quad x^3 + y^5$$

Theorem 5.10 (Greuel-Knörrer). Let R be the complete local ring of a reduced curve singularity. Then:

- (i) R CM-finite \Leftrightarrow R finite birational extension of a simple plane curve singularity
- (ii) R Gorenstein: R CM-finite \Leftrightarrow R simple plane curve singularity

6 Auslander-Reiten theory for lattices I

Tuesday 13th 11:00 – Kunda Kambaso (Aachen, Germany)

Setting.

- R commutative noetherian with $\dim(R) = d$
- $\dim(X) = \dim(R/\operatorname{Ann}(X))$ for $X \in \operatorname{mod}(R)$
- depth(X) = inf{ $i \ge 0$: Extⁱ_R(R/rad(R), X) $\neq 0$ }
- $\operatorname{depth}(X) \le \dim(R)$
- $\operatorname{CM}_i(R) = \{X \in \operatorname{mod}(R) : X \neq 0 \text{ and } \operatorname{depth}(X) = i = \dim(X)\}$
- $\operatorname{CM}(R) = \operatorname{CM}_d(R)$
- R Gorenstein : \Leftrightarrow inj. dim $(R) < \infty$
- R <u>equidimensional</u> : $\Leftrightarrow \dim(R_{\mathfrak{m}}) = \dim(R)$
- *R* equidimensional
- Λ a noetherian *R*-algebra
- A Λ -module M is CM iff it is finitely generated and CM as an R-module.
- $CM(\Lambda) = \{M \in mod(\Lambda) : M \in CM(R)\}$

Definition 6.1. $M \in \text{mod}(\Lambda)$ is called a lattice if $M \in \text{CM}(\Lambda)$ and for non-maximal \mathfrak{p}

- (i) $M_{\mathfrak{p}}$ is a $\Lambda_{\mathfrak{p}}$ -projective module,
- (ii) $\operatorname{Hom}_R(M, R)_{\mathfrak{p}}$ is a $\Lambda_{\mathfrak{p}}^{\operatorname{op}}$ -projective module.

Denote by $\mathcal{L}(\Lambda)$ the category of lattices, a subcategory of noeth(Λ).

Definition 6.2. Λ *is an* R*-order if* $\Lambda \in CM(\Lambda)$ *.*

Example 6.3.

(a) R field (0-dimensional Gorenstein ring):

R-orders are noetherian *R*-algebras and $\mathcal{L}(\Lambda) = \operatorname{CM}(\Lambda) = \operatorname{artin}(\Lambda)$.

(b) R equidimensional Gorenstein ring:

R is an R-order and R-lattices are all CM R-modules such that $M_{\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -free.

Let Λ be an *R*-order and $d = \dim(R)$.

Properties.

- 1. If Λ is an *R*-order, then so is Λ^{op} .
- 2. $M \in \mathcal{L}(\Lambda) \Rightarrow M$ is CM and $\operatorname{Hom}_{R}(M, R)$ is in $\mathcal{L}(\Lambda^{\operatorname{op}})$.
- 3. Hom_R(-, R): $\mathcal{L}(\Lambda) \to \mathcal{L}(\Lambda^{\mathrm{op}})$ is a duality.

Remark 6.4. $\mathcal{J}(\Lambda)$ the full subcategory of noeth(Λ) consisting of all M such that

- (1) $M_{\mathfrak{p}}$ is $\Lambda_{\mathfrak{p}}$ -projective for all non-maximal \mathfrak{p} ,
- (2) $\operatorname{Ext}^{i}_{\Lambda}(M, \Lambda) = 0$ for all $i = 1, \dots, d$.

 $\underline{\mathcal{J}}(\Lambda)$ is the full subcategory of <u>noeth</u>(Λ) with objects in $\mathcal{J}(\Lambda)$.

There is a functor Ω : noeth(Λ) \rightarrow noeth(Λ), $M \mapsto \ker(P(M) \rightarrow M)$. In general, Ω^0 the identity, $\Omega^{i+1} = \Omega \circ \Omega^i$, then $\Omega^d(M)$ is in $\mathcal{L}(\Lambda)$. Ω^d induces a functor $\mathcal{J}(\Lambda) \rightarrow \mathcal{L}(\Lambda)$, which is fully faithful.

Theorem 6.5. $\Omega^d : \mathcal{J}(\Lambda) \to \underline{\mathcal{L}}(\Lambda)$ is an equivalence.

Theorem 6.6. The duality $\operatorname{Tr}: \operatorname{\underline{noeth}}(\Lambda) \to \operatorname{\underline{noeth}}(\Lambda^{\operatorname{op}})$ induces the duality

$$\operatorname{Tr} : \underline{\mathcal{L}}(\Lambda) \to \underline{\mathcal{J}}(\Lambda^{\operatorname{op}}).$$

Remark 6.7. We get $\operatorname{Tr}_{\mathcal{L}} : \underline{\mathcal{L}}(\Lambda) \to \underline{\mathcal{L}}(\Lambda^{\operatorname{op}}) \text{ from } \underline{\mathcal{L}}(\Lambda) \xrightarrow{\operatorname{Tr}} \underline{\mathcal{J}}(\Lambda^{\operatorname{op}}) \xrightarrow{\Omega^d} \underline{\mathcal{L}}(\Lambda^{\operatorname{op}}).$

Proposition 6.8. $\operatorname{Tr}_{\mathcal{L}} : \underline{\mathcal{L}}(\Lambda) \to \underline{\mathcal{L}}(\Lambda^{\operatorname{op}}) \text{ and } \operatorname{Tr}_{\mathcal{L}} : \underline{\mathcal{L}}(\Lambda^{\operatorname{op}}) \to \underline{\mathcal{L}}(\Lambda) \text{ are inverse dualities.}$

Definition 6.9.

- (a) $\dots \to M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \to \dots$ in $\mathcal{L}(\Lambda)$ is <u>exact</u> if it is exact as a sequence of Λ -modules and $\operatorname{im}(f_i)$ in $\mathcal{L}(\Lambda)$.
- (b) C in $\mathcal{L}(\Lambda)$ is projective if all exact $0 \to A \to B \to C \to 0$ split.

 $\mathcal{I}(\mathcal{L}(\Lambda))$ denotes the full subcategory of $\mathcal{L}(\Lambda)$ whose objects are injectives. $\mathcal{I}(A, C)$ is the *R*-submodule of $\operatorname{Hom}_R(A, C)$ of morphisms factoring through $\mathcal{I}(\mathcal{L}(\Lambda))$. Define $\overline{\mathcal{L}}(\Lambda)$ with $\overline{\operatorname{Hom}}_{\Lambda}(A, C) = \operatorname{Hom}_{\Lambda}(A, C)/\mathcal{I}(A, C)$.

Proposition 6.10.

- (a) $\operatorname{Hom}_R(-,R)\colon \mathcal{L}(\Lambda) \to \mathcal{L}(\Lambda^{\operatorname{op}}) \text{ induces } \underline{\mathcal{L}}(\Lambda) \to \overline{\mathcal{L}}(\Lambda^{\operatorname{op}}).$
- (b) $\underline{\mathcal{L}}(\Lambda) \xrightarrow{\operatorname{Tr}_{\mathcal{L}}} \underline{\mathcal{L}}(\Lambda^{\operatorname{op}}) \xrightarrow{\operatorname{Hom}_{R}(-,R)} \overline{\mathcal{L}}(\Lambda)$ is an equivalence of categories.

Proposition 6.11. Let X, C be in $\mathcal{L}(\Lambda)$. Then

 $\operatorname{Ext}^{1}_{\Lambda}(C, X) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{\Lambda}(\operatorname{Tr}_{\mathcal{L}} X^{*}, C), I_{d})$

is functorial in X and C. We get

$$\operatorname{Ext}^{1}_{\Lambda}(C, \operatorname{Hom}_{R}(\operatorname{Tr}_{\mathcal{L}} X, R)) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{\Lambda}(X, C), I_{d}).$$

Consequently:

Proposition 6.12. Let C, X be in $\mathcal{L}(\Lambda)$ and $n \in \mathbb{Z}_{>0}$. Then there is

$$\operatorname{Ext}^{1}_{\Lambda}(C, \operatorname{Hom}_{R}(\operatorname{Tr}_{\mathcal{L}} X, R^{n})) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{\Lambda}(X, C), I^{n}_{d}).$$

Let

/ \

$$x: 0 \longrightarrow \operatorname{Hom}_R(\operatorname{Tr}_{\mathcal{L}} X, \mathbb{R}^n) \xrightarrow{g} B \xrightarrow{f} C \longrightarrow 0$$

be an exact sequence in $\mathcal{L}(\Lambda)$ and $\nu : \underline{\mathrm{Hom}}_{\Lambda}(X, C) \to I^n_d$.

Theorem 6.13. Let H be an R-submodule of (X, C) containing $\mathcal{P}(X, C)$ with $H/\mathcal{P}(X, C) = \ker(\nu)$. Then:

(a)

$$h: L \to C \text{ in } \mathcal{L}(\Lambda) \text{ can be written as } ft = h \text{ for some } t: L \to B$$

 $\Leftrightarrow \text{ im}(-,h)(X): \text{ Hom}(X,L) \to \text{Hom}(X,C) \subseteq H.$

(b) f is right X-determined in L(Λ) and im(−, f)(X) is a maximal End(X)^{op}-submodule.
 Let f: B → C. For all f': B' → C, then f' factors through f and for all φ: X → B', f'φ factors through f:

$$\begin{array}{cccc} X & \stackrel{\phi}{\longrightarrow} & B' & \stackrel{f'}{\longrightarrow} & C \\ & \searrow & \downarrow & & \downarrow \\ & \chi & \stackrel{f}{\longrightarrow} & C \end{array}$$

(c) $\operatorname{im}(-, f)(X) = H \Leftrightarrow H$ is a Σ -submodule of (X, C) where $\Sigma = \operatorname{End}(X)^{\operatorname{op}}$.

Use $A \cong \operatorname{Hom}_R(\operatorname{Tr}_{\mathcal{L}}(\operatorname{Tr}_{\mathcal{L}} A)^*, R)$ to see that f is right $(\operatorname{Tr}_{\mathcal{L}} A)^*$ -determined.

Theorem 6.14. Let X, C be in $\mathcal{L}(\Lambda)$ and suppose $\coprod_{i=1}^{k} S_{i}^{n_{i}}$ is isomorphic to the socle of (X, C)/H with S_{i} simple non-isomorphic Σ -modules, $n_{i} \in \mathbb{Z}_{>0}$. Let $n = \max\{n_{1}, \ldots, n_{k}\}$. There is an exact

$$x: 0 \longrightarrow \operatorname{Hom}_{R}(\operatorname{Tr}_{\mathcal{L}} X, R^{n}) \xrightarrow{g} B \xrightarrow{f} C \longrightarrow 0$$

satisfying

(a) im(-, f)(X) = H and f is right X-determined.

7 Auslander-Reiten theory for lattices II

Tuesday 13th 14:00 – Jasper van de Kreeke (Amsterdam, Netherlands)

Auslander-Reiten ...

- sequences
- translates
- quivers
- duality

in the commutative and noncommutative setting.

Yesterday: R = k[[x]] and Λ an arbitrary *R*-order.

<u>Now:</u> By convention, R is a commutative noetherian local complete Gorenstein ring which is an isolated singularity (\rightsquigarrow AR-sequences exist).

Example 7.1.

- R = k[[x]]
- Kleinian singularities in all dimensions $(A_1 \text{ surface singularity: } R = \mathbb{C}[[x^2, y^2, xy]])$

Theorem 7.2 (Auslander '86). A local complete Gorenstein ring R has AR-sequences for all non-free indecomposable modules $M \in CM(R)$ iff R is an isolated singularity.

7.1 AR-sequences and AR-translates

Definition 7.3. Let $M \in \text{mod}(R)$ and let $P_1 \to P_0 \to M \to 0$ be a minimal projective presentation for M. Then $\text{Tr}(M) := \text{coker}(P_0^* \to P_1^*)$.

Definition 7.4. Let $M \in \text{mod}(R)$ and $0 \to N \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ be exact with P_i finitely generated projective, then N is an n-th syzygy for M.

The following is uniquely defined up to isomorphism

 $\operatorname{redsyz}^n(M) :=$ "N minus its free summands".

Definition 7.5. Let $M \in CM(R)$ be indecomposable. Then a short exact sequence

$$0 \to N \to E \to M \to 0$$

with N indecomposable is an <u>AR-sequence</u> for M if $E \to M$ is not a split surjection and every $X \to M$ which is not a split surjection factors through $E \to M$.

Theorem 7.6. For any non-free indecomposable $M \in CM(R)$ there exists a unique ARsequence. In fact $N \cong \tau(M) := Hom(redsyz^n(Tr(M)), R)$ where $n = \dim(R)$.

Example 7.7. The theory is trivial for a regular ring, e.g. $\mathbb{C}[[x]]$.

Exercise 7.8. Check that $Tr(Tr(M)) \cong M$ for non-projective indecomposable M.

Remark 7.9. If dim(R) = 2, $\tau(M) \cong M$ for non-projective indecomposable $M \in CM(R)$. (Look at $0 \to M^* \to P_0^* \to P_1^* \to Tr(M) \to 0$.)

7.2 AR-quivers

Definition 7.10. Let $M = \bigoplus M_i$ and $N = \bigoplus N_i$ be decompositions into indecomposables of $M, N \in CM(R)$. Define

$$\begin{aligned} \operatorname{rad}(M,N) &:= \{(\varphi_{ij}) : each \ \varphi_{ij} : M_j \to N_i \ not \ an \ isomorphism\} \,, \\ \operatorname{rad}^2(M,N) &:= \{f \circ g : g \in \operatorname{rad}(M,X), f \in \operatorname{rad}(X,N)\} \,, \\ \operatorname{Irr}(M,N) &:= \operatorname{rad}(M,N)/\operatorname{rad}^2(M,N) \,. \end{aligned}$$

Exercise 7.11. Check that rad(M, N) and $rad^2(M, N)$ are *R*-modules. In fact Irr(M, N) becomes a *k*-vector space where $k = R/\mathfrak{m}$.

Definition 7.12. Assume k is algebraically closed. Then the AR-quiver Q_R has

- vertices M for all indecomposable CM modules M,
- $\dim_k \operatorname{Irr}(M, N)$ many arrows from M to N,
- remembers the AR-translates.

Theorem 7.13. The AR-quiver of a 2-dimensional Kleinian singularity (over \mathbb{C}) is the McKay double quiver.

Example 7.14. A_1 case $(\mathbb{C}^2/\mathbb{Z}_2)$: We have $R = \mathbb{C}[[x^2, y^2, xy]]$. Then R and M = Rx + Ry (= power series in odd degrees) are the 2 indecomposable CM modules and

So the AR-quiver is

 $R \rightleftharpoons M \rightleftharpoons A \longleftrightarrow A$

Exercise 7.15. Check that $\operatorname{redsyz}^2(M) = M$ using $0 \to \ker \to R^{\oplus 2} \to R^{\oplus 2} \to M \to 0$.

7.3 AR-duality

Theorem 7.16. We have

$$\begin{split} &\operatorname{Hom}_{R}(\tau^{-1}(Y),X)/\{\text{maps factoring through some } R^{\oplus n}\}\\ &= \operatorname{Hom}_{R}(Y,\tau(X))/\{\text{maps factoring through some } R^{\oplus n}\}\\ &= \operatorname{Ext}^{1}(X,Y)^{*}\,. \end{split}$$

Example 7.17. "cluster category": $D^b(\text{mod}(A_4))/\tau \cong \underline{CM}$ (2-dimensional A_n)

Exercise 7.18. Using this equality check AR-duality.

7.4 Noncommutative case

Let R be a local complete noetherian commutative Gorenstein ring. Let Λ be an R-order (i.e. $\Lambda \in CM(R)$). Then we have $CM(\Lambda)$.

Fact 7.19. CM(Λ) finite type $\Rightarrow \Lambda$ isolated singularity, i.e. gl. dim($\Lambda \otimes_R R_{\mathfrak{p}}$) = gl. dim($R_{\mathfrak{p}}$).

Fact 7.20. AR-sequences exist $\Leftrightarrow \Lambda$ isolated singularity

Fact 7.21. AR-duality for isolated singularities Λ :

 $\begin{aligned} &\operatorname{Hom}_{\Lambda}(\tau^{-1}(Y),X)/\{\text{maps factoring through some }\Lambda^{\oplus n}\}\\ &= \operatorname{Hom}_{\Lambda}(Y,\tau(X))/\{\text{maps factoring through some }(\Lambda^*)^{\oplus n}\}\,.\end{aligned}$

8 Auslander-Buchweitz approximations

Tuesday 13th 15:15 – Manuel Flores Galicia (Bielefeld, Germany)

(following notes by Ryo Kanda)

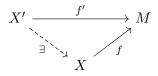
Setting.

- R Iwanaga-Gorenstein (left and right noetherian and inj. $\dim(R)$ and inj. $\dim(R_R)$ finite, actually then inj. $\dim(R) = \operatorname{inj.dim}(R_R)$)
- For $M \in Mod(R)$ there exists a short exact sequence $0 \to K \to N \to M \to 0$ where $N \in CM(R)$ and K has finite projective dimension.

8.1 Approximations and cotorsion pairs

- *B* additive category
- $\mathcal{X} \subseteq \mathcal{B}$ closed under finite sums and direct summands and extensions

Definition 8.1. A morphism $f: X \to M$ with $X \in \mathcal{X}$ is a <u>right \mathcal{X} -approximation</u> of M iff for every $f': X' \to M$ with $X' \in \mathcal{X}$ the map $\operatorname{Hom}(\mathcal{X}, X) \to \operatorname{Hom}(X', M)$ is surjective:



 \mathcal{X} is said to be <u>contravariantly finite</u> in \mathcal{B} if every $B \in \mathcal{B}$ has a right \mathcal{X} -approximation. Dually, define left \mathcal{X} -approximations and covariantly finite.

Proposition 8.2. $\mathcal{X} \subseteq \mathcal{B}$ and $0 \to Y \to X \xrightarrow{f} M \to 0$ a short exact sequence with $X \in \mathcal{X}$. If $\operatorname{Ext}^{1}(\mathcal{X}, Y) = 0$, then f is a right \mathcal{X} -approximation.

Definition 8.3. $\mathcal{B} \subseteq \mathcal{A}$ with \mathcal{A} abelian, $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{B}$ additive.

We say that $(\mathcal{X}, \mathcal{Y})$ is a cotorsion pair in \mathcal{B} with special approximations if:

- (a) $\operatorname{Ext}_{A}^{i}(X,Y) = 0$ for all $X \in \mathcal{X}, Y \in \mathcal{Y}, i > 0$,
- (b) for all $B \in \mathcal{B}$ there are

 $0 \to Y_B \to X_B \xrightarrow{f} B \to 0 \qquad and \qquad 0 \to B \xrightarrow{g} Y^B \to X^B \to 0$

with $Y_B, Y^B \in \mathcal{Y}$ and $X_B, X^B \in \mathcal{X}$.

Proposition 8.4. Proposition $8.2 \Rightarrow f$ is a right \mathcal{X} -approximation of B and g is a left \mathcal{Y} -approximation of B.

Definition 8.5. For $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{A}$ let

$$\begin{aligned} \mathcal{X}^{\perp} &:= \left\{ M \in \mathcal{A} : \operatorname{Ext}_{\mathcal{A}}^{>0}(\mathcal{X}, M) = 0 \right\}, \\ ^{\perp}\mathcal{Y} &:= \left\{ M \in \mathcal{A} : \operatorname{Ext}_{\mathcal{A}}^{>0}(M, \mathcal{Y}) = 0 \right\}. \end{aligned}$$

Definition 8.6. $\omega \subseteq \mathcal{X}$ is a <u>cogenerator</u> of \mathcal{X} if for all $X \in \mathcal{X}$ there exists a short exact sequence $0 \to X \to W \to Y \to 0$ with $W \in \omega$ and $Y \in \mathcal{X}$.

 ω is an injective cogenerator if $\operatorname{Ext}^{>0}(\mathcal{X},\omega) = 0$.

Recall 8.7. $\omega \subseteq \mathcal{A}$ additive. Then \mathcal{A}/ω has the same objects as \mathcal{A} and morphisms

$$\operatorname{Hom}_{\mathcal{A}/\omega}(M,N) = \operatorname{Hom}_{\mathcal{A}}(M,N) / \left\{ M \xrightarrow{f} N : f \text{ factors through some } W \in \omega \right\}.$$

Proposition 8.8. Let $(\mathcal{X}, \mathcal{Y})$ be a cotorsion pair in \mathcal{B} and $\omega = \mathcal{X} \cap \mathcal{Y}$. Then:

(1)
$$\mathcal{Y} = \mathcal{X}^{\perp} \cap \mathcal{B} = \mathcal{X}^{\perp_1} \cap \mathcal{B} \text{ and } \mathcal{X} = {}^{\perp}\mathcal{Y} \cap \mathcal{B} = {}^{\perp_1}\mathcal{Y} \cap \mathcal{B} \text{ and } \omega = \mathcal{X} \cap \mathcal{X}^{\perp} = \mathcal{Y} \cap {}^{\perp}\mathcal{Y},$$

- (2) ω is an injective cogenerator of \mathcal{X} ,
- (3) for all $f: X \to Y$ with $X \in \mathcal{X}, Y \in \mathcal{Y}$ we have f = 0 in \mathcal{A}/ω ,
- (4) X_B , Y^B are unique up to isomorphism in \mathcal{A}/ω .

Proof. (1) $\mathcal{Y} \subseteq \mathcal{X}^{\perp} \cap \mathcal{B} \subseteq \mathcal{X}^{\perp_1} \cap \mathcal{B}$.

If $B \in \mathcal{X}^{\perp_1} \cap \mathcal{B}$, then $0 \to B \to Y^B \to X^B \to 0$ splits, so B is a direct summand of Y^B , so $B \in \mathcal{Y}$. Thus $\mathcal{Y} = \mathcal{X}^{\perp_1} \cap \mathcal{B}$ and $\omega = \mathcal{X} \cap \mathcal{Y} = \mathcal{X} \cap \mathcal{X}^{\perp_1} \cap \mathcal{B} = \mathcal{X} \cap \mathcal{X}^{\perp}$.

(2) For all $X \in \mathcal{X}$ there is $0 \to X \to Y^X \to X^X \to 0$ with $Y^X \in \mathcal{Y}$ and $X^X \in \mathcal{X}$. Since \mathcal{X} is closed under extensions we get $Y^X \in \mathcal{X}$, so $Y^X \in \omega$.

Since $\omega \subseteq \mathcal{X}^{\perp}$ by (1) we get $\operatorname{Ext}^{>0}(\mathcal{X}, \omega) = 0$.

8.2 Auslander-Buchweitz approximations

- \mathcal{A} abelian category
- $\mathcal{X} \subseteq \mathcal{A}$ additive, closed under extensions and kernels of epimorphisms
- $\omega \subseteq \mathcal{X}$ additive, injective cogenerator of \mathcal{X}
- $\widehat{X} := \{ M \in \mathcal{A} : \text{there is } n \text{ and an exact } 0 \to X_n \to \dots \to X_0 \to M \to 0 \text{ with } X_i \in \mathcal{X} \}$

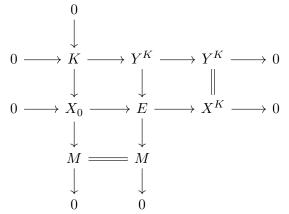
Theorem 8.9 (Auslander, Buchweitz). Under the above assumptions:

- (1) $(\mathcal{X}, \widehat{\omega}) \subseteq \widehat{\mathcal{X}}$ is a cotorsion pair,
- (2) $\widehat{\mathcal{X}} = \{ M \in \mathcal{A} : \exists 0 \to Y_M \to X_M \xrightarrow{p} M \to 0 \text{ with } Y_M \in \widehat{\omega} \text{ and } X_M \in \mathcal{X} \}$ and $\widehat{\mathcal{X}} = \{ M \in \mathcal{A} : \exists 0 \to M \xrightarrow{j} Y_M \to X_M \to 0 \text{ with } Y_M \in \widehat{\omega} \text{ and } X_M \in \mathcal{X} \},$ (3) $\omega = \mathcal{X} \cap \mathcal{X}^{\perp}.$

Definition 8.10. The morphism $p: X_M \to M$ is called an <u>Auslander-Buchweitz approxi</u>mation of M (or CM approximation) and $j: M \to Y_M$ is called an $\hat{\omega}$ -hull of M.

Proof. Let $M \in \widehat{\mathcal{X}}$. Then there is an exact $0 \to X_n \to \cdots \to \overset{d_0}{\longrightarrow} X_0 \to M \to 0$ with $X_i \in \mathcal{X}$. If n = 0 take $0 \to 0 \to M \to M \to 0$ where $0 \in \widehat{\omega}$ and $M \in \mathcal{X}$. Now $\omega \subseteq \mathcal{X}$ cogenerating gives $0 \to M \to W \to X \to 0$ with $W \in \omega$ and $X \in \mathcal{X}$.

If $n \geq 1$, set $K = \operatorname{im}(d_0)$ and consider $0 \to K \to X_0 \to M \to 0$ and $0 \to X_n \to \cdots \to X_1 \to K \to 0$. By induction hypothesis there is $0 \to K \to Y^K \to X^K \to 0$ with $Y^K \in \widehat{\omega}$. Consider



The third column yields a right \mathcal{X} -approximation of M.

8.3 Examples

1.

- $\bullet~R$ Iwanaga-Gorenstein
- $\mathcal{A} = \operatorname{mod}(R)$
- $\mathcal{X} = \operatorname{CM}(R) = {}^{\perp}R = \{M \in \operatorname{mod}(R) : \operatorname{Ext}^{>0}(M, R) = 0\}$
- $\omega = \operatorname{proj}(R)$ finitely generated projective *R*-modules

•

- $\Rightarrow M \cong M^{**}$ for all $M \in CM(R)$, i.e. M is reflexive.
- $\operatorname{proj}(R) \subseteq \operatorname{CM}(R)$ is cogenerating.
- Let $M \in CM(R)$. Then

$$0 \longrightarrow \Omega(M^*) \longrightarrow P'_0 \longrightarrow M^* \longrightarrow 0$$

where $M^*, \Omega(M^*) \in CM(R^{op}), P'_0 \in \operatorname{proj}(R^{op})$ and

 $0 \longrightarrow M^{**} \longrightarrow (P'_0)^* \longrightarrow (\Omega(M^*))^* \longrightarrow 0$

where $(\Omega(M^*))^* \in CM(R), (P'_0)^* \in \operatorname{proj}(R).$

- $\mathcal{X} = \mathrm{CM}(R)$
- $\widehat{\mathcal{X}} = \operatorname{mod}(R)$:

Let $M \in \text{mod}(R)$. Since $n = \text{inj.} \dim(R_R) < \infty$, we have

$$\operatorname{Ext}^{>n}(M,R) = \operatorname{Ext}^{>n-1}(\Omega(M),R) = \dots = \operatorname{Ext}^{>0}(\Omega^n(M),R) = 0,$$

so $\Omega^n(M) \in CM(R)$. So we have

$$0 \to \Omega^n(M) \to P_{n-1} \to \dots \to P_0 \to M \to 0$$

with $\Omega^n(M) \in CM(R)$ and $P_i \in \operatorname{proj}(R) \subseteq CM(R)$.

- $\widehat{\omega} = \widehat{\operatorname{proj}(R)} = \{M \in \operatorname{mod}(R) : \operatorname{proj.dim}(M) < \infty\} =: \mathcal{P}^{<\infty}$
- \Rightarrow (CM(R), $\mathcal{P}^{<\infty}$) \subseteq mod(R) is a cotorsion pair.

•
$$\omega = \operatorname{CM}(R) \cap \mathcal{P}^{<\infty} = \operatorname{proj}(R)$$

-	

- *R* commutative noetherian local Cohen-Macaulay ring with canonical module ω_R (i.e. $\omega_R \in \text{mod}(R)$ with $\text{Ext}^{>0}(\omega_R, \omega_R) = 0$, inj. $\dim(\omega_R) < \infty$, $R \xrightarrow{\sim} \text{End}(\omega_R)$)
- $\operatorname{CM}(R) := \{ M \in \operatorname{mod}(R) : \operatorname{Ext}^{>0}(M, \omega_R) = 0 \}$
- \Rightarrow (CM(R), $\mathcal{I}^{<\infty}$) is a cotorsion pair in mod(R) and CM(R) $\cap \mathcal{I}^{<\infty} = \operatorname{add}(\omega_R)$.

9 Algebraic McKay correspondence

Wednesday 14th 8:30 – Sarah Kelleher (Glasgow, United Kingdom)

Goal.

- k field
- $G \leq \operatorname{GL}(n,k)$ finite with |G| invertible in k and G having no pseudoreflections
- S polynomial ring or power series ring with G acting linearly
- $R = S^G$
- The natural morphism $\gamma: S \# G \to \operatorname{End}_R(S), \ \gamma(s \cdot \sigma)(t) = s\sigma(t)$, is an isomorphism.

Example 9.1. $n = 2, S = \mathbb{C}[[x, y]].$

Definition 9.2. Invariant ring $R = S^G$ with $s \in R$ iff $\sigma(s) = s$ for all $\sigma \in G$.

Example 9.3.
$$G = \frac{1}{3}(1,2) := \left\langle \begin{pmatrix} \varepsilon_3 & 0 \\ 0 & \varepsilon_3^2 \end{pmatrix} \right\rangle$$
 acting by $x \mapsto \varepsilon_3^2 x, y \mapsto \varepsilon_3 y$.

Then $x^3 \mapsto x^3$, $y^3 \mapsto y^3$, $xy \mapsto xy$. So $R = \mathbb{C}[[x^3, y^3, xy]] \cong \mathbb{C}[[a, b, c]]/(ab - c^3)$.

Definition 9.4. <u>Skew group ring</u> S # G, group homomorphism $\varphi \colon G \to \operatorname{Aut}(S)$, then

$$S \# G := \left\{ \sum_{g \in G} a_g g : a_g \in S, g \in G \right\}$$

with multiplication $ag \cdot bh = a\varphi(g)(b)gh$ for $a, b \in S, g, h \in G$.

Example 9.5. $S \# G = S \otimes_{\mathbb{C}} \mathbb{C}G$, $(a \otimes g)(b \otimes h) = (a \cdot g(b)) \otimes gh$.

Theorem 9.6. $G \leq SL(n, \mathbb{C}), S = \mathbb{C}[[x_1, \ldots, x_n]], R = S^G$. Then:

$$S \# G \cong \operatorname{End}_R \left(\bigoplus_{p \in \operatorname{Irr}(G)} ((S \otimes p)^G)^{\dim(p)} \right)$$

Definition 9.7. $\sigma \in GL(n,k)$ is a <u>pseudoreflection</u> if rank $(\sigma - 1) \leq 1$ for all $\sigma \neq id$.

Example 9.8.
$$G = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$$

$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ & 1 & \\ 0 & & \varepsilon \end{pmatrix}$$

Example 9.9. There are 3 one-dimensional representations p_0 , p_1 , p_2 . g acts on e_i with e_0 , e_1 , e_2 by weight ε_3^i .

$$M_0 = (\mathbb{C}[[x, y]] \otimes p_0)^G = R$$

$$M_1 = (\mathbb{C}[[x, y]] \otimes p_1)^G$$

$$M_2 = (\mathbb{C}[[x, y]] \otimes p_2)^G$$

 So

$$S \# G \cong \operatorname{End}_R(R \oplus M_1 \oplus M_2).$$

McKay quiver

Definition 9.10. G a finite group acting on a fixed space $V (= \mathbb{C}^2)$.

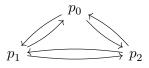
Then the <u>McKay quiver</u> of V is the directed graph with vertices V_0, \ldots, V_d (non-isomorphic representations of G) and arrows $V_i \to V_j$ with multiplicity

 $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}G}(V_i, V_j \otimes V) \,.$

Example 9.11.

$$p_{0} = \left\langle \begin{pmatrix} \varepsilon_{3} & 0 \\ 0 & \varepsilon_{3}^{2} \end{pmatrix} \right\rangle$$
$$p_{1} \oplus p_{2}$$
$$p_{0} \otimes V = p_{0} \oplus p_{2}$$
$$p_{1} \otimes V = p_{0} \oplus p_{2}$$
$$p_{2} \otimes V = p_{0} \oplus p_{2}$$

So the McKay quiver is:



Proposition 9.12. R normal surface. Then $CM(R) \cong add(_RS)$.

Fact 9.13. If $M \in mod(R)$, then

$$\operatorname{Hom}_R(M, -) \colon \operatorname{mod}(R) \to \operatorname{mod}(\operatorname{End}_R(M))$$

induces $\operatorname{add}(M) \cong \operatorname{proj}(\operatorname{End}_R(M))$.

projectivization \leadsto

$$CM(R) \cong proj(\mathbb{C}[[x, y]] \# G)$$

Lemma 9.14. Let $G \leq GL(V)$ be a finite subgroup.

Then $\mathbb{C}[V] \# G$ is Morita equivalent to the McKay quiver with relations.

$$\operatorname{proj}(S \# G) \cong \operatorname{CM}(R) \cong \operatorname{add}(_R S) \cong \operatorname{proj}(\operatorname{End}_R(S))$$

Theorem 9.15. The AR-quiver of CM(R) is the McKay quiver of G.

Sketch of proof.

(1) No pseudoreflections.

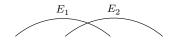
 $\rightsquigarrow R \to S$ is unramified, $R_{\mathfrak{p}} \to S_{\mathfrak{p}}$ with \mathfrak{p} height one prime ideal.

- (2) Define a right-splitting from $\operatorname{End}_R(S) \to S \# G$ for γ and show this is a surjection.
- (3) Everything is torsion-free, *R*-modules have rank $|G|^2$. $\rightsquigarrow \gamma$ isomorphism

Definition 9.16. $\{E_i\}$ of exceptional \mathbb{P}^1 's in minimal resolution $X \to \operatorname{Spec}(R)$. The dual graph is as follows:

- Draw a dot for each E_i .
- If two E_i intersect, connect the dots.

Example 9.17. $X \to \operatorname{Spec}(R) = \mathbb{C}^2/G$.

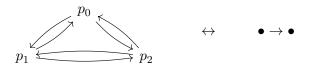


 \rightsquigarrow dual graph $\bullet \rightarrow \bullet$

Theorem 9.18. There are correspondences:

 $\{ dual \ graph \} \longleftrightarrow \{ McKay \ quiver \} \longleftrightarrow \{ AR\text{-}quiver \}$

- $M \mapsto D$ by killing trivial representations and merging arrows
- $D \mapsto M$ by adding vertices and doubling arrows



10 Knörrer's periodicity and hypersurface singularities

Wednesday 14th 9:45 – Shiquan Ruan (Bielefeld, Germany)

10.1 Matrix factorizations

Notations.

- (S, \mathfrak{n}, k) regular local ring
- R = S/(f) and $\mathfrak{m} = \mathfrak{n}/(f)$ with $0 \neq f \in \mathfrak{n}^2$
- $\dim(R) = d = \dim(S) 1$

Definition 10.1. A matrix factorization of f in S is a pair (φ, ψ)

$$G \xrightarrow[\psi]{\varphi} F$$

where F, G are free S-modules of the same rank n such that

$$\varphi \psi = f I_n = \begin{pmatrix} f & & \\ & \ddots & \\ & & f \end{pmatrix}$$
.

A <u>homomorphism</u> between (φ, ψ) and (φ', ψ') is a pair of $(\alpha, \beta) \in \text{mod}(S)$ such that the following diagram commutes:

$$\begin{array}{c} G \xrightarrow{\varphi} F \\ \alpha \downarrow & \psi \\ G' \xrightarrow{\varphi'} F' \end{array}$$

We obtain the category $MF_S(f)$ of matrix factorizations of f with direct sums

$$(\varphi,\psi)\oplus(\varphi',\psi')=\left(\left(\begin{smallmatrix}\varphi\\&\varphi'\end{smallmatrix}
ight),\left(\begin{smallmatrix}\psi\\&\psi'\end{smallmatrix}
ight)
ight).$$

Remark 10.2.

- (1) φ , ψ are both injective.
- (2) $\varphi \psi = fI \Leftrightarrow \psi \varphi = fI$ $\beta \varphi = \varphi' \alpha \Leftrightarrow \alpha \psi = \psi' \beta$
- (3) $(\varphi, \psi) \in \mathrm{MF}_S(f) \Leftrightarrow (\psi, \varphi) \in \mathrm{MF}_S(f)$
- (4) $(1, f), (f, 1) \in MF_S(f)$

For any $(\varphi, \psi) \in \mathrm{MF}_S(f)$ write $(\varphi, \psi) = (\varphi', \psi') \oplus (1, f)^{\oplus p} \oplus (f, 1)^{\oplus q}$ and call (φ', ψ') reduced (any entry in φ' and ψ' is not a unit).

Example 10.3.

- $S = k\{x, y\}, f = x^2 + y^4 = (x + iy^2)(x iy^2)$
- $(1, f), (f, 1) \in MF_S(f)$
- $i \in S$:

$$S \xrightarrow[x-iy^2]{x-iy^2} S$$

• With $A = \begin{pmatrix} x & y \\ y^3 & -x \end{pmatrix} = fI$ and $B = \begin{pmatrix} x & y \\ y^3 & -x \end{pmatrix}$:

$$S^2 \xrightarrow[B]{A} S^2$$

Proposition 10.4. Assume R = S/(f).

- (i) For all $M \in CM(R)$ there is $(\varphi, \psi) \in MF_S(f)$ such that $coker(\varphi) \cong M$.
- (ii) For all $(\varphi, \psi) \in MF_S(f)$ we have $coker(\varphi) \in CM(R)$.

Proof. (i) For $M \in CM(R)$ we have by Auslander-Buchsbaum

proj. dim
$$(_SM)$$
 = depth (S) - depth $(_SM)$ = $(d+1) - d = 1$.
 $0 \longrightarrow S^{(n)} \xrightarrow{\varphi}{\longleftarrow} S^{(n)} \xrightarrow{\pi} M \longrightarrow 0$

So fM = 0, so $M \in tor(S)$.

$$\begin{split} \pi(fx) &= f\pi(x) \in fM = 0 \Rightarrow fx \in \ker(\pi) = \operatorname{im}(\varphi) \Rightarrow fx = \varphi(y) \text{ for a unique } y \\ \text{Define } \psi \colon x \mapsto y \text{ (satisfying } fx = \varphi(y) = \varphi\psi(x) \Rightarrow fI = \varphi\psi \Rightarrow \psi\varphi = fI). \\ \Rightarrow (\varphi, \psi) \in \operatorname{MF}_S(f) \end{split}$$

(ii) $(\varphi, \psi) \in \mathrm{MF}_S(f) \Rightarrow G \xrightarrow{\varphi} F$ with $\varphi \psi = fI_n = \psi \varphi$

The sequence

$$\cdots \longrightarrow \overline{F} \xrightarrow{\overline{\psi}} \overline{G} \xrightarrow{\overline{\varphi}} \overline{F} \xrightarrow{\overline{\psi}} \cdots$$

in mod(R) is exact. ... $\Rightarrow coker(\varphi) \in CM(R)$

Define $\operatorname{coker}((\varphi, \psi)) := \operatorname{coker}(\varphi)$.

Remark 10.5. coker((1, f)) = 0 and coker((f, 1)) = S/(f) = R.

$$\begin{array}{ccc} G & \stackrel{\varphi}{\longleftarrow} F & \longrightarrow \operatorname{coker}(\varphi) \\ \stackrel{\alpha}{\downarrow} & \stackrel{\psi}{\downarrow} \beta & & \stackrel{\downarrow}{\downarrow} \\ G' & \stackrel{\varphi'}{\longleftarrow} F' & \longrightarrow \operatorname{coker}(\varphi') \end{array}$$

 \leadsto additive functor $\mathrm{MF}_S(f) \to \mathrm{MF}_S(f), \, (\varphi, \psi) \mapsto \mathrm{coker}(\varphi)$

Theorem 10.6 (Eisenbud). R = S/(f). Then

coker: $MF_S(f)/\{(1, f)\} \xrightarrow{\sim} CM(R)$

and between the category of reduced matrix factorizations and stable CM modules

coker:
$$\mathrm{MF}_S(f)/\{(1,f),(f,1)\} \xrightarrow{\sim} \mathrm{CM}(R)/\{R\} = \underline{\mathrm{CM}}(R)$$
.

10.2 Double branch covering

Definition 10.7. The double branch covering of R = S/(f) is

$$R^{\sharp} = S[[z]]/(f+z^2).$$

Remark 10.8.

- There is a surjection $R^{\sharp} \to R$ killing the class of z.
- R^{\sharp} is a free S-module generated by $\overline{1}$ and \overline{z} (S is complete).

Definition 10.9.

- For each $M \in CM(R)$ set $M^{\sharp} := syz_1^{R^{\sharp}}(M)$.
- For each $N \in CM(R^{\sharp})$ set $N^{\flat} := N/zN$.

$$\begin{array}{c} S[[z]] & & & \\ & \downarrow & & \downarrow \\ R^{\sharp} = S[[z]]/(f+z^2) \xrightarrow{/z} R = S/(f) \end{array}$$

Lemma 10.10. Let $G \xrightarrow{\varphi}{\longleftarrow} F$ be in $MF_S(f)$ and $M = coker(\varphi)$. Let $\pi \colon \widetilde{F} \twoheadrightarrow \overline{F} \twoheadrightarrow M$.

(i) There exists an exact sequence of R^{\sharp} -modules

$$\widetilde{F} \oplus \widetilde{G} \xrightarrow{A} \widetilde{G} \oplus \widetilde{F} \xrightarrow{(\widetilde{\varphi}, zI)} \widetilde{F} \xrightarrow{\pi} M \longrightarrow 0$$

where
$$A = \begin{pmatrix} \tilde{\psi} & -zI \\ zI & \tilde{\varphi} \end{pmatrix}$$
.
(ii) $\left(\begin{pmatrix} \psi & -zI \\ zI & \varphi \end{pmatrix}, \begin{pmatrix} \varphi & zI \\ -zI & \psi \end{pmatrix} \right) \in \mathrm{MF}_{S[[z]]}(f+z^2)$
(iii) $M^{\sharp} \cong \mathrm{coker}\left(\begin{pmatrix} \psi & -zI \\ zI & \varphi \end{pmatrix} \right)$

(iv) $_{R^{\sharp}}M^{\sharp}$ stable $\Leftrightarrow _{R}M$ stable, in which case $\operatorname{syz}_{1}^{R^{\sharp}}(M^{\sharp}) \cong M^{\sharp}$.

Proposition 10.11. Let $M \in CM(R)$. Then $(M^{\sharp})^{\flat} \cong M \oplus syz_1^R(M)$.

Proof. ...

Dually:

Proposition 10.12. Let $N \in CM(R^{\sharp})$ and $char(k) \neq 2$ Then $(N^{\flat})^{\sharp} \cong N \oplus syz_1^{R^{\sharp}}(N)$.

Corollary 10.13. $M \in CM(R)$ indecomposable and stable. Then:

- (i) M^{\sharp} is a direct summand of either one or two indecomposable R^{\sharp} -modules.
- (ii) M is a direct summand of N^{\flat} for some indecomposable non-free R^{\sharp} -module.

Theorem 10.14 (Knörrer's Theorem). Let R = S/(f) and char $(k) \neq 2$. Then:

 R^{\sharp} CM-finite \Leftrightarrow R is CM-finite

Example 10.15.

- $R_{n,d} = k[[x, z_1, \dots, z_d]]/(x^{n+1} + z_1^2 + \dots + z_d^2)$ with $n \ge 1, d \ge 0$ is CM-finite. (since $R_{n,0} = k[[x]]/(x^{n+1})$ is CM-finite)
- $i \in k, R' = k\{x_1, \dots, x_t, y_1, \dots, y_t\}/(x_1y_1 + \dots + x_ty_t)$ is CM-finite. (Write $x_jy_j = u_j^2 + v_j^2$ where $x_j = u_j + iv_j$ and $y_j = u_j - iv_j$. Then $R' \cong R_{1,2d+1}$.)

10.3 Knörrer's periodicity

$$R^{\sharp} \xleftarrow{\qquad \sharp} R$$

Proposition 10.16. Assume $char(k) \neq 2$.

(1) $M \in CM(R)$ indecomposable non-free:

$$\begin{aligned} M^{\sharp} & decomposable \\ \Leftrightarrow & M \cong \operatorname{syz}_{1}^{R}(M) \\ \Rightarrow & M^{\sharp} \cong N \oplus \operatorname{syz}_{1}^{R^{\sharp}}(N) \text{ with indecomposable } N \ncong \operatorname{syz}_{1}^{R^{\#}}(N) \end{aligned}$$

(2) $N \in CM(R^{\sharp})$ indecomposable non-free:

$$\begin{split} N^{\flat} \ decomposable \\ \Leftrightarrow \quad N \cong \operatorname{syz}_{1}^{R^{\sharp}}(N) \\ \Rightarrow \quad N^{\flat} \cong M \oplus \operatorname{syz}_{1}^{R}(M) \ with \ indecomposable \ M \not\cong \operatorname{syz}_{1}^{R}(M) \end{split}$$

Definition 10.17. Set $R^{\sharp\sharp} = S\{u,v\}/(f+uv) \cong S\{z_1,z_2\}/(f+z_1^2+z_2^2)$. For $M \in CM(R)$ corresponding to $G \xleftarrow{\varphi}{\psi} F$ in $MF_S(f)$ define

$$M^{X} = \operatorname{coker}\left(\begin{pmatrix}\varphi & -vI\\ uI & \psi\end{pmatrix}, \begin{pmatrix}\psi & vI\\ -uI & \varphi\end{pmatrix}\right)$$

Theorem 10.18 (Knörrer). $M \mapsto M^X$ defines a bijection between isoclasses of indecomposable non-free CM modules over R and R^{\sharp} .

Proposition 10.19.

- (i) $M^{\sharp\sharp} \cong M^X \oplus \operatorname{syz}_1^{R^{\sharp\sharp}}(M^X)$
- (*ii*) $(M^X)^{\flat\flat} \cong M \oplus \operatorname{syz}_1^R(M)$
- (*iii*) $(\operatorname{syz}_1^R(M))^X \cong \operatorname{syz}_1^{R^{\sharp\sharp}}(M^X)$

11 What is (should be) a noncommutative resolution of singularities? - I

... and why should it have to do with MCM modules?

Wednesday 14th 11:00 – Graham Leuschke (Syracuse, United States)

See also Graham's notes!

Goal. Global dominations for algebra over algebraic geometry. Can we completely remove the geometry from resolution of singularities?

Recall 11.1. A resolution of singularities of an algebraic variety X is a morphism

 $\pi\colon \widetilde{X}\to X$

with

- (1) \widetilde{X} is smooth (nonsingular),
- (2) π is proper (e.g. projective or finite),
- (3) π is birational (induces an isomorphism on function fields).

The dictionary "algebra \leftrightarrow geometry" reverses arrows, so we might want to consider a ring homomorphism $R \xrightarrow{\varphi} S$ "resolving" the singularities of R. It should satisfy:

- (1) S is regular / nonsingular,
- (2) S is a finitely generated R-module (probably stronger than necessary),
- (3) R and S share a quotient field: $\operatorname{Quot}(R) \otimes_R S = \operatorname{Quot}(R)$.

Problem. These don't exist, e.g. $R = \mathbb{C}[[x, y, z]]/(x^3 + y^2 + z^2)$ has no such algebras S.

Let's allow $S = \Lambda$ to be a noncommutative ring and require $(R \to \Lambda \text{ sends } R \to Z(\Lambda))$

- (1) Λ has finite global dimension,
- (2) Λ is a finitely generated *R*-module,
- (3) $\operatorname{Quot}(R) \otimes_R \Lambda$ is <u>Morita equivalent</u> to $\operatorname{Quot}(R)$:

$$\operatorname{Quot}(R) \otimes_R \Lambda \cong M_n(\operatorname{Quot}(R)).$$

Weakest Possible Definition. A (weak) noncommutative resolution of singularities of a ring R is a module-finite R-algebra Λ of finite global dimension with

 $\operatorname{Quot}(R) \otimes_R \Lambda \cong M_n(\operatorname{Quot}(R))$ "birational".

Example 11.2 (McKay Correspondence).

• $S = k[[x_1, \ldots, x_d]]$

- $G \subseteq \operatorname{GL}_d(k)$ finite with $|G| \in k^{\times}$
- $R = S^G$.
- Technical assumption: no pseudoreflections.
- *R* is a complete local Cohen-Macaulay (Hochster-Roberts Theorem) normal domain.
- R is Gorenstein iff $G \subseteq SL_d(k)$ (since no primitive roots).
- As an R-module S is finitely generated (and MCM).
- (By the way: They have different fraction fields.)

Take the skew group ring S # G.

- It has finite global dimension!
- It is finitely generated free as an S-module, hence finitely generated (and MCM) as R-module,
- It is birational: we know

$$S \# G \cong \operatorname{End}_R(S)$$

and passing to Quot(R)

$$\operatorname{End}_{R}(S) \otimes_{R} \operatorname{Quot}(R) = \operatorname{End}_{\operatorname{Quot}(R)}(\operatorname{Quot}(R)^{|G|}) = M_{|G|}(\operatorname{Quot}(R)).$$

Remark 11.3. Hom_{S#G} $(-, -) \cong \text{Hom}_{S}(-, -)^{G}$ and $(-)^{G}$ is exact $(|G| \in k^{\times})$, so

$$\operatorname{Ext}^{i}_{S \# G}(-,-) \cong \operatorname{Ext}^{i}_{S}(-,-)^{G},$$

so gl. $\dim(S \# G) = \dim(S) = d$ (the smallest possible finite global dimension for an *S*-algebra).

Example 11.4 (Finite Cohen-Macaulay Type).

Let (R, \mathfrak{m}) be a CM local ring of finite CM-representation type. E.g. $k[t^2, t^n]$ (with n odd), $k[t^3, t^4, t^5]$, k[x, y]/(xy) (A_1 singularity). Let M_1, \ldots, M_r be the indecomposable MCM *R*-modules.

$$G = \bigoplus_{i=1}^{r} M_i$$
 a CM-generator \rightsquigarrow $CM(R) = add(G)$

Set

$$\Lambda = \operatorname{End}_R(G)$$

an Auslander algebra for R.

Fact (Iyama, Leuschke, Quarles 2005; Auslander 1980's).

- gl. dim $(\Lambda) \leq \max\{\dim(R), 2\} < \infty$.
- It is birational over R (same proof),

• It is module-finite over R.

So Λ is a weak noncommutative resolution of singularities.

Remark 11.5. More precisely, Iyama proves Λ has one simple module for each M_i and

$$\operatorname{proj.dim}_{\Lambda}S_i) = \begin{cases} 2 & \text{if } M_i \not\cong R_i \\ 1 & \text{if } M_i \cong R_i \end{cases}$$

So gl. dim $(\Lambda) = d$ when $d \ge 2$ but Λ is not <u>homologically homogeneous</u> (simples have same projective dimension) if $d \ge 3$.

The best case is d = 2.

Theorem 11.6 (Auslander 1986). The 2-dimensional complete local \mathbb{C} -algebras of finite CM type are precisely the invariant rings $\mathbb{C}[[u, v]]^G$ for $G \subseteq \mathrm{GL}_2(\mathbb{C})$.

So in this case Example 11.4 = Example 11.2.

Complaints (from a commutative algebraist)

For noncommutative rings, finite global dimension is not strong enough for most purposes. Particular issues:

- (a) No Auslander-Buchsbaum formula for proj. $\dim(_{\Lambda}M)$. In fact, we don't even know the finitistic dimension conjecture.
- (b) We don't have analogs of the implications

regular
$$\Rightarrow$$
 Gorenstein \Rightarrow CM

for noncommutative rings.

(c) Finite global dimension doesn't localize well.

Strengthen the definitions to address (a), (b), (c).

(c) Say Λ is <u>nonsingular</u> if gl. dim $(\Lambda_{\mathfrak{p}}) = \dim(R_{\mathfrak{p}})$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$. (Biao defined it on Monday for orders as gl. dim $(\Lambda) = \dim(R)$.)

From now on: R is a Cohen-Macaulay normal domain, for simplicity, and assume that R has a canonical module ω_R . Most important things:

- i) R is Gorenstein $\Leftrightarrow \omega_R = R$
- ii) $\operatorname{Hom}_R(-, \omega_R)$ gives a duality on $\operatorname{CM}(R)$.
- iii) $\operatorname{CM}(R) = \left\{ M \in \operatorname{mod}(R) : \operatorname{Ext}_R^{>0}(M, \omega_R) = 0 \right\}$

(b) Λ is a Gorenstein *R*-algebra if

 $\operatorname{Hom}_R(\Lambda,\omega_R) =: \omega_{\Lambda}$

is a projective (left) Λ -module. It is symmetric if

 $\operatorname{Hom}_R(\Lambda, R) \cong \Lambda$

as $\Lambda\text{-}\mathrm{bimodules}.$

When R is Gorenstein

symmetric \Rightarrow Gorenstein

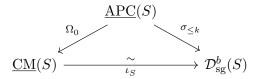
but not conversely.

If R is not Gorenstein, they are independent, so we may have to impose both.

12 Buchweitz's Theorem

Thursday 15th 8:30 – Simon May (Leeds, United Kingdom)

(after Happel '88)



Setting.

- \mathcal{B} additive category, fully and extension closed embedded in an abelian category \mathcal{A}
- S set of exact sequences in A such that terms are in B
- A morphism $\alpha: Y \to \mathbb{Z}$ in \mathcal{B} is a proper epimorphism if there exists an exact sequence

$$0 \to X \to Y \xrightarrow{\alpha} Z \to 0.$$

• An object P in \mathcal{B} is called <u>S-projective</u> if for all proper epimorphism $\alpha: Y \to Z$ and $f: P \to Z$ in \mathcal{B} there exists $g: P \to Y$ such that $f = \alpha g$:

• $(\mathcal{B}, \mathcal{S})$ has enough \mathcal{S} -projectives if for every Z in \mathcal{B} there exists a proper epimorphism $\alpha: P \to Z$ with P an \mathcal{S} -projective.

Definition 12.1. $(\mathcal{B}, \mathcal{S})$ is called a <u>Frobenius category</u> if it has enough \mathcal{S} -projectives and enough \mathcal{S} -injectives and they are the same.

Let I(X,Y) be the subgroup of morphisms $X \to Y$ such that they factor through an S-projective.

Definition 12.2. Let $(\mathcal{B}, \mathcal{S})$ be a Frobenius category, then $\underline{\mathcal{B}}$ is the stable category with

- $\operatorname{obj}(\underline{\mathcal{B}}) = \operatorname{obj}(\mathcal{B}),$
- $\operatorname{Hom}_{\mathcal{B}}(X,Y) = \operatorname{Hom}_{\mathcal{B}}(X,Y)/I(X,Y).$

Triangulated structures.

- *B* additive category
- T automorphism of \mathcal{B} , the translation functor

• a sextuple (X, Y, Z, u, v, w)

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

• morphism:

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} TX \\ \downarrow f & \downarrow & \downarrow & \downarrow^{Tf} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} TX' \end{array}$$

- A set of sextuples Δ is called a triangulation of \mathcal{B} if the following hold:
- (TR1) Every sextuple isomorphic to a triangle is a triangle.

Every morphism $u: X \to Y$ can be embedded into a triangle $(X, X, 0, \mathbf{1}_X, 0, 0)$.

- $(\mathrm{TR2}) \ (X,Y,Z,u,v,w) \in \Delta \Rightarrow (Y,Z,TX,v,w,-Tu) \in \Delta$
- (TR3) If we have f, g in the diagram, we can extend to a morphism.
- (TR4) octahedral axiom.

Triangulation of the stable category.

- \mathcal{B} additive
- $\underline{\mathcal{B}}$ stable category

Lemma 12.3. Let

$$0 \longrightarrow X \longrightarrow I' \longrightarrow X' \longrightarrow 0$$

 $0 \longrightarrow X \longrightarrow I'' \longrightarrow X'' \longrightarrow 0$

with I' and I'' S-injective. Then X' and X'' are isomorphic.

Let $0 \to X \to I' \to Y' \to 0$. Assume there is a bijection $\gamma_X \colon [X] \to [X']$. For all objects X in \mathcal{B} we choose elements

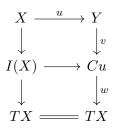
$$0 \longrightarrow X \longrightarrow I(X) \longrightarrow TX \longrightarrow 0$$

where $TX = \gamma_X(X)$.

$$\begin{array}{ccc} X & \stackrel{u}{\longrightarrow} & I(X) & \stackrel{I(f)}{\longrightarrow} & TX \\ \downarrow^{f} & \downarrow & \downarrow^{Tf} \\ Y & \longrightarrow & I(Y) & \longrightarrow & TY \end{array}$$

T is an automorphism of $\underline{\mathcal{B}}$.

Let $(\mathcal{B}, \mathcal{S})$ be Frobenius. Define a set of sextuples in \mathcal{B} via $X, Y \in \mathcal{B}, u: X \to Y$:



 $\rightsquigarrow (X, Y, Cu, u, v, w)$ standard in \mathcal{B} is standard in $\underline{\mathcal{B}}$.

Theorem 12.4. Let Δ be the set of all isomorphic sextuples of a standard triangle. Then Δ is a triangulation of $\underline{\mathcal{B}}$.

Proof. Checking axioms.

Derived category.

- \mathcal{A} abelian
- $\mathcal{C}(\mathcal{A})$ category of complexes

$$\cdots \longrightarrow X^{i-1} \xrightarrow{d_X^{i-1}} X^i \xrightarrow{d_X^i} X^{i+1} \longrightarrow \cdots$$

• $\mathcal{K}(\mathcal{A})$ homotopy category with

$$\operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X,Y) := \operatorname{Hom}_{\mathcal{C}(\mathcal{A})}(X,Y)/\operatorname{null}(X,Y).$$

- $\mathcal{D}(\mathcal{A}) := \mathcal{K}(\mathcal{A})[\text{quasi}^{-1}]$
- $\mathcal{D}^b(\mathcal{A})$ subcategory of $\mathcal{D}(\mathcal{A})$ with all complexes isomorphic to bounded complexes

•
$$X[1] = (X^{n+1}, -d_X^{n+1})_n$$

• $X \xrightarrow{g} Y \to \operatorname{cone}(g) \to TX$

Singularity category.

- S ring
- A complex is <u>perfect</u> if in $\mathcal{D}(\text{mod}(S)) =: \mathcal{D}(S)$ it is isomorphic to a finite complex of finitely generated projective S-modules.
- $\mathcal{D}^b_{\text{perf}}(S)$ category of perfect complexes
- $\mathcal{D}^b_{\mathrm{sg}}(S) = \mathcal{D}^b(S) / \mathcal{D}^b_{\mathrm{perf}}(S)$

Now:

- S Gorenstein ring
- <u>APC(S)</u> full subcategory of $\mathcal{K}(\mathcal{A})$ of chain complexes that are isomorphic to an acyclic projective complex
- mod(S) finitely generated S-modules
- $\underline{\mathrm{mod}}(S)$ projectively stabilized category of $\mathrm{mod}(S)$
- CM(S) the full subcategory of mod(S) of <u>(maximal)</u> Cohen-Macaulay modules in the sense

$$CM(S) = \{X \in mod(S) : Ext_S^i(X, S) = 0 \text{ for } i \neq 0\}$$

• CM(S) is Frobenius, so $\underline{CM}(S)$ has a natural triangulated structure.

Theorem 12.5 (Buchweitz's Theorem). If we take S to be an Iwanaga-Gorenstein ring, then there is a triangulated equivalence

$$\mathcal{D}^b_{\mathrm{sg}}(S) \stackrel{\Delta}{\cong} \underline{\mathrm{CM}}(S).$$

- $\underline{APC}(S) \cong \underline{CM}(S)$:
 - Let $k \in \mathbb{Z}$.
 - $\text{ Consider } \Omega_k \colon \underline{APC}(S) \to \underline{CM}(S), \ X \to \operatorname{coker} \left(d_X^{-k-1} \colon X^{-k-1} \to X^{-k} \right).$
 - A module $M \cong M^{**}$ is CM iff it has a projective coresolution.
 - A complex A in APC(S) is acyclic,

$$\operatorname{coker}(d^{-k}) \cong \operatorname{im}(d^{1-k}) \cong \operatorname{ker}(d^{2-k}),$$

so we get a projective coresolution

$$0 \longrightarrow \operatorname{coker}(d^{-k}) \longleftrightarrow A_{1-k} \longleftrightarrow A_{2-k} \longleftrightarrow \cdots,$$

so $\operatorname{coker}(d^{-k})$ is CM.

- $\underline{APC}(S) \cong \mathcal{D}^b_{sg}(S)$:
 - For $X \in APC$ and $k \in \mathbb{Z}$:

$$\sigma_{< k}(X) = \cdots \longrightarrow X^{k-1} \longrightarrow X^k \longrightarrow 0 \longrightarrow \cdots$$

13 Stably semisimple Gorenstein orders in dimension one

Thursday 15th 10:00 – Wassilij Gnedin (Bochum, Germany)

- (0) orders in dimension one
- (1) stably semisimple
- (2) Gorenstein

(0) Setup

- $k = \overline{k}, R = k[[x]], K = k((X))$
- A a basic ring-indecomposable R-order in a semisimple K-algebra A
- \rightsquigarrow CM(Λ) = $\Omega(\text{mod}(\Lambda))$ has an AR-quiver.
- Λ is <u>Gorenstein</u> if $\omega = \operatorname{Hom}_R(\Lambda, R) \in \operatorname{proj}(\Lambda)$. \rightsquigarrow inj(CM(Λ)) = proj(CM(Λ)), so

$$\underline{\mathrm{CM}}(\Lambda)$$
 $\sum [1]=\Omega^{-1}$.

Example 13.1. Γ hereditary with two simples

Remark 13.2. Γ Gorenstein such that $\underline{CM}(\Gamma) = 0 \Leftrightarrow \Gamma$ hereditary

(1) rad $\underline{CM}(\Lambda) = 0$

Lemma 13.3. The following are equivalent:

(a) $\underline{CM}(\Lambda)$ is <u>semisimple</u>, that is, for all $L, M \in ind(\underline{CM}(\Lambda))$

$$\underline{\operatorname{Hom}}_{\Lambda}(L,M) \cong \begin{cases} k & L \cong M, \\ 0 & L \not\cong M. \end{cases}$$

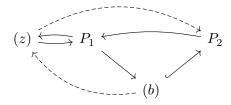
(b) For all $L \in ind(\underline{CM}(\Lambda))$

$$0 \to \Omega(L) \to P(L) \to L \to 0,$$

where $P(L) \to L$ is the projective cover, is the AR sequence ending in L. In this case, $CM(\Lambda) = add(\Lambda \oplus rad(\Lambda) \oplus \omega)$. Example 13.4 (Zh. '57, GP '67).

$$R \to \Lambda = \begin{bmatrix} k[[y,z]]/(yz) & (y) \\ k[[y]] & k[[y] \end{bmatrix}, \quad x \mapsto \begin{bmatrix} y+z & 0 \\ 0 & y \end{bmatrix}$$
$$P_2 \xrightarrow{\cdot a} P_1 \xrightarrow{\cdot z} P_1 \xrightarrow{\cdot b} P_2$$
$$z \xleftarrow{1} \xleftarrow{a} 2$$

 \rightsquigarrow AR-quiver of CM(Λ):



To obtain the AR-quiver of $\underline{CM}(\Lambda)$ remove P_1 and P_2 .

(2) Rejection Lemma

Lemma 13.5 (Drozd–Kirichenko '67). Let Λ be a non-maximal order and B_1 an indecomposable projective-injective CM module.

Then there is a unique over order Γ_1 of Λ in A such that

$$\begin{array}{ccc} \operatorname{ind}(\operatorname{CM}(\Lambda \setminus [B_1])) & \longleftarrow & \operatorname{i:1} & \to & \operatorname{ind}(\operatorname{CM}(\Gamma_1)) \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$$

Moreover, Γ_1 is the minimal overorder such that

$$0 \to \Lambda \to {}_{\Lambda}\Gamma_1 \to S_{\nu(1)} \to 0 \qquad \qquad B_1 \cong \mathbb{D}\left(e_{\nu(1)}\Lambda\right)$$

where $\mathbb{D} = \operatorname{Hom}_{R}(-, R)$.

Recall 13.6. $\Lambda \hookrightarrow \Gamma_1 \Rightarrow \operatorname{CM}(\Gamma_1) \hookrightarrow \operatorname{CM}(\Lambda)$

Remark 13.7. $\ell(\Lambda \Gamma_1 \otimes S_1) \leq 2$ where $S_1 = \operatorname{top}(B_1)$.

Idea of proof. B_1 has a unique maximal overmodule $C_1 = \mathbb{D}\left(\operatorname{rad}\left(\mathbb{D}(B_1) \right) \right)$

$$\rightsquigarrow \quad 0 \to B_1 \to C_1 \to S_{\nu(1)} \to 0 \,.$$

Set $\Gamma_1 = \operatorname{End}_{\Lambda}(C_1 \oplus P)^{\operatorname{op}}$ where $\Lambda = B_1 \oplus P$.

Example 13.8 (Gelfand '72).

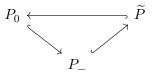
 $\Lambda = \begin{bmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{bmatrix} \text{ with columns corresponding to projective modules } P_0, P_+, P_-.$

$$+ \underbrace{\overset{b}{\underset{a}{\longleftarrow}}}_{a} 0 \underbrace{\overset{d}{\underset{c}{\longleftarrow}}}_{c} - /(ba - dc)$$

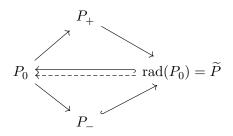
 $\omega = \begin{bmatrix} m & m & m \\ R & m & R \\ R & R & m \end{bmatrix} \text{ with columns corresponding to injective modules}$ $I_0 = \operatorname{rad}(P_0) \qquad I_+ = P_- \qquad I_- = P_+$

$$\begin{array}{ccc} 0 & \longrightarrow & P_{+} = \begin{bmatrix} \mathfrak{m} \\ R \\ \mathfrak{m} \end{bmatrix} & \longrightarrow \operatorname{rad}(P_{0}) = \begin{bmatrix} \mathfrak{m} \\ R \\ R \end{bmatrix} & \longrightarrow & S = \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} & \longrightarrow & 0 \\\\ \Lambda & \stackrel{\operatorname{rej.}}{\longleftrightarrow} & \Lambda_{+} = \begin{bmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{bmatrix} \stackrel{\operatorname{rej.}}{\longleftrightarrow} & \Lambda_{-+} = \begin{bmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{bmatrix} \\\\ \operatorname{rad}(\Lambda) & = \operatorname{rad}(\Lambda_{+}) \end{array}$$

 \widetilde{P} the second column of Λ_+

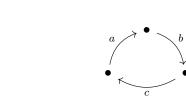


 $CM(\Lambda)$:

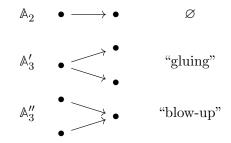


(3) Gluing some orders

• Choose cyclic quiver.



• Attach the sinks of:



 $\widetilde{Q} = \widetilde{Q}^{(1)} \times \widetilde{Q}^{(2)}$

$$x \overset{a_{+}}{\longrightarrow} \overset{\bullet}{\longrightarrow} \overset{\bullet}{\longrightarrow} \overset{\bullet}{\longrightarrow} \overset{b_{+}}{\longrightarrow} \overset{$$

$$\rightsquigarrow \widehat{k\widetilde{Q}} \cong \Gamma = \begin{bmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & R & R \end{bmatrix}$$

 \rightsquigarrow Bäckström species \mathbb{S}_Λ

The outcome.

nodal orders / quadratic orders

- = Bäckström orders of type \mathbb{A}_2 , \mathbb{A}'_3 , or \mathbb{A}''_3
- = Bäckström orders such that $\ell(_{\Lambda}\Gamma\otimes S)\leq 2\;\forall S$

Theorem 13.9 (Roggenkamp '85). Let Λ be Gorenstein and non-hereditary. Then the following are equivalent:

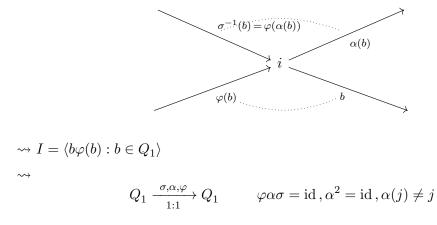
- (a) $\underline{CM}(\Lambda)$ is semisimple.
- (b) $CM(\Lambda) = add(\Lambda \oplus rad(\Lambda)).$
- (c) Λ is Bäckström.
- (d) Λ is nodal without \mathbb{A}_2 .

Remark 13.10. (a) \Rightarrow (b) and (d) \Rightarrow (c) are clear. (d) \Rightarrow (b) by Rejection Lemma. Λ nodal Gorenstein, $\Lambda \hookrightarrow \Gamma$ with gl. dim(Γ) = 1 and rad(Λ) \subseteq rad(Γ) \Rightarrow CM(Λ) = add($\Lambda \oplus$ rad(Λ)) \Rightarrow rad(Λ) = rad(Γ)

(4) Ribbon graph orders

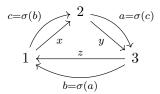
 Λ is a <u>ribbon graph order</u> if Λ is Bäckström of type \mathbb{A}'_3 ("gluing").

• $\Lambda \cong \widehat{kQ}/I$ for some (Q, I) such that for all $i \in Q_0$:



 $\rightsquigarrow (\sigma, \alpha, \varphi)$ "combination map" = "ribbon graph" \hookrightarrow surface

Example 13.11.



 $\sigma = (abc)(xyz)$ $\alpha = (xc)(ay)(bz)$ $\varphi = (xazcyb)$ $ax = 0 = za = \cdots$

Proposition 13.12.

$$\Omega \underbrace{\longrightarrow} \operatorname{ind}(\underline{\operatorname{CM}}(\Lambda)) \xrightarrow{1:1} Q_1 \rightleftharpoons \varphi$$

$$\Lambda a \xleftarrow{} a$$

• S_g has genus g where

$$2 - 2g = c(\varphi) - c(\alpha) + c(\sigma)$$

In the example: $= 1 - 3 + 2 = 0 \Rightarrow g = 1.$

Summary.

projective resolutions of arrow ideals

- = AR-sequences in $\underline{CM}(\Lambda)$
- = "Green walks around the ribbon graph"

14 What is (should be) a noncommutative resolution of singularities? - II

Thursday 15th 11:15 – Graham Leuschke (Syracuse, United States)

See also Graham's notes!

Last time:

Maybe a noncommutative resolution of CM local R is an R-algebra Λ which is

- of finite global dimension nonsingular (gl. $\dim(\Lambda_{\mathfrak{p}}) = \dim(R_{\mathfrak{p}})$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$)
- birational
- module-finite
- + Gorenstein ?
- + symmetric ?

Definition 14.1. Say Λ is an *R*-order if Λ is MCM as an *R*-module.

Why?

1) Iyama–Wemyss 2010 [Auslander 1984]

The following are equivalent for an order over CM local R:

- (i) Λ is nonsingular.
- (ii) gl. dim(Λ) = dim(R).
- (iii) gl. dim(Λ) < ∞ and Λ is a Gorenstein *R*-algebra.
- (iv) $CM(\Lambda) = proj(\Lambda)$.

(Biao proved (i) \Rightarrow (ii).)

So for orders, finite global dimension \rightsquigarrow much better behaved than in general.

2) Stangle 2015, generalizing lyama–Reiten 2008

Orders of finite global dimension satisfy a version of the Auslander-Buchsbaum formula:

$$\dim(R) \leq \operatorname{depth}(_R X) + \operatorname{proj.dim}(_\Lambda X) \leq \dim(R) + n$$

where $n = \text{proj. dim}(_{\Lambda}(\omega_{\Lambda}))$.

In particular, if Λ is a Gorenstein *R*-order of finite global dimension (nonsingular by (i)), then $\Lambda(\omega_{\Lambda})$ is projective, and we get an A-B equality on the nose [Iyama–Reiten].

3) van den Bergh 2004

If Λ is a nonsingular order, then Λ is <u>homologically homogeneous</u> (all simples have the same projective dimension).

Definition 14.2 (Stronger definition). A <u>(medium-strength)</u> noncommutative resolution of singularities of a CM local ring R is a nonsingular, birational R-order Λ .

Back to the examples.

[i] McKay Correspondence:

$$\operatorname{End}_R(S) \cong S \# G$$

is an *R*-order (last time) and has global dimension $d = \dim(R)$, so is nonsingular by Iyama–Wemyss and is birational (last time).

[ii] The Auslander algebra of a ring of finite CM type might not be an order. (If $\dim(R) \ge 3$ it's not! It has simples of different projective dimensions.)

E.g. A_1 in dimension 2:

$$R = k[[x, y, z]]/(xy - z^2)$$

Then

$$ind(CM(R)) = \{R, I = (x, z)\}$$

So $G = R \oplus I$,

$$\Lambda = \operatorname{End}_R(G) = \begin{pmatrix} R & I \\ I^* & \operatorname{End}_R(I) \end{pmatrix} \cong \begin{pmatrix} R & I \\ I & R \end{pmatrix}.$$

So $\Lambda \cong R^{(2)} \oplus I^{(2)}$ is an order.

E.g. A_1 in dimension 3:

$$R = k[[x, y, u, v]]/(xy - uv)$$

Then

$$\operatorname{ind}(\operatorname{CM}(R)) = \{R, \mathfrak{p} = (x, u), \mathfrak{q} = (x, v)\}$$

and

$$\Lambda = \operatorname{End}(R \oplus \mathfrak{p} \oplus \mathfrak{q}) = \begin{pmatrix} R & \mathfrak{p} & \mathfrak{q} \\ \mathfrak{q} & R & (\mathfrak{p}, \mathfrak{q}) \\ \mathfrak{p} & (\mathfrak{q}, \mathfrak{p}) & R \end{pmatrix},$$

where $\mathfrak{p} \cong \mathfrak{q}^*$ and $(\mathfrak{q}, \mathfrak{p}) = \operatorname{Hom}_R(\mathfrak{q}, \mathfrak{p})$. But

$$(\mathfrak{p},\mathfrak{q}) = \operatorname{Hom}_{R}(\mathfrak{p},\mathfrak{q}) = \left(x, u, \frac{u}{y}\right)$$

(a fractional ideal) is not MCM $\left(\frac{u}{y}v = \frac{uv}{y} = \frac{xy}{y} = x\right)$.

Connection with "classical orders" and the symmetric property:

Definition 14.3 (Auslander–Goldman 1960). Let R be a normal domain.

An order (classical order) over R is a module-finite R-algebra in a semisimple algebra D. Maximal means maximal.

Remark 14.4. Yuta (et al.) defined this when R = k[[x]]. We allow dim $(R) \ge 1$.

Proposition 14.5 (Auslander–Goldman). Let R be a normal domain and Λ an order in $M_n(\text{Quot}(R))$. If

- (i) Λ is nonsingular,
- (*ii*) $\Lambda \otimes_R \operatorname{Quot}(R) = M_n(\operatorname{Quot}(R)),$
- (iii) Λ is a symmetric *R*-algebra, i.e. $\operatorname{Hom}_R(\Lambda, R) \cong {}_{\Lambda}\Lambda_{\Lambda}$,

then Λ is a maximal order.

Remark 14.6. Yuta stated a version of this when R = k[[x]]. (hereditary \Rightarrow maximal)

Theorem 14.7 (Auslander–Goldman). If Λ is a maximal order in $M_n(\text{Quot}(R))$, then

$$\Lambda \cong \operatorname{End}_R(M)$$

for some reflexive R-module M.

Corollary 14.8 (van den Bergh 2004). The following are equivalent for a module-finite algebra Λ over a Gorenstein normal domain R:

- (1) Λ is a symmetric birational R-order.
- (2) $\Lambda \cong \operatorname{End}_R(M)$ for some reflexive R-module M, is an R-order, and is homologically homogeneous.
- (3) $\Lambda \cong \operatorname{End}_R(M)$ as above and $\operatorname{gl.dim}(\Lambda) < \infty$.

Definition 14.9 (van den Bergh). A <u>noncommutative crepant resolution</u> (NCCR) of a Gorenstein normal domain R is a symmetric birational R-order Λ .

Equivalently, an R-order of the form $\operatorname{End}_R(M)$ with finite global dimension.

Suddenly R became Gorenstein. That is essential for the corollary.

Example 14.10.

(1) R = k[[x, y, z, u, v]]/I where $I = I_2 \begin{pmatrix} x & y & u \\ y & z & v \end{pmatrix}$ (scroll of type (2, 1)).

Then R is a 3-dimensional normal domain, not Gorenstein ($\omega = (x, y)$ not projective), but R has finite CM type [Yoshino, 16.12]:

$$\operatorname{ind}(\operatorname{CM}(R)) = \{R, \omega, \Omega^1 \omega, \Omega^2 \omega, (\Omega^1 \omega)^{\vee}\}$$

By Example [2], the Auslander algebra

$$\Lambda = \operatorname{End}_R(R \oplus \omega \oplus \Omega^1 \omega \oplus \Omega^2 \omega \oplus (\Omega^1 \omega)^{\vee})$$

has global dimension 3. It is not homologically homogeneous and is not an order.

So Λ is an endomorphism ring and has finite global dimension but is not an order. So (3) \neq (2) when the base ring is not Gorenstein.

(2) $R = k[[x^2, xy, y^2, yz, xz, z^2]] = k[[x, y, z]]^{(2)}.$

Then R is a 3-dimensional CM normal domain, <u>not</u> Gorenstein. It does have finite CM type [Yoshino, 16.10]:

$$\operatorname{ind}(\operatorname{CM}(R)) = \{R, \omega, \Omega^1 \omega\}.$$

Two noncommutative resolutions:

- (a) The Auslander algebra $\Lambda = \operatorname{End}_R(R \oplus \omega \oplus \Omega^1 \omega)$ has global dimension d = 3, but has bad depth (depth(Hom_R(ω, R)) = 2 < 3), so is not an order.
- (b) McKay Correspondence $\Gamma = \text{End}_R(k[[x, y, z]]) = \text{End}_R(R \oplus R(x, y, z))$ and the fractional ideal

$$(x, y, z)R \cong (x^2, xy, xz)$$

is isomorphic to ω_R . So

$$\Gamma = \operatorname{End}_R(R \oplus \omega)$$

is an order of finite global dimension and (if the definition allowed non-Gorenstein R) qualifies to be an NCCR.

Point:

These two examples (Veronese and scroll) are the only two known examples of CM local rings of finite CM type in dimension ≥ 3 other than the ADE hypersurfaces.

15 Orlov's Theorem

Thursday 15th 14:00 – Maximilian Hofmann (Bonn, Germany)

Setting.

• Λ noetherian graded ring:

$$\Lambda \ = \ \bigoplus_{i \ge 0} \Lambda_i$$

- $gr(\Lambda)$ category of finitely generated graded Λ -modules
- $\operatorname{Hom}_{\Lambda}(-,-) = \operatorname{Hom}_{\operatorname{gr}(\Lambda)}(-,-)$

15.1 The category $qgr(\Lambda)$

Definition 15.1. For $M \in \operatorname{gr}(\Lambda)$, $m \in M$ is <u>torsion</u> if $m \cdot \Lambda_{\geq p} = 0$ for some $p \geq 1$. Denote by $\tau(M) \subseteq M$ the submodule of all torsion elements. M is torsion iff $\tau(M) = M$.

$$\operatorname{tors}(\Lambda) = \{M \in \operatorname{gr}(M) : M \text{ torsion}\}$$

Proposition 15.2. $tors(\Lambda)$ is a Serre subcategory of $gr(\Lambda)$, i.e. for short exact sequences

$$0 \to X' \to X \to X'' \to 0$$

in $\operatorname{gr}(\Lambda)$ we have $X \in \operatorname{tors}(\Lambda)$ iff $X', X'' \in \operatorname{tors}(\Lambda)$.

The same is true for $\operatorname{Tors}(\Lambda)$ in $\operatorname{Gr}(\Lambda)$ (Serre subcategory, but also closed under []).

Definition 15.3. Define the category

$$\operatorname{qgr}(\Lambda) := \operatorname{gr}(\Lambda) / \operatorname{tors}(\Lambda).$$

Similarly, $QGr(\Lambda) := Gr(\Lambda) / Tors(\Lambda)$.

- $qgr(\Lambda)$ has the same objects as $gr(\Lambda)$.
- $qgr(\Lambda)$ is abelian and there is an exact Π : $gr(\Lambda) \to qgr(\Lambda)$.
- For morphisms f in $gr(\Lambda)$: Πf isomorphism $\Leftrightarrow \ker(f), \operatorname{coker}(f) \in \operatorname{tors}(\Lambda)$

Remark 15.4.

- Λ commutative noetherian graded ring
- Λ is generated in degree 1, $\Lambda_0 = k$ a field
- $X = \operatorname{Proj}(\Lambda)$

[Serre]:

$$\operatorname{QCoh}(X) \simeq \operatorname{QGr}(\Lambda)$$

 $\operatorname{coh}(X) \simeq \operatorname{qgr}(\Lambda)$

15.2 Semiorthogonal decompositions

Let \mathcal{T} be a triangulated category.

Orlov's Theorem.

Definition 15.5. Let $\mathcal{N} \subseteq \mathcal{T}$ be a full triangulated subcategory and let $I: \mathcal{N} \hookrightarrow \mathcal{T}$ the inclusion functor.

We say that \mathcal{N} is <u>right admissible</u> if I has a left adjoint. Dually, define <u>left admissible</u>.

$$\mathcal{N}^{\perp} := \{ Y \in \mathcal{T} : \operatorname{Hom}_{\mathcal{T}}(\mathcal{N}, Y) = 0 \}$$
$$^{\perp}\mathcal{N} := \{ X \in \mathcal{T} : \operatorname{Hom}_{\mathcal{T}}(X, \mathcal{N}) = 0 \}$$

Definition 15.6. Let $\mathcal{N} \subseteq \mathcal{T}$ be thick and right admissible, then \mathcal{T} has the <u>SOD</u> (semiorthogonal decomposition)

$$\mathcal{T} \ = \ \langle \mathcal{N}^{\perp}, \mathcal{N}
angle \, .$$

If $\mathcal{N} \subseteq \mathcal{T}$ is thick and left admissible, then \mathcal{T} has the <u>SOD</u>

$$\mathcal{T} = \langle \mathcal{N}, {}^{\perp}\mathcal{N} \rangle$$
.

Remark 15.7. Equivalently, an SOD is a pair $\mathcal{A}, \mathcal{B} \subseteq \mathcal{T}$ of thick subcategories with \mathcal{A} left admissible and \mathcal{B} right admissible and $^{\perp}\mathcal{A} = \mathcal{B}$ and $\mathcal{B}^{\perp} = \mathcal{A}$. We write

$$\mathcal{T} = \langle \mathcal{A}, \mathcal{B} \rangle$$
.

For this observe:

$$\mathcal{N} \text{ right admissible } \Rightarrow {}^{\perp}(\mathcal{N}^{\perp}) = \mathcal{N}$$
$$\mathcal{N} \text{ left admissible } \Rightarrow {}^{(\perp}\mathcal{N})^{\perp} = \mathcal{N}$$

Definition 15.8. We say that \mathcal{T} has an SOD

$$\mathcal{T} = \langle \mathcal{N}_1, \dots, \mathcal{N}_n \rangle$$

if $\mathcal{N}_i \subseteq \mathcal{T}$ are thick subcategories and there exist

$$\mathcal{T}_1 = \mathcal{N}_1 \subseteq \mathcal{T}_2 \subseteq \cdots \subseteq \mathcal{T}_n = \mathcal{T}$$

where \mathcal{T}_i are left admissible in \mathcal{T} and

$$\mathcal{T}_i = \langle \mathcal{T}_{i-1}, \mathcal{N}_i \rangle.$$

Example 15.9. $\langle \mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3 \rangle = \langle \langle \mathcal{N}_1, \mathcal{N}_2 \rangle, \mathcal{N}_3 \rangle.$

Warning 15.10. Orlov calls this weak semiorthogonal decomposition.

Example 15.11. Suppose \mathcal{T} is k-linear.

A <u>full exceptional collection</u> is a sequence (E_1, \ldots, E_n) with $E_i \in \mathcal{T}$

$$\operatorname{Hom}_{\mathcal{T}}(E_{i}, E_{j}[p]) = \begin{cases} k & i = j, \ p = 0, \\ 0 & i = j, \ p \neq 0, \\ 0 & i > j. \end{cases}$$

Write $\mathcal{E}_i := \operatorname{thick}(E_i)$.

Example 15.12 (Beilinson's collection). $\mathcal{D}^b(\operatorname{coh}(\mathbb{P}^n)) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n) \rangle.$

15.3 The graded singularity category and Orlov's theorem

- Λ as in § 15.1
- gl. dim $(\Lambda_0) < \infty$
- grading shift on $\operatorname{gr}(\Lambda)$ via $M\mapsto M(1)$ with $M(1)_i=M_{i+1}$

Definition 15.13. $M \in \mathcal{D}^b(\operatorname{gr}(\Lambda))$ is <u>perfect</u> if $M \in \operatorname{thick}\{\Lambda(e) : e \in \mathbb{Z}\} \subseteq \mathcal{D}^b(\operatorname{gr}(\Lambda))$.

 \rightsquigarrow thick triangulated subcategory $\operatorname{perf}(\Lambda) \subseteq \mathcal{D}^b(\operatorname{gr}(\Lambda))$

Definition 15.14. The graded singularity category is the Verdier quotient

$$\mathcal{D}^{\mathrm{gr}}_{\mathrm{sg}}(\Lambda) \ := \ \mathcal{D}^b(\mathrm{gr}(\Lambda)) / \operatorname{perf}(\Lambda) \,.$$

$$\underline{\operatorname{Hom}}_{\Lambda}(M,N) := \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}(M,N(n))$$

is in $gr(\Lambda)$ for all $M, N \in gr(\Lambda)$.

Definition 15.15. Λ is called (Artin-Schelter-)Gorenstein if:

- inj. $\dim(_{\Lambda}\Lambda) < \infty$ and inj. $\dim(\Lambda_{\Lambda}) < \infty$.
- There are $n, a \in \mathbb{Z}$ such that

$$\mathbb{R}\underline{\mathrm{Hom}}_{\Lambda}(\Lambda_0,\Lambda) \simeq \Lambda_0[n](a)$$

where [n] is the shift in $\mathcal{D}^{b}(\operatorname{gr}(\Lambda))$.

The integer a is called the Gorenstein parameter of Λ .

Notation: We have two induced functors:

$$\Pi \colon \mathcal{D}^{b}(\mathrm{gr}(\Lambda)) \longrightarrow \mathcal{D}^{b}(\mathrm{qgr}(\Lambda))$$
$$q \colon \mathcal{D}^{b}(\mathrm{gr}(\Lambda)) \longrightarrow \mathcal{D}^{\mathrm{gr}}_{\mathrm{sg}}(\Lambda)$$

Theorem 15.16 (Orlov '09). Let $\Lambda = \bigoplus_{i \ge 0} \Lambda_i$ be a graded noetherian ring such that

- Λ is (AS-)Gorenstein with Gorenstein parameter a,
- gl. dim $(\Lambda_0) < \infty$,
- there exists a commutative ring k such that Λ is a flat k-algebra.

Then the following hold:

(1) If a > 0, there are fully faithful exact functors

$$\Phi_i \colon \mathcal{D}_{sg}^{gr}(\Lambda) \to \mathcal{D}^b(qgr(\Lambda)) \qquad for \ all \ i \in \mathbb{Z}$$

and SODs

$$\mathcal{D}^{b}(\operatorname{qgr}(\Lambda)) = \left\langle \pi \Lambda(-i-a+1), \dots, \pi \Lambda(-i), \Phi_{i} \mathcal{D}_{\operatorname{sg}}^{\operatorname{gr}}(\Lambda) \right\rangle.$$

(2) If a < 0, there are fully faithful exact functors

$$\Psi_i \colon \mathcal{D}^b(\operatorname{qgr}(\Lambda)) \to \mathcal{D}^{\operatorname{gr}}_{\operatorname{sg}}(\Lambda) \qquad \text{for all } i \in \mathbb{Z}$$

 $and \ SODs$

$$\mathcal{D}_{\rm sg}^{\rm gr}(\Lambda) = \left\langle q\Lambda_0(-i), \dots, q\Lambda_0(-i+a+1), \Psi_i \mathcal{D}^b({\rm qgr}(\Lambda)) \right\rangle.$$

(3) If a = 0, then there is an exact equivalence

$$\mathcal{D}^{b}(\operatorname{qgr}(\Lambda)) \cong \mathcal{D}_{\operatorname{sg}}^{\operatorname{gr}}(\Lambda).$$

Application:

- $\Lambda = k[x_0, \dots, x_n]$ with $|x_i| = 1$ is (AS-)Gorenstein with a = n + 1, gl. dim $(\Lambda) < \infty$. $\rightsquigarrow \mathcal{D}_{sg}^{gr}(\Lambda) = 0$ $\rightsquigarrow \mathcal{D}^b(\operatorname{coh}(\mathbb{P}^n)) \cong \mathcal{D}^b(\operatorname{qgr}(\Lambda)) = \langle \pi \Lambda(0), \dots, \pi \Lambda(n) \rangle$
- $\Lambda = k[x]/(x^{n+1})$ with |x| = 1 is (AS-)Gorenstein with parameter a = -n. $\rightsquigarrow \mathcal{D}_{sg}^{gr}(\Lambda) \cong \langle qk(0), \dots, qk(a+1) \rangle$ $\rightsquigarrow \mathcal{D}_{sg}^{gr}(\Lambda) \cong \mathcal{D}^{b}(k\vec{A}_{n})$

16 Tilting theory for Gorenstein rings in dimension one

Thursday 15th 15:15 – Umamaheswaran Arunachalam (Prayagraj, India)

Umamaheswaran:

The study of maximal Cohen Macaulay (CM) modules is one of the central subjects in commutative algebra and representation theory [1,2,4-6]. A Frobenius category is an exact category in which the notion of injective objects coincide with the projective objects and there are enough injectives (or equivalently enough projectives). When the ring R is Gorenstein, the category

$$CM(R) = \{ X \in mod(R) : Ext^{i}_{R}(X, R) = 0 \text{ for all } i \ge 1 \}$$

of CM(R)-modules forms a Frobenius category and its stable category $\underline{CM}(R)$ has a natural structure of a triangulated category.

Tilting theory controls triangle equivalence between derived categories of rings, and plays an important role on various areas of mathematics. Tilting theory also gives a powerful tool to study the stable categories of Gorenstein rings. If $\dim(R) = 0$, then $\operatorname{CM}_0^{\mathbb{Z}}(R) = \operatorname{mod}^{\mathbb{Z}}(R)$ always has a tilting object. Our main aim of this notes is to study about the following problem:

Question: Let $R = \bigoplus R_i$ be a \mathbb{Z} -graded Gorenstein ring such that R_0 is a field. When does the stable category $\underline{CM}_0^{\mathbb{Z}}(R)$ of \mathbb{Z} -graded CM *R*-modules have a tilting object?

Umamaheswaran:

Recently, Ragnar-Olaf Buchweitz, Osamu Iyama and Kotya Yamaura gave a complete answer to the above problem when $\dim(R) = 1$.

Definition 16.1. A graded ring is a ring that is a direct sum of abelian groups R_i such that $R_iR_j \subseteq R_{i+j}$.

Setting.

(R1) R is a \mathbb{Z} -graded commutative Gorenstein ring of Krull dimension one.

(R2) $R = \bigoplus_{i>0} R_i$ and $k := R_0$ is a field.

Setting.

- $\operatorname{mod}^{\mathbb{Z}}(R)$ the category of \mathbb{Z} -graded finitely generated *R*-modules
- $\operatorname{mod}_0^{\mathbb{Z}}(R)$ the category of \mathbb{Z} -graded finitely generated *R*-modules of finite length
- $\operatorname{proj}^{\mathbb{Z}}(R)$ the category of \mathbb{Z} -graded finitely generated projective *R*-modules

Remark 16.2. Clearly, $\operatorname{mod}_0^{\mathbb{Z}}(R) \subseteq \operatorname{mod}^{\mathbb{Z}}(R)$.

Consider the quotient category

$$\operatorname{qgr}(R) := \operatorname{mod}^{\mathbb{Z}}(R) / \operatorname{mod}_{0}^{\mathbb{Z}}(R).$$

Let perf(qgr(R)) be the thick subcategory generated by $proj^{\mathbb{Z}}(R)$.

Definition 16.3.

Umamaheswaran:

Let \mathcal{T} be a triangulated category with suspension functor. A full subcategory of \mathcal{T} is thick if it is closed under cones, $[\pm 1]$ and direct summands. We call on object $T \in \mathcal{T}$ tilting (resp. silting) if $\operatorname{Hom}_{\mathcal{T}}(T, T[i]) = 0$ holds for all integers $i \neq 0$ (resp. i > 0), and smallest thick subcategory of \mathcal{T} containing T is \mathcal{T} .

For $X \in \text{mod}^{\mathbb{Z}}(R)$ and $n \in \mathbb{Z}$ let

$$X_{\geq n} := \bigoplus_{i \geq n} X_i.$$

Let S be the set of all homogeneous non-zero divisors in R and

 $K := RS^{-1}$ the Z-graded total quotient ring of R.

There exists an integer p > 0 such that K(p) = k as graded *R*-module.

Theorem 16.4. Under the settings (R1) and (R2) the following are true:

(a) qgr(R) has a progenerator

$$U := \bigoplus_{i=1}^{p} K(i)_{\geq 0} = \bigoplus_{i=1}^{p} K(i)_{\geq i}(i)$$

and perf(qgr(R)) has U as a tilting object.

(b) We have an equivalence

$$\operatorname{qgr}(R) \cong \operatorname{mod}(\Lambda)$$

and a triangle equivalence

$$\operatorname{perf}(\operatorname{qgr}(R)) \cong K^{b}(\operatorname{proj}(\Lambda)).$$

(c) We have $\Lambda \cong \operatorname{End}_{R}^{\mathbb{Z}}(U)$ with

$$\Lambda = \begin{pmatrix} K_0 & K_{-1} & \cdots & K_{2-p} & K_{1-p} \\ K_1 & K_0 & \cdots & K_{3-p} & K_{2-p} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ K_{p-2} & K_{p-3} & \cdots & K_0 & K_{-1} \\ K_{p-1} & K_{p-2} & \cdots & K_1 & K_0 \end{pmatrix}.$$

- (d) Λ is a finite-dimensional selfinjective k-algebra.
- (e) If R is reduced, then Λ is a semisimple k-algebra. Otherwise, Λ has infinite global dimension.

Proposition 16.5.

(a)
$$P = \bigoplus_{i=1}^{p} K(i)$$
 is a progenerator of $\operatorname{mod}^{\mathbb{Z}}(K)$ such that $\operatorname{End}_{R}^{\mathbb{Z}}(P) \cong \Lambda$.

(b) There is an equivalence

$$\operatorname{Hom}_{R}^{\mathbb{Z}}(P,-)\colon \operatorname{mod}^{\mathbb{Z}}(K) \xrightarrow{\simeq} \operatorname{mod}(\Lambda).$$

- (c) $U = \bigoplus_{i=1}^{p} K(i)_{\geq 0}$ is a progenerator in qgr(R). Therefore U is a tilting object in perf(qgr(R)).
- (d) Λ is a finite-dimensional selfinjective k-algebra.
- (e) If R is reduced, then Λ is a semisimple k-algebra. Otherwise, Λ has infinite global dimension.

Proof of theorem.

Umamaheswaran:

Theorem follows from the following Proposition.

Proof of proposition.

(a) Since $\{K(i) : i \in \mathbb{Z}\}$ is a progenerator of $\text{mod}^{\mathbb{Z}}(K)$ and K(i+p) = K(i) for all i, it follows that P is a progenerator. Since $\text{End}_R(P) = \text{End}_K(P)$, we have

$$\operatorname{End}_{R}^{\mathbb{Z}}(P) = \operatorname{End}_{K}^{\mathbb{Z}}(P) \cong \Lambda$$
.

(b) Use:

Theorem (Morita). Two rings R and S are Morita equivalent iff there is a progenerator P of mod(R) such that $S \cong End_R(P)$.

By (a) and Morita's Theorem, $\Lambda\cong \mathrm{End}_R^{\mathbb{Z}}(P)$ and then

$$\operatorname{Hom}_{R}^{\mathbb{Z}}(P,-)\colon \operatorname{mod}^{\mathbb{Z}}(K) \xrightarrow{\simeq} \operatorname{mod}(\Lambda)$$

(c) Considering the functors

$$(-)_{\geq 0} \colon \operatorname{mod}^{\mathbb{Z}}(K) \to \operatorname{mod}^{\mathbb{Z}}(R)$$

and

$$K \otimes -: \mod^{\mathbb{Z}}(R) \to \mod^{\mathbb{Z}}(K)$$
,

one can check that they induce mutually quasi-inverse equivalences

$$\operatorname{mod}^{\mathbb{Z}}(K) \cong \operatorname{qgr}(R).$$

Quasi-equivalence relation: Let $F: \mathcal{C} \to \mathcal{D}$ be an equivalence of categories, i.e. there is a functor $G: \mathcal{D} \to \mathcal{C}$ (called quasi-inverse of F) such that

$$F \circ G \cong \operatorname{id}_{\mathcal{D}}$$
 and $G \circ F \cong \operatorname{id}_{\mathcal{C}}$.

Since $P \in \text{mod}^{\mathbb{Z}}(K)$ corresponds to $U \in qgr(R)$, U is a progenerator in qgr(R) by (a).

 $\Rightarrow U$ is a tilting object in perf(qgr(R)).

Lemma. For any $i \in \mathbb{Z}$, $K(i)_{>0} \in \text{mod}^{\mathbb{Z}}(R)$ holds.

By the lemma for any $X \in \text{mod}^{\mathbb{Z}}(K)$ we have $K \otimes_R \otimes X_{\geq 0} = X$.

Proposition. K is an injective object in $\operatorname{mod}^{\mathbb{Z}}(K)$.

Proof. Let $X \in \text{mod}^{\mathbb{Z}}(K)$. Then we have $X_{\geq 0} \in \text{mod}^{\mathbb{Z}}(R)$. Since $\dim(R) = 1$, we have $X_{\geq 0} \in \text{CM}^{\mathbb{Z}}(R)$. Thus $\text{Ext}_{K}^{1}(X, K) \cong \text{Ext}_{K}^{1}(K \otimes_{R} X_{\geq 0}, K) \cong K \otimes \text{Ext}_{K}^{1}(X_{\geq 0}, K) = 0$. \Box

By the proposition, P is injective in $\text{mod}^{\mathbb{Z}}(K)$.

 $\Rightarrow \Lambda$ is injective in mod(Λ).

(e) R reduced \Leftrightarrow K reduced \Leftrightarrow Any homogeneous element of K is invertible.

This is equivalent to that any object in $\operatorname{mod}^{\mathbb{Z}}(K)$ is projective.

 \Rightarrow gl. dim(mod^Z(K)) = 0. By (b), Λ is semisimple.

On the other hand, by a classical result of Eilenberg and Nakayama, a selfinjective algebra is either semisimple or of infinite global dimension.

(e) follows from (d).

a-invariant: There exists an integer $a \in \mathbb{Z}$ such that

$$\operatorname{Ext}^{1}_{R}(k, R(a)) \cong K$$

in $\operatorname{mod}^{\mathbb{Z}}(R)$. We call a the a-invariant or the Gorenstein parameter of R.

$$\operatorname{CM}_0^{\mathbb{Z}}(R) := \{ X \in \operatorname{mod}^{\mathbb{Z}}(R) : X \in \operatorname{CM}_0(R) \text{ as an ungraded } R \text{-module} \}$$

with stable category $\underline{CM}_0^{\mathbb{Z}}(R)$.

Umamaheswaran:

Notations:

It is known in representation theory that the following subcateogory

 $\operatorname{CM}_0(R) = \{ X \in \operatorname{CM}(R) : X_{\mathfrak{p}} \in \operatorname{proj}(R_{\mathfrak{p}}) \ \forall \ \mathfrak{p} \in \operatorname{Spec}(R) \}.$

Theorem 16.6. Under the settings (R1) and (R2). Assume moreover that the a-invariant of R is negative. Then:

(a) $\underline{CM}_0^{\mathbb{Z}}(R)$ has a silting object

$$\bigoplus_{i=1}^{a+p} R(i)_{\geq 0}$$

(b) We have a triangle equivalence

$$\underline{\mathrm{CM}}_{0}^{\mathbb{Z}}(R) \cong K^{b}(\mathrm{proj}(\Lambda))/\operatorname{thick}(P),$$

where Λ is given as in Theorem 16.4 and P is the projective Λ -module corresponding to the first -a rows.

(c) $\underline{CM}_0^{\mathbb{Z}}(R)$ has a tilting object $\Leftrightarrow R$ is regular.

Umamaheswaran:

References

 M. Auslander, Functions and morphism determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), 1-244, Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978.

[2] C. Curtis, I. Reiner, *Methods of representation theory*, Vol. I. With applications to finite groups and orders, Pure and Applied Mathematics. A wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1981.

[3] S. Goto, K. Watanabe, On Graded Rings I, J. Math. Soc. Japan 30 (1978), No. 2, 179-213.
[4] G. Leuschke, R. Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, 181. American Mathematical Society, Providence, RI, 2012.

[5] D. Simson, *Linear representations of partially ordered sets and vector space categories*, Algebra, Logic and Applications, 4. Gordon and Breach Science Publishers, Montreux, 1992.

[6] Y. Yoshino, *Cohen-Macaulay modules over Cohen-Macaulay rings*, London Mathematical Society Lecture Note Series, 146. cambridge University Press, Cambridge, 1990.

17 Stable categories of Cohen-Macaulay modules and cluster categories

Thursday 15th 17:00 – Julia Sauter (Bielefeld, Germany)

Literature:

- [AIR 15]
- [I1] Auslander-Reiten theory revisited
- [I2] Tilting Cohen-Macaulay representations
- [IY 08]

17.1 Quotient singularities

- V affine variety
- $G \subseteq \operatorname{Aut}(V)$ finite subgroup
- $\rightsquigarrow V/G$ "quotient singularity"

Here only:

- finite subgroup $G \subseteq \operatorname{GL}_d(k)$ acting on $V = k^d$
- $V = \operatorname{Spec}(k[x_1, \dots, x_d])$
- $V/G = \operatorname{Spec}((k[x_1, \dots, x_d])^G)$

 \rightsquigarrow complete rings:

Main setup:

- $S = k[[x_1, \ldots, x_d]]$
- $R = S^G$ and assume $k = \overline{k}$ with char(k) = 0 and G has no pseudoreflections
- R Gorenstein $\Leftrightarrow G \subseteq \operatorname{SL}_d(k)$
- R isolated singularity \Leftrightarrow rank $(\sigma 1) = d \forall \sigma \neq 1$ in G

Recall in general:

- R a commutative noetherian, local Gorenstein ring with d = dim(R) (CM with _R(ω_R) ≅ _RR)
- Λ an $R\text{-}\mathrm{order}$
- Λ Gorenstein *R*-order (= Gorenstein *R*-algebra in the sense of Leuschke) $\Leftrightarrow \omega_{\Lambda} = \operatorname{Hom}_{R}(\Lambda, R) \cong \Lambda$ as left Λ -module
- Λ symmetric

 $:\Leftrightarrow \omega_{\Lambda} \cong \Lambda \text{ as } \Lambda\text{-}\Lambda\text{-bimodule } \stackrel{[I2]}{\Leftrightarrow} \Lambda \text{ } d\text{-Iwanaga-Gorenstein } R\text{-} order$

For any Iwanaga-Gorenstein ring A there is the Frobenius category

$$\operatorname{gp}(A) := {}^{0 < \perp} A.$$

Warning 17.1. In general $CM(A) \neq gp(A)$.

But if Λ is an *R*-order which is Iwanaga-Gorenstein, then:

$$CM(\Lambda) = {}^{0<\perp}\omega_{\Lambda} = {}^{0<\perp}\Lambda = gp(\Lambda)$$

 $\Leftrightarrow {}_{\Lambda}(\omega_{\Lambda}) \cong {}_{\Lambda}\Lambda \ \Leftrightarrow \ \Lambda \ \text{Gorenstein order}$

Example 17.2.

1) R = k:

 Λ *R*-order $\Leftrightarrow \Lambda$ finite-dimensional *k*-algebra

- Λ Gorenstein order $\Leftrightarrow \Lambda$ selfinjective
- 2) Assuming the main setup:

R Gorenstein order, symmetric over R

 \Rightarrow CM(R) = ${}^{0<\perp}R$ Frobenius category

 $\underline{CM}(R) \cong D^b_{sg}(R)$ according to Buchweitz

R also \mathbb{Z} -graded ($S \mathbb{Z}$ -graded, deg $(x_i) = 1$, G action by graded automorphisms) $\mathrm{CM}^{\mathbb{Z}}(R) := \mathrm{mod}^{\mathbb{Z}}(R) \cap \mathrm{CM}(R)$ Frobenius category

 $\underline{\mathrm{CM}}^{\mathbb{Z}}(R) \cong D_{\mathrm{sg}}^{\mathbb{Z}}(R)$ by [I2, 2.10]

Definition 17.3. Let \mathcal{E} be an exact category and $n \in \mathbb{N}_{>1}$.

Then $E \in \mathcal{E}$ is an <u>n-cluster tilting object</u> if

$$\operatorname{add}(E) = \bigcap_{i=1}^{n-1} \ker \operatorname{Ext}^{i}_{\mathcal{E}}(-, E) = \bigcap_{i=1}^{n-1} \ker \operatorname{Ext}^{i}_{\mathcal{E}}(E, -).$$

Theorem 17.4 (IY08, Theorem 8.4). Assume the main setup. Then $_RS \in CM(R)$ is a (d-1)-cluster tilting object iff $End_R(S)$ is a NCCR by [I1,3.17]. The "quiver" of $add(_RS)$ is the McKay quiver of G with respect to $V = k^d$. In case d = 2: $add(_RS) = CM(R)$ (cp. Sarah's talk).

Definition 17.5. Let \mathcal{T} be a triangulated category with functorially finite subcategory \mathcal{C} . Then \mathcal{C} is an <u>n-cluster tilting subcategory</u> iff

$$\mathcal{C} = \bigcap_{i=1}^{n-1} \mathcal{C}[-i]^{\perp} = \bigcap_{i=1}^{n-1} {}^{\perp} \mathcal{C}[i]$$

Corollary 17.6. Assume the main setup.

 $\operatorname{add}_{R}S \subseteq \underline{\operatorname{CM}}(R)$ is a (d-1)-cluster tilting subcategory.

Definition 17.7. Let \mathcal{T} be an *R*-linear triangulated category with $\operatorname{Hom}_{\mathcal{T}}(X,Y) \in f.l.(R)$ for all $X, Y \in \mathcal{T}$.

We call an autoequivalence $S: \mathcal{T} \to \mathcal{T}$ a <u>Serre functor</u> if there is a bifunctorial isomorphism for all $X, Y \in \mathcal{T}$

 $\operatorname{Hom}_{\mathcal{T}}(X,Y) \to D\operatorname{Hom}_{\mathcal{T}}(Y,\mathbb{S}X)$

where $D: f.l.(R) \to f.l.(R)$ is the Matlis duality.

We call \mathcal{T} an <u>n-Calabi-Yau triangulated category</u> if $\mathbb{S} = [n]$ is a Serre functor where [n] is the shift by n.

Theorem 17.8 (I1, 3.21, 3.22). Assume the general setup.

- (1) Let Λ be a Gorenstein R-order that is an isolated singularity. Then $\underline{CM}(\Lambda)$ is a triangulated category with respect to $[1] = \Omega_{\Lambda}^{-1}$ and has the Serre functor $\Omega_{\Lambda}^{-1} \circ \tau$.
- (2) Let Λ be as above and symmetric over R.
 Then τ = Ω^{2-d} and [d 1] is a Serre functor of <u>CM</u>(Λ).
 So <u>CM</u>(Λ) is a (d 1)-Calabi-Yau triangulated category.

Proof. For $X, Y \in CM(\Lambda)$

$$\underline{\operatorname{Hom}}(X, \Omega^{-1}\tau Y) = \underline{\operatorname{Hom}}(\Omega X, \tau Y) \stackrel{(*)}{=} \operatorname{Ext}^{1}(X, \tau Y)$$

where (*) follows by applying $(-, \tau Y)$ to

$$0 \to \Omega X \to P \to X \to 0$$

with P projective. By AR-duality $\operatorname{Ext}^1(X, \tau Y) = D\operatorname{Hom}(Y, X)$.

17.2 Cluster categories

[Amiot 09, Guo 10] for finite-dimensional k-algebras \underline{A} with gl. dim(\underline{A}) $\leq n$ defined an *n*-Calabi-Yau triangulated category $C_n(\underline{A})$ together with a triangle functor

$$\pi \colon D^{b}(\underline{A}) := D^{b}(\operatorname{mod}(\underline{A})) \to \mathcal{C}_{n}(\underline{A})$$

where $add(\pi(\underline{A}))$ is an *n*-cluster tilting subcategory and π factors through the fully faithful

$$D^b(\underline{A})/\mathbb{S}_n \hookrightarrow \mathcal{C}_n(\underline{A})$$

where $\mathbb{S} = - \otimes_{\Lambda} D\Lambda$ and $\mathbb{S}_n := \mathbb{S} \circ [-n]$.

The category on the left hand side is not necessarily triangulated!

([Keller 05] investigates when it is.)

Example 17.9.

• $\underline{A} = KQ \rightsquigarrow [\text{Happel}]:$

$$\mathcal{C}_2(KQ) = D^b(KQ)/\mathbb{S}_2$$

• $\underline{A} = KQ$ where Q is an ADE Dynkin quiver, for all $d \ge 1$:

$$\mathcal{C}_d(KQ) = D^b(KQ) / \mathbb{S}_d$$

 $(\mathcal{C}_1(KQ) = D^b(KQ)/\tau)$

Question: Find a \mathbb{Z} -graded ... *R*-order Λ and a finite-dimensional ... algebra <u>A</u> such that there is a commutative diagram:

Example 17.10. $Q = \vec{A}_n$ and $\Lambda = K[X]/(X^{n+1})$ Gorenstein order:

Then $\underline{CM}(\Lambda) = mod(\Lambda)$ has the AR-quiver with rightmost vertex deleted:

$$K \longleftrightarrow K[T]/(T^2) \longleftrightarrow \longleftrightarrow \cdots \longleftrightarrow K[T]/(T^{n+1})$$

See the poster of the summer school for a picture of $D^b(K\vec{A}_n) \to \mathcal{C}_1(K\vec{A}_n) = D^b(K\vec{A}_n)/\tau$.

Example 17.11.

1) Q Dynkin, $R = S^G$, G of some Dynkin type, d = 2:

$$\underline{CM}(R) \stackrel{[IY]}{=}$$
 mesh category of the double quiver $\overline{Q} \cong \mathcal{C}_1(KQ)$

(Knörrer's periodicity: $\underline{CM}(\Lambda) \cong \underline{CM}(k[[x, y, z]]/(x^{n+1} + yz)))$

- 2) This generalizes for G cyclic ([AIR 15]). They also have examples from dimer models.
- 3) [DL] for certain tiled orders (see David's talk tomorrow).

17.3 AIR construction

Setting.

- $B = \bigoplus_{\ell \ge 0} B_{\ell}$ a graded noetherian k-algebra
- $\dim(_k B_0) < \infty$
- There is an idempotent $1 \neq e = e^2 \in B_0$ such that

B/(e) is a finite-dimensional k-algebra and

- (A1^{*}) B is bimodule *d*-Calabi-Yau with Gorenstein parameter 1.
- $\bullet \ \Rightarrow C = eBe$ Iwanaga-Gorenstein

- Be_C is a (d-1)-cluster tilting object in CM(C)
- $B \cong \operatorname{End}_C(Be)$
- $A = B_0$ is a (d-1)-representation-infinite algebra (i.e. gl. dim(A) < d and $\mathbb{S}_{d-1}^{-i}A \in \text{mod}(A)$ for all $i \ge 0$)
- $B = \prod_d(A)$ <u>d-preprojective algebra</u> of A where

$$\Pi_d(A) := T_A(A \operatorname{Ext}^{d-1}(DA, A)_A) = A \oplus_A M_A \oplus_A (M \otimes M)_A \oplus \cdots$$

• $\underline{A} := A/(e) (d-1)$ -Auslander

$$C \xrightarrow{\text{alg.}} B \xrightarrow{\text{deg.0}} A \xrightarrow{(-)/(e)} \underline{A}$$

• d = 2, Q Dynkin and \widetilde{Q} extended Dynkin:

$$R = S^G \longleftrightarrow S \# G = \operatorname{End}_R(S) \sim \Pi(K\widetilde{Q}) \longleftrightarrow K\widetilde{Q} \longrightarrow KQ$$

Theorem 17.12. Let $gl. dim(\underline{A}) \leq d - 1$ and $A \twoheadrightarrow \underline{A}$. Then:

$$CM^{\mathbb{Z}}(C) \xleftarrow{D^{b}(\operatorname{gr}(C))} \xleftarrow{D^{b}(A)} \xleftarrow{D^{b}(\underline{A})} \downarrow_{\pi}$$

$$(\underline{CM}(C) \xrightarrow{\sim} \mathcal{C}_{d-1}(\underline{A})$$

Theorem 17.13. Assume the main setup.

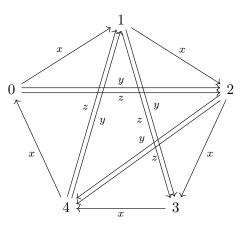
Let ζ be an n-th primitive root of unity. Let $a_j \in \{1, \dots, n-1\}$ with $\sum_j a_j = n$ and $gcd(a_j, n) = 1$ and

$$G = \left\langle \left(\begin{array}{c} \zeta^{a_1} \\ & \ddots \\ & & \zeta^{a_d} \end{array} \right) \right\rangle$$

and S $\frac{1}{n}\mathbb{Z}$ -graded with deg $(x_i) = \frac{a_i}{n}$. Then:

- $C = R = S^G = \bigoplus_{\ell \in \mathbb{Z}} S_\ell$
- $T := \bigoplus_{i=0}^{n-1} T^i \in CM^{\mathbb{Z}}(R)$ where $T^i = \bigoplus_{\ell \in \mathbb{Z}} S_{\ell + \frac{i}{n}}$
- $B = \operatorname{End}_R(T) = S \# G$
- $A = \operatorname{End}_{\operatorname{gr}(R)}(T)$
- $\underline{B} = \operatorname{End}_{\operatorname{CM}(R)}(T)$
- $\underline{A} = \operatorname{End}_{\operatorname{CM}^{\mathbb{Z}}(R)}(T)$

Example 17.14. d = 3 and $G = \frac{1}{5}(1, 2, 2) = \frac{1}{n}(a_1, a_2, a_3)$:



modulo xy = yx, yz = zy, zx = xz describes mod(A). Deleting 0 gives $mod(\underline{A})$.

18 Triangulations, ice quivers and Cohen-Macaulay modules over orders

Friday 16th 8:30 – David Fernández Alvarez (Bielefeld, Germany)

You find David's handwritten notes after the following notes of his talk!

Goal. Give a survey of *Demonet-Lu*: "Ice quivers with potential associated with triangulations and Cohen-Macaulay modules over orders", Trans. AMS 368(6), 2016, 4257-4293.

Notations.

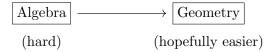
- k field
- R = k[x]
- \mathcal{P}_n regular polygon of n sides and n vertices
- $Q = (Q_0, Q_1, h, t)$ finite connected quiver without loops, $Q_0 = \{1, \dots, n\}$
 - $\rightsquigarrow kQ$ with multiplication $ab = a \xrightarrow{b} b$

18.1 Introduction

Representation theory: If you want to study a k-algebra A, you should study mod(A)(maybe with some restrictions).

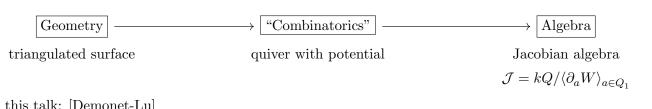
Fruitful idea: Associate to mod(A) certain combinatorial invariants:

 \rightsquigarrow Auslander-Reiten quiver, exchange graph



However, in geometry

[Caldero-Chapoton-Schiffler] [Fomin-Shapiro-Thurston [Labardini-Fragoso]



in this talk: [Demonet-Lu]

triangulated polygon \mathcal{P}_n

ice quiver with potential $\cdots + W_{\sigma}$

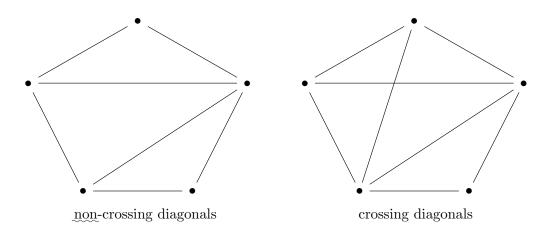
frozen Jacobian algebra Γ_{σ}

Idea: Study Γ_{σ} from the viewpoint of CM-representation theory; a lot of properties can be deduced from the triangulation of \mathcal{P}_n .

18.2 Ice quivers with potential associated to triangulations

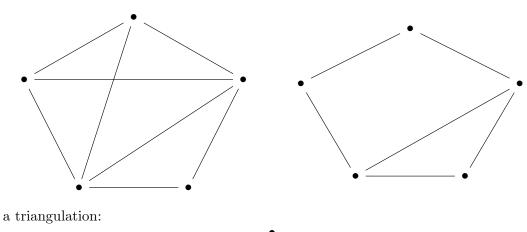
Triangulations of polygons

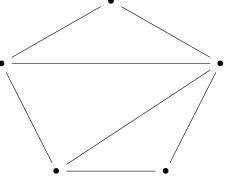
A <u>diagonal</u> of \mathcal{P}_n is a line segment connecting two vertices of \mathcal{P}_n and lying in its interior.



Definition 18.1. A <u>triangulation</u> of \mathcal{P}_n is a decomposition of \mathcal{P}_n into triangles by a maximal set of non-crossing diagonals.

not triangulations:





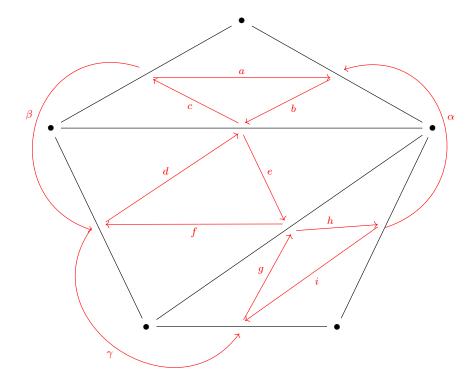
Quivers associated to triangulations

- vertices: middle points of diagonals and sides (edges)
- internal arrows: if two edges a and b are sides of a common triangle in σ there is an arrow $a \rightarrow b$ if a is a predecessor of b with respect to the anti-clockwise orientation centered at the common vertex.
- external arrows: there is $a \to b$ where a and b are incident sides at a common vertex (with at least one incident diagonal) such that a is a predecessor of b.

Algorithm

- 1. Draw the triangulation.
- 2. Tag the vertices.
- 3. Put the vertices of the quiver.
- 4. Draw internal arrows.
- 5. Draw external arrows.

Example 18.2.



 \rightsquigarrow triangulation σ

 \rightsquigarrow quiver Q_{σ}

Definition 18.3. A <u>minimal cycle</u> of Q_{σ} is a cycle in which <u>no</u> arrow appears more than once and which encloses a part of the plane whose interior is connected and does <u>not</u> contain any arrows of σ .

Example 18.4. Non-examples: $abc\beta\gamma gh$, $c\beta deh\alpha b$

Two types of minimal cycles:

• cyclic triangles:

abc, def, ghi

• <u>big cycles</u>: internal arrows and one external arrow around a vertex of \mathcal{P}_n : $\alpha beh, \beta dc, \gamma g f$

Ice quivers with potential associated to triangulations

In the previous situation:

- frozen vertices: $F = \{1, \ldots, n\} \subseteq (Q_{\sigma})_0$
- frozen arrows: $(Q_{\sigma})_1^F = \{a \in (Q_{\sigma})_1 : h(a) \in F \text{ and } t(a) \in F\}$

Example 18.5. $F = \{1, ..., 5\}$ and $(Q_{\sigma})_1^F = \{a, i, \alpha, \beta, \gamma\}$

Definition 18.6. An <u>ice quiver</u> (associated to a triangulation σ) is the pair (Q_{σ}, F) .

Potentials (in general)

- Q arbitrary quiver
- kQ_i k-vector space with basis the paths of length i
- $kQ_{i,\mathrm{cyc}}:=kQ/[kQ_j,kQ_t]_{j+t=i}$ spanned by cycles in kQ_i

Definition 18.7. An element $W \in \bigoplus_{i \ge 1} kQ_{i,cyc}$ is a <u>potential</u>.

Kontsevich defined the <u>cyclic derivative</u> for each arrow $a \in Q_1$ as the k-linear maps

$$\bigoplus kQ_{i,\mathrm{cyc}} \to kQ$$

defined on cycles as

$$\partial_a(a_1\cdots a_d) = \sum_{a_i=a} a_{i+1}\cdots a_d a_1\cdots a_{i-1}.$$

Example 18.8. $\partial_e(\alpha beh) = h\alpha b.$

Ice quivers with potential

We define the <u>potential</u> W_{σ} of (Q_{σ}, F) as

$$W_{\sigma} = \sum (\text{cyclic triangles}) - \sum (\text{big cycles}).$$

Definition 18.9. An <u>ice quiver with potential</u> is a triple $(Q_{\sigma}, F, W_{\sigma})$.

Example 18.10. $W_{\sigma} = abc + def + ghi - \alpha beh - \beta dc - \gamma gf.$

Frozen Jacobian algebras

Definition 18.11. Let $(Q_{\sigma}, F, W_{\sigma})$ as above. We define the frozen Jacobian algebra as

$$\Gamma_{\sigma} := kQ_{\sigma} / \langle \partial_{a} W_{\sigma} \rangle_{a \in (Q_{\sigma})_{1} \setminus (Q_{\sigma})_{1}^{F}}.$$

18.3 Γ_{σ} is a tiled *R*-order

Theorem 18.12. The frozen Jacobian algebra Γ_{σ} has the structure of a tiled R-order.

Now set

 e_F = sum of idempotents at all frozen vertices in Q_σ

and define the suborder

$$\Lambda_{\sigma} := e_F \Gamma_{\sigma} e_F$$

Theorem 18.13. The *R*-order Γ_{σ} is isomorphic to

$$\Gamma := \begin{pmatrix} R & R & R & \cdots & R & (x^{-1}) \\ (x) & R & R & \cdots & R & R \\ (x^2) & (x) & R & \cdots & R & R \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ (x^2) & (x^2) & (x^2) & \cdots & R & R \\ (x^2) & (x^2) & (x^2) & \cdots & (x) & R \end{pmatrix}$$

18.4 CM-modules over Λ

Theorem 18.14.

(i) For any triangulation σ and $(P_t, P_s) \in \sigma$ with $1 \leq s < t \leq n$ the vertex $j = (P_s, P_t)$ satisfies

$$e_F \Gamma_\sigma e_F \cong (s,t) = \begin{bmatrix} R & \cdots & R & (x) & \cdots & (x^2) & \cdots & (x^2) \end{bmatrix}$$

where there are s entries R, t - s entries (x), and n - t entries (x^2) .

(ii) The construction in (i) induces 1:1 correspondences:

 $\{ edges \ of \ \mathcal{P}_n \} \longleftarrow \{ ind. \ objs. \ of \ \mathrm{CM}(\Lambda) \}$ $\{ sides \ of \ \mathcal{P}_n \} \longleftarrow \{ ind. \ projs. \ of \ \mathrm{CM}(\Lambda) \}$ $\{ triangulations \ of \ \mathcal{P}_n \} \longleftarrow \{ basic \ cluster \ tilting \ objs. \ of \ \mathrm{CM}(\Lambda) \}$

18.5 Relation to cluster categories

Question: If we view the cluster algebra as a combinatorial invariant associated to the cluster category. Is the category determined by this invariant?

Using [Keller–Reiten '08]:

Theorem 18.15. Let Λ be the *R*-order given above.

- (i) The stable category $\underline{CM}(\Lambda)$ is 2-Calabi-Yau.
- (ii) If k is perfect, then there exists a triangle equivalence $C(kQ) \cong \underline{CM}(\Lambda)$ for a quiver Q of type A_{n-3} .

2. Ice quivers with potential assoc to Triangulations (external arrows): 3 a > b where a and b are incident sides, a being a predecessor of b 2.1. Treiangulations of polygons. wit to anti-clockwise orientation centered at the common vertex (w/ at least one incident diagonal) A diagonal of Pr is a line segment connecting EXAMPLE Algorithm 1. Draw the Friangelation two vertices of Br and lying in its interior. 2 2 2. Tag the vertices of Bn D. R3 detaile 3. But the vertices of the quiver? PL 4. Draw internal arrows i 5. Draw external arrows. 1 3 TH men-crossing diagonals crossing diagonals 15 Pq R P5 DEF A triangulation of Pn is a decomposition of 8n into triangles by a maximal set of mon-crossing diagonals. A minimal cycle of Qais a cycle in which DEF Mo arrow appears more than once, and which > $\langle \rangle$ (A) encloses a part of the plane whose interior is connected and does not contain any triangulation. \times 2.2. Ice quivers with potential assoc. to triang arrow of Qr. NO EXAMPLES: xbc Brigh cBdehxb. (contains P) Quivers assoc to triangulations. 100/=2n-3. vectices: middle points of diagonals and sides Two types of minimal cycles: * <u>Cyclic Friangles</u>: abc def ghi internal arrows: If two edges a and b are * Big cycles: internal arrows and one external arrow around a vertex of P Zbeh Bdc Xgf. sides of a common triance of or, I a -> b is a is a predecessor of b wrt buti-clockwise orientation centered at the common vertex.

Finally, Kontsevich defined the cyclic derivative for each arrow a eQ1 as the k-linear map Ice quivers assoc. Po triang In the previous situation, H kQ , cyc > kQ frozen vertices: F= {1, -, m} = (Q_r) $\frac{frozen arrows}{Example} : QF = \left\{ a \in (Q_{\sigma}) \mid h(a) \in F \right\}$ Example defined on cycles by $\partial_a (a_i - a_d) = \sum_{a_i = a} a_{i+1} - a_d a_1 - a_{i-1}$ $F = \{1, 2, 3, 4, 5\}; (Q_{\sigma})_{1}^{\dagger} = \{a, i, x, \beta, \delta\}$ In particular, ve can compute (Daw Jacqu Ice quivers with potential DEF An ice quiver (assoc. Fo a triang. σ) is the pair (Q₀, F). det or be a triangulation of On; (Q,F) the assoc. ice quiver. Potentials (in general) We define the potential wor of (Qo, F) as Let Q be an <u>azbitrazy</u> quiver $W_{\sigma} := \sum [ayclic triangles] - \sum (big cycles)$. kQ: = k-vector sp. W basis paths of length i. kQi, cýc kQi/[kQi, kQi] (= cycles in kQi). An ice quiver with potential is a triple (i) An element WE (D &Qi, up is a potential $(Q_{\sigma}, W_{\overline{\sigma}}, F)$ (ii) Two potentials are cyclically equiv if W- W'E [EQ, EQ] Example In the example above, (iii) A quiver with potential is a pair (Q, W), where Q is a quiver without loops and w a potential with no two cyclically invaziant terms. Wo = abc + def + ghi -- abeh-Bdc- rgf.

2.3. Frozen Jacobian algebras 2.4
DEF
Let
$$(a_{r_1}, w_{r_r}, F)$$
 be an ice quiver
Vith potential. We define the
frozen Jacobian algebra as
 $F_{rozen} Jacobian algebra as$
 $F_{rozen} Jacobian$

Regarding (ii) above: (It's the stable catego of a Frobenius 5. Relation to cluster categories THME (Keller-Reiten 108) category Formin-Zelevinski 102: a cluster algebra is a comm. Q-algebra with a family of distinguished generators If le is a perfect field and e is an (duster variables) grouped into overlapping subsets (the algebraic) 2-cy triang. categ. with a cluster filting object T's. t. Ende(T) = bQ clusters) of finite cardinality, which are constructed recursively using mutations. hereditary, then (3) a triangle - equiv Idea: Categorify cluster alg (as a strategy to attack problems) C (i) That is, find some mice category (live module or triang) THM 4 CleQ) -> C. Let A be the R- order given above. categ.) where we have some objects with similar properties as cluster and cluster variables. (i) The stable categ. CM(A) is 2-cy. (ii) If k is perfect, then (I) a triangle (ii) If we view the cluster alg. as a combinatorial inv. assoc. to the cluster categ., Is the category - equiv ellea) ~ CM (A) for a determined by this invaziant? quiver Q of type An-3. DEF Auslander-Reiten translation Sketch of the proof of lice) Take the triang or with set of diagonals For an acyclic quiver Q, the cluster categ. C (4Q) $\{(P_1, P_3), (P_1, P_4), - , (P_1, P_{n-1})\}$ is the orbit category Db(EQ)/F, where we have The full subquiver Q of Qo with the the functor F = 2-1 [1]. set of vertice's (Qr) IF is of type An-3 (i) C(eQ) have more indecomposable obj than modeQ, and also more morphisms b/w the old objects. $\Rightarrow F_{\sigma}/(e_F) \stackrel{\circ}{\sim} (eQ)^{\circ p}$ Fact: Let To:= e_F. Through right multip, End, (To) = Ior (ii) (Keller'05) e(EQ) is Hom-finite and triangulated, "a and we have the functorial isom. DExt(ka)(A,B)~ Ext^L(B,A) (i.e. c(EQ) is 2-cy). => End_ (To) & Iop/(eF) š $\mathcal{C}(\mathcal{L}_Q)^{\mathrm{op}}) \simeq \mathcal{CM}(\mathcal{A}).$

19 What is (should be) a noncommutative resolution of singularities? - III

Friday 16th 10:00 – Graham Leuschke (Syracuse, United States)

See also Graham's notes!

Last time:

[van den Bergh]: An <u>NCCR</u> of a Gorenstein normal domain R is an R-algebra Λ which is a

symmetric birational nonsingular order.

Equivalently*,

 $\Lambda \cong \operatorname{End}_R(M)$ for some reflexive ${}_RM$ with gl. dim $(\Lambda) < \infty$ and Λ MCM over R.

*These are not equivalent if R is not Gorenstein (example last time).

The following implication fails:

 $\begin{array}{ll} \text{symmetric} + \\ \text{finite gl. dim} \end{array} \Rightarrow \quad \text{nonsingular} \end{array}$

<u>Perhaps</u> we can improve the situation for non-Gorenstein rings by considering <u>totally</u> reflexive modules rather than MCMs.

Several times this week, the distinction between CM(R) and GP(R) has come up.

Definition 19.1. An R-module M (where R is any commutative ring) is <u>totally reflexive</u> (or Gorenstein projective) if

- $M \cong M^{**}$ (reflexive),
- $\operatorname{Ext}_{R}^{>0}(M, R) = 0,$
- $\operatorname{Ext}_{R}^{>0}(M^{*}, R) = 0.$

Fact 19.2. For a Gorenstein local ring R, this is equivalent to M being MCM.

For CM rings, total reflexivity is <u>stronger</u>.

So let's consider totally reflexive R-algebras Λ .

Definition 19.3. A strong noncommutative resolution of singularities of a Cohen-Macaulay normal domain R is an R-algebra Λ of the form $\Lambda = \operatorname{End}_R(M)$ for some reflexive $_RM$ with gl. dim $(\Lambda) < \infty$ and ω totally reflexive as R-module.

Observation 19.4. If R is Gorenstein, this is just an NCCR.

Theorem 19.5 (Stangle '15). If R has a strong NC resolution, then R is Gorenstein.

(so "strong" means "too strong")

Proof. Enough to consider local (R, \mathfrak{m}, k) and show

$$\operatorname{Ext}_{R}^{i}(k,R) = 0 \text{ for } i \gg 0.$$

Let Λ be a strong NC resolution. Then $\Lambda/\mathfrak{m}\Lambda$ is a k-vector space of finite dimension, so it is enough to show

$$\operatorname{Ext}_{R}^{i}(\Lambda/\mathfrak{m}\Lambda, R) = 0 \text{ for } i \gg 0.$$

Since Λ is totally reflexive as *R*-module, we know

$$\operatorname{Ext}_{R}^{j}(\Lambda, R) = 0 \text{ for } j > 0.$$

One can show (spectral sequence or by hand)

$$\operatorname{Ext}^{i}_{R}(\Lambda/\mathfrak{m}\Lambda, R) \cong \operatorname{Ext}^{i}_{\Lambda}(\Lambda/\mathfrak{m}\Lambda, \operatorname{Hom}_{R}(\Lambda, R))$$

but Λ has finite global dimension, so that vanishes for $i \gg 0$.

That word "crepant"

Let X be a CM algebraic variety.

Let ω_X be the canonical sheaf (dualizing sheaf) of X.

If $\widetilde{X} \xrightarrow{\pi} X$ is a resolution of singularities, there is also a canonical sheaf $\omega_{\widetilde{X}}$ and in fact

 $\omega_{\widetilde{X}} \cong \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{O}_{\widetilde{X}}, \omega_{X}) \qquad \left(\omega_{\widetilde{X}} \text{ is "co-induced" from } \omega_{X}\right).$

We could also induce ω_X up to \tilde{X}

$$\pi^*\omega_X \ ``=" \omega_X \otimes_{\mathcal{O}_X} \mathcal{O}_{\widetilde{X}}.$$

The resolution π is crepant if

$$\pi^* \omega_X \cong \omega_{\widetilde{X}}.$$

The discrepancy divisor of π is the difference between $\pi^* \omega_X$ and $\omega_{\tilde{X}}$.

$$\frac{\text{not discrepant}}{=}$$
 [Miles Reid] crepant

In the special case where X is Calabi-Yau, i.e. $\omega_x \cong \mathcal{O}_X$ we get

$$\omega_{\widetilde{X}} \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_{\widetilde{X}}, \mathcal{O}_X).$$

So π is crepant iff

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_{\widetilde{X}},\mathcal{O}_X) \cong \mathcal{O}_{\widetilde{X}}$$

i.e. $\mathcal{O}_{\widetilde{X}}$ is a symmetric \mathcal{O}_X -algebra (sheaf).

Fact 19.6 (from Algebraic Geometry). If X over \mathbb{C} has a crepant resolution of singularities, then it has at worst rational ("nice" / "mild") singularities.

Question If a (Gorenstein) ring R has an NCCR, must Spec(R) have at worst rational singularities?

Answer Yes.

Theorem 19.7 (Stafford-van den Bergh).

Let k be an algebraically closed field of characteristic 0 and Δ a prime affine k-algebra which is finitely generated as a module over its center $Z(\Delta)$. If Δ is a nonsingular order over $Z(\Delta)$, then Spec($Z(\Delta)$) has at worst rational singularities.

In particular, if a Gorenstein normal domain R has an NCCR Λ , then $R = Z(\Lambda)$ and so Spec(R) has at worst rational singularities.

What are NCCRs good for?

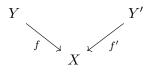
The <u>minimal model program</u> (MMP) is a strategy for carrying out a birational classification of algebraic varieties.

It consists of "moves" which are intended to improve the variety until you can't improve it further (terminal singularities).

Bondal & Orlov suggest to view the "moves" as operations / functors on the bounded derived category.

Example 19.8. Blowing up a smooth subvariety (that's one of the "moves") induces a fully faithful functor (even an SOD) on the bounded derived category.

Example 19.9. Another "move" is a flop: replace Y by Y'



where f and f' are both crepant resolutions of singularities of X (+ some other technical condition).

Conjecture 19.10 (Bondal–Orlov '99). If Y and Y' are related by a flop, then they are derived equivalent:

$$D^{b}(\operatorname{coh}(Y)) \simeq D^{b}(\operatorname{coh}(Y'))$$

Theorem 19.11 (Bridgeland 2002). The BO Conjecture holds for $\dim(Y) = 3$.

Bridgeland's proof uses Fourier-Mukai transforms.

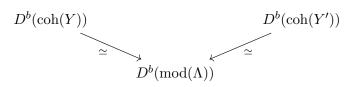
Around the same time, Bridgeland–King–Reid ['01] described an approach to the McKay Correspondence based on Fourier-Mukai transforms.

[van den Bergh]: "An essential feature of the McKay Correspondence is the appearance of a noncommutative ring S#G, the twisted group ring."

Theorem 19.12 (van den Bergh 2004). Let R be a Gorenstein normal \mathbb{C} -algebra and let $X = \operatorname{Spec}(R)$ and $\pi \colon \widetilde{X} \to X$ a crepant resolution of singularities. Assume the fibers of π are at most 1-dimensional (automatic if dim $(X) \leq 3$). Then R has an NCCR Λ and

$$D^{b}(\operatorname{mod}(\Lambda)) \simeq D^{b}(\operatorname{coh}(X)).$$

Corollary 19.13. The BO Conjecture holds in dimension 3:



One can strengthen the BO Conjecture:

Conjecture 19.14 (Iyama–Wemyss, "ncBO Conjecture"). <u>All crepant resolutions of a</u> given variety/ring are derived equivalent, the commutative and the noncommutative ones.

Known in dimension ≤ 3 by [Iyama–Wemyss].