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1 R-orders and Krull–Schmidtness

Monday 12th 13:00 – Biao Ma (Bielefeld, Germany)

Notation.

• (R,m, k) is always a commutative noetherian local ring

• mod(R) the category of finitely generated R-modules

• proj(R) the category of finitely generated projective R-modules

• Λ is a module-finite R-algebra

• mod(Λ) the category of finitely generated left Λ-modules

• proj(Λ) the category of finitely generated left projective Λ-modules

1.1 Krull-Schmidt categories

Definition 1.1. An additive category A is called a Krull-Schmidt category if each A ∈ A
can be written as a finite direct sum of objects having local endomorphism ring.

Remark 1.2. Let A be a Krull-Schmidt category.

(1) EndA(A) local ⇔ A indecomposable

Recall that S is (not necessarily commutative) local if S/J(S) is a division ring.

(2) The Krull-Schmidt Theorem holds in A.

(3) Any morphism f : A→ B in A has a right minimal version (and similarly also a left

minimal version), i.e. f = (f ′ 0) : A = A′⊕A′′ → B with right minimal f ′, meaning

that f ′θ = f ′ only if θ is invertible.

Definition 1.3. A local ring (R,m, k) is called Henselian if for every module-finite R-

algebra Λ each idempotent in Λ/J(Λ) lifts to an idempotent in Λ, i.e. for all idempotents

x2 = x ∈ Λ/J(Λ) there exists an idempotent e2 = e ∈ Λ such that x = e.

Theorem 1.4. Let (R,m, k) be Henselian. Then mod(R) is Krull-Schmidt.

Proof. It is enough to show that Γ = EndR(M) is local for indecomposable modules M

in mod(R). Note that Γ is module-finite. Nakayama’s lemma implies m ⊆ Ann(Γ/J(Γ)).

Thus Γ/J(Γ) is a finite-dimensional K-algebra, so semisimple. R is Henselian, so idem-

potents lift. Now M is indecomposable, so Γ has only the two idempotents 0, 1. Thus by

Wedderburn–Artin Γ/J(Γ) is a division ring.

Corollary 1.5. Let (R,m, k) be complete local. Then:

(1) mod(R) is Krull-Schmidt.
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(2) mod(Λ) is Krull-Schmidt for every module-finite R-algebra Λ.

Proof. (1) complete ⇒ Henselian

(2) Let M ∈ mod(Λ) indecomposable. Now Γ = EndΛ(M) ⊆ EndR(M) is module-finite.

Repeat the proof of Theorem 1.4.

1.2 R-orders

From now on (R,m, k) is a commutative noetherian complete regular local ring with Krull

dimension dim(R) = d (e.g. R = k[[x1, . . . , xd]]). In this case

gl. dim(R) = inj.dim(RR) = proj. dim(Rk) = dim(R) = d .

Definition 1.6.

(i) A module-finite R-algebra Λ is called an R-order if RΛ ∈ proj(R).

(ii) Let Λ be an R-order. A finitely generated Λ-module M is called (maximal) Cohen-Macau-

lay (CM) if RM ∈ proj(R).

Example 1.7.

(1) Any finite-dimensional algebra over a field k is a k-order.

(2) Any commutative complete CM local ring containing a field is an R-order.

Denote by CM(Λ) the category of CM Λ-modules.

Proposition 1.8. Let Λ be an R-order. Then:

(1) mod(Λ) and CM(Λ) are Krull-Schmidt.

(2) CM(Λ) is a resolving subcategory of mod(Λ), i.e. it contains proj(Λ) and is closed

under extensions and kernels of epimorphisms.

(3) HomR(−, R) : CM(Λ)
∼−→ CM(Λop) is a duality.

Λω = HomR(ΛΛ, R) and ωΛ = HomR(ΛΛ, R) are called the canonical modules.

(4) CM(Λ) is an exact category with enough projectives add(ΛΛ) and enough injectives

add(Λω).

Proof. (1) CM(Λ) is closed under summands.

(2) proj(Λ) ⊆ CM(Λ) and for 0→ L→M → N → 0 we clearly have L,N ∈ CM(Λ)⇒
M ∈ CM(Λ) and M,N ∈ CM(Λ)⇒ L ∈ CM(Λ).

(3) Use the duality HomR(−, R) : proj(R)
∼−→ proj(Rop).

(4) CM(Λ) is closed under extensions, so CM(Λ) is an exact category. Then use the

duality in (3).

Proposition 1.9. Let Λ be an R-order. Then:
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(1) inj. dim(ΛΛ) ≥ inj.dim(RR).

(2) If gl. dim(Λ) <∞, then gl.dim(Λ) = inj. dim(ΛΛ) ≥ inj. dim(RR) = dim(R) = d.

Definition 1.10. Let Λ be an R-order.

(1) Λ is called non-singular if gl. dim(Λ) = dim(R) = d.

(2) Λ is called an isolated singularity if gl. dim(Λp) = dim(Rp) for all p ∈ Spec(R) \ {m}
where Λp = Λ⊗R Rp.

Remark 1.11. Λ non-singular ⇒ Λ isolated singularity

Example 1.12. Let R = k[[x1, . . . , xd]] and G be a finite subgroup of GLd(k) such that

|G| 6= 0 in k. Then G acts linearly on R by permuting the variables and the skew group

algebra R#G is a non-singular R-order.

Proposition 1.13. The following are equivalent for an R-order Λ:

(1) Λ is non-singular.

(2) CM(Λ) = proj(Λ).

Proof. (1) ⇒ (2) Let x1, . . . , xd be a regular system of parameters of R and M ∈ CM(Λ).

Then gl.dim(Λ) = d ≥ proj.dim Λ (M/(x1, . . . , xd)M) = d = proj. dim(ΛM), which im-

plies that M ∈ proj(Λ).

(2) ⇒ (1) For each M ∈ mod(Λ) there is a projective resolution

0→ ΩdM → Pd−1 → · · · → P1 → P0 →M → 0

of ΛM (also RM). So gl.dim(R) = d⇒ ΩdM ∈ proj(R)∩mod(Λ)⇒ ΩdM ∈ proj(Λ).

AR-formulas for Λ-orders

R-dual. Dd := HomR(−, R) : CM(Λ)
∼−→ CM(Λop) induces a duality

CM(Λ) = CM(Λ)/ add(Λ) CM(Λop) = CM(Λop)/ add(ωΛ) .
Dd

For X,Y ∈ CM(Λ) then

HomΛ(X,Y ) = {X f−→ Y : f doesn’t factor through proj(Λ)} .

Matlis dual. D := HomR(−, E) ∼= ExtdR(−, R) with E := E(k) the injective envelope of

Rk gives a duality

f. l.(R) f. l.(Rop) .D

Λ-dual. There exists a duality (−)∗ := HomΛ(−,Λ): proj(Λ)
∼−→ proj(Λop).
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Auslander-Bridger transpose. There exists a duality

mod(Λ) mod(Λop)Tr

given by M 7→ Tr(M) := coker(f∗) where P1
f−→ P0 →M → 0 is a projective presentation

(and 0→M∗ → P ∗0
f∗−→ P ∗1 ).

Theorem 1.14. Let Λ be an isolated singularity. Then:

(1) CM(Λ) = {M ∈ mod(Λ) : ExtiΛ(M, Λω) = 0 for all i > 0}
= {Tr(X) : X ∈ mod(Λop) such that ExtiΛop(X,ΛΛ) = 0 for all i = 1, . . . , d} .

(2) There is a duality Ωd Tr : CM(Λ) −→ CM(Λop).

(3) There is an equivalence τ := DdΩ
d Tr : CM→ CM(Λ).

(4) (AR-formula) There exists an isomorphism

HomΛ(τ−(N),M) ∼= DExt1
Λ(M,N) ∼= HomΛ(N, τ(M))

natural for any M,N ∈ CM(Λ).
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2 Maximal and hereditary orders

Monday 12th 14:15 – Yuta Kimura (Bielefeld, Germany)

Notation.

• R = k[[x]] with maximal ideal m = (x) (or complete DVR such as Ẑp).

• K := Quot(R) fractional field of R (so K = k((x))).

commutative ring S order Λ (dim(R) = 1) f.d. algebra A

CM(S) = proj(S) CM(Λ) = proj(Λ) mod(A) = proj(A)

regular (gl. dim(S) <∞) non-singular (gl.dim(Λ) = 1) semisimple (gl. dim(A) = 0)

CM(S) triangulated CM(Λ) triangulated mod(A) triangulated

Gorenstein (inj.dim(S) <∞) Gorenstein (inj. dim(Λ) = 1) selfinjective (inj.dim(A) = 0)

Λ ⊆ Λ′ overorder A� A/I

⇒ CM(Λ′) ↪→ CM(Λ). ⇒ mod(A/I) ↪→ mod(A).

Example 2.1. Λ =

(
R m`

R R

)
is an R-order.

• For any ` ∈ Z let m` = (x`) = Rx` ⊆ K.

• There is an isomorphism Rm
` ∼−−−→
·x−`

RR.

• CM(Λ) has an AR-quiver, which will now be computed.

• (−)∗ = HomR(−, R).

• With e1 = ( 1 0
0 0 ), e2 = ( 0 0

0 1 ) we have Λe1 =
(
R
R

)
, Λe2 =

(
m`
R

)
.

(1)
(
R
R

)
, ( m

R ),
(
m2

R

)
, . . .,

(
m`
R

)
∈ CM(Λ).

(2) Applying τ = (−)∗ ◦ ΩΛop ◦ TrΛ gives τ
(
mi
R

) ∼= (miR ) for all 1 ≤ i ≤ `− 1.

• rad
(
R m`
R R

)
=
(
m m`
R m

)
, rad

(
mi
R

)
=
(
mi+1

R

)
,
(
mi
R

)
/ rad

(
mi
R

) ∼= S1 ⊕ S2.

(
R
R

)
⊕
(
m`
R

) (
R
R

)
⊕
(
m`
R

) (
mi
R

)
0

(
m`−i
R

)
M

(x`−i 1)

(xi 1)

(
1
−xi

)

where M =
(
x`−i 1
−x` −xi

)
.
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• Apply HomΛ(−,Λ), then HomΛ(Λei,Λ) ∼= eiΛ and with N =
(
x`−i −x−`

1 −xi

)
0

0 Λ

((
mi
R

)
,Λ
)

(R m` )⊕ (R R ) Tr
(
m`
R

)
(R m` )⊕ (R R )

Ω Tr
(
mi
R

)
0

0

N

• add(Λ) = add(ω).

• Ω Tr
(
mi
R

)
= imN = (R mi ).

• Λ ⊆
(
R m`−1

R R

)
for ` ≥ 1.

• τ
(
mi
R

) ∼= (R mi )
∗ ∼=

(
R

m−i
) ∼= (miR ).

(3) 0→
(
mi
R

) (
−x
1

)
−−−−→

(
mi+1

R

)
⊕
(
mi−1

R

) ( 1 x )−−−→
(
mi
R

)
→ 0 is an AR-sequence.

• So the AR-quiver of CM(Λ) is(
R
R

)
( m
R ) · · ·

(
m`−1

R

) (
m`
R

)
Definition 2.2. Let Λ, Λ′ be R-orders and A a finite-dimensional K-algebra.

(1) Λ R-order in A :⇔ K ⊗R Λ ∼= A

(Remark: Λ ↪→ K ⊗R Λ ∼= A)

(2) Λ′ overorder of Λ in A :⇔ Λ ⊆ Λ′ ⊆ A

(3) Λ maximal order in A :⇔ there is no proper overorder of Λ in A

Example 2.3.

(a) G finite group  RG is an R-order in KG.
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(b) For ` ≥ 2:

A = M2(K)

(
R R
R R

)
(
R m
R R

) (
R m`−2

m R

)
(
R m`−1

R R

) ∼=

Proposition 2.4. Let Λ′ be an overorder of Λ. Then:

(a) The functor f in the following diagram is fully faithful:

mod(Λ′) mod(Λ)

CM(Λ′) CM(Λ)

res

f

(b) f dense ⇒ Λ = Λ′ ⇒ Λ′Λ ⊆ Λ

Hereditary orders

Theorem 2.5. Let Λ be an R-order in A. The following are equivalent:

(1) Λ′ overorder of Λ in A with rad(Λ) ⊆ rad(Λ′) ⇒ Λ = Λ′.

(2) CM(Λ) = proj(Λ).

(3) ΛΛ is an hereditary algebra.

(4) rad(Λ) ∈ proj(Λ).

Corollary 2.6. Maximal orders are hereditary.

Theorem 2.7. Let A be a finite-dimensional K-algebra. The following are equivalent:

(a) A contains a maximal order.

(b) A contains a hereditary order.

(c) A is semisimple and the integral closure of R in Z(A) is finitely generated over R.

Example 2.8. Λ =

(
R 0

R R

)
is maximal in A =

(
K 0

K K

)
.
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3 Bäckström orders

Monday 12th 15:45 – Sebastian Eckert (Bielefeld, Germany)

Setting.

• R complete discrete valuation ring

• k the residue field of R, i.e. k = R/πR = R/m

• K field of quotients of R

• A finite-dimensional separable K-algebra

• Λ R-order in A

• CM(Λ) category of finitely generated left Λ-lattices

Definition 3.1. An R-order Λ is a Bäckström order provided there exists a hereditary

order Γ such that rad Γ = rad Λ ⊆ Λ ⊆ Γ.

Proposition 3.2. Λ is Bäckström if Λ is a subhereditary order (Λ,Γ) and for any inde-

composable projective Λ-lattice P

rad(P ) ∼= ΛX

for some indecomposable projective Γ-lattice X.

Lemma 3.3. The class of Bäckström orders is closed under Morita equivalence.

Remark 3.4. We can thus restrict to basic Bäckström orders Λ, i.e. Λ/ rad(Λ) is a product

of skew fields.

Aim. Understand when in this situation CM(Λ) is of finite type.

We need some algebraic structure associated to Λ:

Tensor algebras and valued graphs

Given Λ and Γ we put

A = Λ/ rad(Λ) =

s∏
i=1

Di and B = Γ/ rad(Γ) =

t∏
j=s+1

Mnj
(Dj) .

Then:

• A and B are finitely generated k-algebras with an algebra homomorphism A ↪→ B
induced by Λ ⊆ Γ.

• Di are finite-dimensional skew fields over k.
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• Let Sj with s + 1 ≤ j ≤ t be a full set of simple B-modules with EndΓ(Sj) = Dj .

Then iSj = Di ⊗k Sj with 1 ≤ i ≤ s and s+ 1 ≤ j ≤ t are (Di, Dj)-bimodules.

• dij = dimDi
(iSj) for 1 ≤ i ≤ s and s+ 1 ≤ j ≤ t and dij = 0 else.

• d′ij = dimDj
(iSj) for 1 ≤ i ≤ s and s+ 1 ≤ j ≤ t and dij = 0 else.

 Valued graph with vertices k with 1 ≤ k ≤ t and whenever iSj 6= 0 an edge

i j
(dij ,d

′
ij)

.

Example 3.5.

i)

Λ =


R m R

m R R

m m R

 Γ =


R R R

R R R

m m R



rad(Λ) = rad(Γ) =


m m R

m m R

m m m



A =
3∏
i=1

Di B = M2(D4)×D5 Di = k .

S4 =

(
D4

D4

)
S5 = D5

The valued graph is

1 4 2 3 5 .
(1,1) (1,1) (1,1)

Tensor algebra

Consider the tensor algebra

D =

(
B BBA
0 A

)
with BBA viewed as (B,A)-bimodule.

 rad2(D) = 0, D is the tensor algebra of a species S = S(Λ,Γ) and mod(D) ∼= rep(S).

We write D-modules as triples (U, V, ϕ) where

• U is a A-module,
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• V is a B-module,

• ϕ : B ⊗k U → V is a B-module homomorphism.

Theorem 3.6 (Ringel–Roggenkamp). The functor F : CM(Λ)→ mod(D) induced by

M 7→ (M/ rad(Λ)M, ΓM/ rad(Γ)M, ϕ)

where ϕ is induced by the natural inclusion M ↪→ ΓM ⊆ A ⊗Λ M is a representation

equivalence between CM(Λ) and the category C of all finitely generated D-modules without

simple direct summands.

Example 3.7.

ii)

Λ =

{(
a b

c d

)
: a− d, b, c ∈ m

}
Γ =

(
R R

R R

)

rad(Λ) = rad(Γ) =

(
m m

m m

)
A = D1 B = M2(D2) D1 = D2 = k

S2 =

(
k

k

)

1S2 = D1 ⊗k

(
k

k

)
= k ⊕ k

 valued graph 1 2
(2,2)

iii)

Λ =

{((
a b

c d

)
,

(
a′ b′

c′ d′

))
: a− a′, b− b′, c, c′ ∈ m, d, d′ ∈ R

}

Γ =

(
R R

m R

)
×

(
R R

m R

)

 valued graph

3 5

1 2

4 6

A3 qA3

Theorem 3.8 (Dlab–Ringel). A tensor algebra D is of finite type iff the associated valued

graph is a finite union of Dynkin diagrams, i.e. one of the following:
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An • • · · · •

Bn • • · · · •(1,2)

Cn • • · · · •(2,1)

Dn

•
• · · · •

•

E6

•

• • • • •

E7

•

• • • • • •

E8

•

• • • • • • •

F4 • • •(2,1)

G2 • •(3,1)

Theorem 3.9 (Ringel—Roggenkamp). CM(Λ) is of finite type iff:{
isoclasses of

ind. Λ-lattices

} {
non-simple positive roots

of an associated root system

}
1:1

Remark 3.10.

• Finiteness doesn’t depend on R.

• The indecomposable Λ-lattices are determined uniquely by ΓM and M/ rad(M).

Proposition 3.11. For arbitrary R-orders Λ a necessary condition to be of finite type is

that the associated valued graph is a disjoint union of Dynkin diagrams.

(Λ is contained in a Bäckström order.)

Aim. Understand indecomposable Λ-lattices and the AR-quiver.

The AR-species of D has as its vertices the isoclasses of indecomposable D-modules and

irreducible maps correspond to valued edges.

We need more data: Denote by Pj the indecomposable projective Γ-modules, by σ the

permutation of {s+ 1, . . . , t} with rad(Pj) = Pσ(j), by Sj the simple projective D-modules

with s + 1 ≤ j ≤ t. Define φ(Sj) = Qj iff the D-socle of the indecomposable non-simple

injective D-module Qj is D-isomorphic to Sj .

Example 3.12. Continuation of iii) above: σ = (3 5)(4 6)

φ(S3) = Q3 φ(S4) = Q4 φ(S5) = Q5 φ(S6) = Q6
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Theorem 3.13 (Roggenkamp). Let Λ be a Bäckström order with tensor algebra D. Then

the AR-species of CM(Λ) is obtained from that of D by

• deleting all simple injective D-modules Si with 1 ≤ i ≤ s (and arrows ending there),

• identifying Qj with Sσ(j) where φ(Sj) = Qj.

Example 3.14. Continuing iii), delete S1, S4 and identify along dotted lines:

S3 Q3 S5 Q5

P1 S1 P2 S4

S4 Q4 S6 Q6
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4 Tiled orders

Monday 12th 17:00 – Jan Geuenich (Bielefeld, Germany)
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5 Commutative CM-finite type of dimension 0 and 1

Tuesday 13th 9:30 – William Crawley–Boevey (Bielefeld, Germany)

Setting.

• R commutative noetherian local ring (R,m, k)

5.1 Dimension 0

• dim(R) = 0 ⇔ R artinian

• All finitely generated modules are CM.

Theorem 5.1. R has finite representation type ⇔ R is a principal ideal ring.

Proof. If m/m2 has dimension 1 over k, then R is a principal ideal ring.

If m/m2 has dimension ≥ 2, reduce to the case m2 = 0 and dim(m) = 2.

Then it looks like k[x, y]/(x, y)2, i.e. it is given by the quiver with one vertex and two

loops x and y subject to the relations xy = yx = 0 and x2 = y2 = 0, whose representation

theory is essentially equivalent to the one of the Kronecker quiver.

5.2 Dimension 1

• Henceforth dim(R) = 1.

• For finitely generated R-modules M :

M is CM

⇔ there is x ∈ m which is a non-zero divisor on M , i.e. xm = 0⇒ m = 0

⇔ Hom(k,M) = 0, i.e. M doesn’t have a copy of k as a submodule

• If R is reduced (i.e. it has no nilpotent elements), then M is CM iff M is torsion-free.

• Total quotient ring K = {non-zero divisors in R}−1R.

• K 6= R ⇔ there exists a non-zero divisor which is not a unit ⇔ R is CM

• R = integral closure of R in K

The following implications hold:

µR(R) = e(R)

RR fin. gen. · R̂ CM

·

R̂ reduced R reduced R CM

(“R analytically unramified”)

cf. Matsumura

cf. stacks project 032Y

\

e.g. k[[x, y]/(y2)
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Example 5.2.

• Non-example: k[x, y]/(xy), i.e. it is given by the quiver with two loops x and y and

relations xy = yx = 0.

• Example: R = k[[x, y]]/(xy).

Definition 5.3. A finite birational extension of R is a ring S with R ⊆ S ⊆ K and RS

finitely generated.

Proposition 5.4. In the situation of the definition with R, S 1-dimensional local rings:

R CM-finite ⇒ S CM-finite

Definition 5.5. An artinian pair is A ↪→ B with A and B commutative artinian rings

and AB finitely generated.

Rep(A ↪→ B) =
{
AV ↪→ BW of f.g. A-modules with BW proj. and BV = W

}
(
V

W

)
is a

(
A 0

B B

)
-module and B ⊗A V →W B-module homomorphism.

Definition 5.6. Let R be a CM ring and let S be a finite birational extension of R. Then

the conductor C of R in S is the largest subset of R which is an ideal in S, i.e.

C = {r ∈ R : Sr ⊆ R} .

::::::::::
Conductor

:::::::
square, a pullback diagram:

R S

A = R/C S/C = B

π

Example 5.7.

R = k[[x, y]/(xy) = {(a, b) ∈ k[[x]]⊕ k[[y]] : a0 = b0} ⊆ k[[x]]⊕ k[[y]]

K = k((x))⊕ k((y))

R = k[[x]]⊕ k[[y]]

C = xk[[x]]⊕ yk[[y]]

A = R/C = k ↪→ B = R/C = k ⊕ k(
A 0

B B

)
=

(
k 0

k2 k2

)
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•
•

•

k

k

k

0

k

k

k

k

0

NOT:

k

0

0

0

k

0

• M CM R-module

• M → S ⊗RM/torsion =: SM

• R̂ reduced (then: R CM-finite ⇔ Rep(A ↪→ B) is representation-finite)

• S = R

Theorem 5.8. Let (A ↪→ B) and (A,m, k) be as before. Then:

(A ↪→ B) representation-finite ⇒
(dr1) dimk(B/mB) ≤ 3

(dr2) dimk((mB +A)/(m2B +A)) ≤ 1

If B is a principal ideal ring and if either B/ rad(B) is separable over k or B is reduced,

then ⇐ holds.

Theorem 5.9. R̂ reduced. Then:

R CM-finite ⇔
(dr1) µR(R) ≤ 3

(dr2) µR((mR+R)/R) ≤ 1

5.3 Simple plane curve singularities

• k[[x, y]]/(f) with k algebraically closed of characteristic 0

Simple. ∣∣{proper ideals I in k[[x, y]] with f in I2
}∣∣ <∞

f must be one of:

An x2 + yn+1 with n ≥ 1

Dn x2y + yn−1 with n ≥ 4

E6 x3 + y4

E7 x3 + xy3

E8 x3 + y5
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Theorem 5.10 (Greuel–Knörrer). Let R be the complete local ring of a reduced curve

singularity. Then:

(i) R CM-finite ⇔ R finite birational extension of a simple plane curve singularity

(ii) R Gorenstein: R CM-finite ⇔ R simple plane curve singularity
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6 Auslander-Reiten theory for lattices I

Tuesday 13th 11:00 – Kunda Kambaso (Aachen, Germany)

Setting.

• R commutative noetherian with dim(R) = d

• dim(X) = dim(R/Ann(X)) for X ∈ mod(R)

• depth(X) = inf{i ≥ 0 : ExtiR(R/ rad(R), X) 6= 0}

• depth(X) ≤ dim(R)

• CMi(R) = {X ∈ mod(R) : X 6= 0 and depth(X) = i = dim(X)}

• CM(R) = CMd(R)

• R Gorenstein :⇔ inj. dim(R) <∞

• R equidimensional :⇔ dim(Rm) = dim(R)

• R equidimensional

• Λ a noetherian R-algebra

• A Λ-module M is CM iff it is finitely generated and CM as an R-module.

• CM(Λ) = {M ∈ mod(Λ) : M ∈ CM(R)}

Definition 6.1. M ∈ mod(Λ) is called a lattice if M ∈ CM(Λ) and for non-maximal p

(i) Mp is a Λp-projective module,

(ii) HomR(M,R)p is a Λop
p -projective module.

Denote by L(Λ) the category of lattices, a subcategory of noeth(Λ).

Definition 6.2. Λ is an R-order if Λ ∈ CM(Λ).

Example 6.3.

(a) R field (0-dimensional Gorenstein ring):

R-orders are noetherian R-algebras and L(Λ) = CM(Λ) = artin(Λ).

(b) R equidimensional Gorenstein ring:

R is an R-order and R-lattices are all CM R-modules such that Mp is Rp-free.

Let Λ be an R-order and d = dim(R).
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Properties.

1. If Λ is an R-order, then so is Λop.

2. M ∈ L(Λ) ⇒ M is CM and HomR(M,R) is in L(Λop).

3. HomR(−, R) : L(Λ)→ L(Λop) is a duality.

Remark 6.4. J (Λ) the full subcategory of noeth(Λ) consisting of all M such that

(1) Mp is Λp-projective for all non-maximal p,

(2) ExtiΛ(M,Λ) = 0 for all i = 1, . . . , d.

J (Λ) is the full subcategory of noeth(Λ) with objects in J (Λ).

There is a functor Ω : noeth(Λ)→ noeth(Λ), M 7→ ker(P (M)→M).

In general, Ω0 the identity, Ωi+1 = Ω ◦ Ωi, then Ωd(M) is in L(Λ).

Ωd induces a functor J (Λ)→ L(Λ), which is fully faithful.

Theorem 6.5. Ωd : J (Λ)→ L(Λ) is an equivalence.

Theorem 6.6. The duality Tr: noeth(Λ)→ noeth(Λop) induces the duality

Tr: L(Λ)→ J (Λop) .

Remark 6.7. We get TrL : L(Λ)→ L(Λop) from L(Λ)
Tr−→ J (Λop)

Ωd−−→ L(Λop).

Proposition 6.8. TrL : L(Λ)→ L(Λop) and TrL : L(Λop)→ L(Λ) are inverse dualities.

Definition 6.9.

(a) · · · −→ M1
f1−→ M2

f2−→ M3 −→ · · · in L(Λ) is exact if it is exact as a sequence of

Λ-modules and im(fi) in L(Λ).

(b) C in L(Λ) is projective if all exact 0→ A→ B → C → 0 split.

I(L(Λ)) denotes the full subcategory of L(Λ) whose objects are injectives.

I(A,C) is the R-submodule of HomR(A,C) of morphisms factoring through I(L(Λ)).

Define L(Λ) with HomΛ(A,C) = HomΛ(A,C)/I(A,C).

Proposition 6.10.

(a) HomR(−, R) : L(Λ)→ L(Λop) induces L(Λ)→ L(Λop).

(b) L(Λ)
TrL−−→ L(Λop)

HomR(−,R)−−−−−−−→ L(Λ) is an equivalence of categories.

Proposition 6.11. Let X,C be in L(Λ). Then

Ext1
Λ(C,X) ∼= HomR(HomΛ(TrLX

∗, C), Id)

is functorial in X and C. We get

Ext1
Λ(C,HomR(TrLX,R)) ∼= HomR(HomΛ(X,C), Id) .
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Consequently:

Proposition 6.12. Let C,X be in L(Λ) and n ∈ Z>0. Then there is

Ext1
Λ(C,HomR(TrLX,R

n)) ∼= HomR(HomΛ(X,C), Ind ) .

Let

x : 0 HomR(TrLX,R
n) B C 0

g f

be an exact sequence in L(Λ) and ν : HomΛ(X,C)→ Ind .

Theorem 6.13. Let H be an R-submodule of (X,C) containing P(X,C) with H/P(X,C) =

ker(ν). Then:

(a) h : L→ C in L(Λ) can be written as ft = h for some t : L→ B

⇔ im(−, h)(X) : Hom(X,L)→ Hom(X,C) ⊆ H.

(b) f is right X-determined in L(Λ) and im(−, f)(X) is a maximal End(X)op-submodule.

Let f : B → C. For all f ′ : B′ → C, then f ′ factors through f and for all φ : X → B′,

f ′φ factors through f :

X B′ C

X C

φ f ′

f

(c) im(−, f)(X) = H ⇔ H is a Σ-submodule of (X,C) where Σ = End(X)op.

Use A ∼= HomR(TrL(TrLA)∗, R) to see that f is right (TrLA)∗-determined.

Theorem 6.14. Let X,C be in L(Λ) and suppose
∐k
i=1 S

ni
i is isomorphic to the socle of

(X,C)/H with Si simple non-isomorphic Σ-modules, ni ∈ Z>0. Let n = max{n1, . . . .nk}.
There is an exact

x : 0 HomR(TrLX,R
n) B C 0

g f

satisfying

(a) im(−, f)(X) = H and f is right X-determined.
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7 Auslander-Reiten theory for lattices II

Tuesday 13th 14:00 – Jasper van de Kreeke (Amsterdam, Netherlands)

Auslander-Reiten . . .

• sequences

• translates

• quivers

• duality

in the commutative and noncommutative setting.

Yesterday: R = k[[x]] and Λ an arbitrary R-order.

Now: By convention, R is a commutative noetherian local complete Gorenstein ring

which is an isolated singularity ( AR-sequences exist).

Example 7.1.

• R = k[[x]]

• Kleinian singularities in all dimensions (A1 surface singularity: R = C[[x2, y2, xy]])

Theorem 7.2 (Auslander ’86). A local complete Gorenstein ring R has AR-sequences for

all non-free indecomposable modules M ∈ CM(R) iff R is an isolated singularity.

7.1 AR-sequences and AR-translates

Definition 7.3. Let M ∈ mod(R) and let P1 → P0 → M → 0 be a minimal projective

presentation for M . Then Tr(M) := coker(P ∗0 → P ∗1 ).

Definition 7.4. Let M ∈ mod(R) and 0 → N → Pn−1 → · · · → P0 → M → 0 be exact

with Pi finitely generated projective, then N is an n-th syzygy for M .

The following is uniquely defined up to isomorphism

redsyzn(M) := “N minus its free summands” .

Definition 7.5. Let M ∈ CM(R) be indecomposable. Then a short exact sequence

0→ N → E →M → 0

with N indecomposable is an AR-sequence for M if E → M is not a split surjection and

every X →M which is not a split surjection factors through E →M .

X

E M

∃
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Theorem 7.6. For any non-free indecomposable M ∈ CM(R) there exists a unique AR-

sequence. In fact N ∼= τ(M) := Hom(redsyzn(Tr(M)), R) where n = dim(R).

Example 7.7. The theory is trivial for a regular ring, e.g. C[[x]].

Exercise 7.8. Check that Tr(Tr(M)) ∼= M for non-projective indecomposable M .

Remark 7.9. If dim(R) = 2, τ(M) ∼= M for non-projective indecomposable M ∈ CM(R).

(Look at 0→M∗ → P ∗0 → P ∗1 → Tr(M)→ 0.)

7.2 AR-quivers

Definition 7.10. Let M =
⊕
Mi and N =

⊕
Ni be decompositions into indecomposables

of M,N ∈ CM(R). Define

rad(M,N) := {(ϕij) : each ϕij : Mj → Ni not an isomorphism} ,
rad2(M,N) := {f ◦ g : g ∈ rad(M,X), f ∈ rad(X,N)} ,

Irr(M,N) := rad(M,N)/ rad2(M,N) .

Exercise 7.11. Check that rad(M,N) and rad2(M,N) are R-modules. In fact Irr(M,N)

becomes a k-vector space where k = R/m.

Definition 7.12. Assume k is algebraically closed. Then the AR-quiver QR has

• vertices M for all indecomposable CM modules M ,

• dimk Irr(M,N) many arrows from M to N ,

• remembers the AR-translates.

Theorem 7.13. The AR-quiver of a 2-dimensional Kleinian singularity (over C) is the

McKay double quiver.

Example 7.14. A1 case (C2/Z2): We have R = C[[x2, y2, xy]]. Then R and M = Rx+Ry

(= power series in odd degrees) are the 2 indecomposable CM modules and

HomR(R,R) = R

HomR(R,M) = M

HomR(M,R) = M

HomR(M,M) = R

rad(R,R) = {x ∈ R with constant term 0}
rad2(R,R) = {x ∈ R starting x2, y2, xy onward}
Irr(R,R) = 0

Irr(R,M) = Cx+ Cy

Irr(M,R) = Cx+ Cy

Irr(M,M) = 0

So the AR-quiver is

R M .
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Exercise 7.15. Check that redsyz2(M) = M using 0→ ker→ R⊕2 → R⊕2 →M → 0.

7.3 AR-duality

Theorem 7.16. We have

HomR(τ−1(Y ), X)/{maps factoring through some R⊕n}
= HomR(Y, τ(X))/{maps factoring through some R⊕n}
= Ext1(X,Y )∗ .

Example 7.17. “cluster category”: Db(mod(A4))/τ ∼= CM (2-dimensional An)

Exercise 7.18. Using this equality check AR-duality.

7.4 Noncommutative case

Let R be a local complete noetherian commutative Gorenstein ring.

Let Λ be an R-order (i.e. Λ ∈ CM(R)). Then we have CM(Λ).

Fact 7.19. CM(Λ) finite type⇒ Λ isolated singularity, i.e. gl. dim(Λ⊗RRp) = gl.dim(Rp).

Fact 7.20. AR-sequences exist ⇔ Λ isolated singularity

Fact 7.21. AR-duality for isolated singularities Λ:

HomΛ(τ−1(Y ), X)/{maps factoring through some Λ⊕n}
= HomΛ(Y, τ(X))/{maps factoring through some (Λ∗)⊕n} .
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8 Auslander-Buchweitz approximations

Tuesday 13th 15:15 – Manuel Flores Galicia (Bielefeld, Germany)

(following notes by Ryo Kanda)

Setting.

• R Iwanaga-Gorenstein (left and right noetherian and inj. dim(RR) and inj. dim(RR)

finite, actually then inj. dim(RR) = inj.dim(RR))

• For M ∈ Mod(R) there exists a short exact sequence 0→ K → N →M → 0 where

N ∈ CM(R) and K has finite projective dimension.

8.1 Approximations and cotorsion pairs

• B additive category

• X ⊆ B closed under finite sums and direct summands and extensions

Definition 8.1. A morphism f : X → M with X ∈ X is a right X -approximation of M

iff for every f ′ : X ′ →M with X ′ ∈ X the map Hom(X , X)→ Hom(X ′,M) is surjective:

X ′ M

X

f ′

∃ f

X is said to be contravariantly finite in B if every B ∈ B has a right X -approximation.

Dually, define left X -approximations and covariantly finite.

Proposition 8.2. X ⊆ B and 0→ Y → X
f−→M → 0 a short exact sequence with X ∈ X .

If Ext1(X , Y ) = 0, then f is a right X -approximation.

Definition 8.3. B ⊆ A with A abelian, X ,Y ⊆ B additive.

We say that (X ,Y) is a cotorsion pair in B with special approximations if:

(a) ExtiA(X,Y ) = 0 for all X ∈ X , Y ∈ Y, i > 0,

(b) for all B ∈ B there are

0→ YB −→ XB
f−→ B → 0 and 0→ B

g−→ Y B −→ XB → 0

with YB, Y
B ∈ Y and XB, X

B ∈ X .

Proposition 8.4. Proposition 8.2 ⇒ f is a right X -approximation of B and g is a left

Y-approximation of B.
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Definition 8.5. For X ,Y ⊆ A let

X⊥ := {M ∈ A : Ext>0
A (X ,M) = 0} ,

⊥Y := {M ∈ A : Ext>0
A (M,Y) = 0} .

Definition 8.6. ω ⊆ X is a cogenerator of X if for all X ∈ X there exists a short exact

sequence 0→ X →W → Y → 0 with W ∈ ω and Y ∈ X .

ω is an injective cogenerator if Ext>0(X , ω) = 0.

Recall 8.7. ω ⊆ A additive. Then A/ω has the same objects as A and morphisms

HomA/ω(M,N) = HomA(M,N)
/{

M
f−→ N : f factors through some W ∈ ω

}
.

Proposition 8.8. Let (X ,Y) be a cotorsion pair in B and ω = X ∩ Y. Then:

(1) Y = X⊥ ∩ B = X⊥1 ∩ B and X = ⊥Y ∩ B = ⊥1Y ∩ B and ω = X ∩ X⊥ = Y ∩ ⊥Y,

(2) ω is an injective cogenerator of X ,

(3) for all f : X → Y with X ∈ X , Y ∈ Y we have f = 0 in A/ω,

(4) XB, Y B are unique up to isomorphism in A/ω.

Proof. (1) Y ⊆ X⊥ ∩ B ⊆ X⊥1 ∩ B.

If B ∈ X⊥1 ∩B, then 0→ B → Y B → XB → 0 splits, so B is a direct summand of Y B,

so B ∈ Y. Thus Y = X⊥1 ∩ B and ω = X ∩ Y = X ∩ X⊥1 ∩ B = X ∩ X⊥.

(2) For all X ∈ X there is 0→ X → Y X → XX → 0 with Y X ∈ Y and XX ∈ X . Since

X is closed under extensions we get Y X ∈ X , so Y X ∈ ω.

Since ω ⊆ X⊥ by (1) we get Ext>0(X , ω) = 0.

8.2 Auslander-Buchweitz approximations

• A abelian category

• X ⊆ A additive, closed under extensions and kernels of epimorphisms

• ω ⊆ X additive, injective cogenerator of X

• X̂ := {M ∈ A : there is n and an exact 0→ Xn → · · · → X0 →M → 0 with Xi ∈ X}

Theorem 8.9 (Auslander, Buchweitz). Under the above assumptions:

(1) (X , ω̂) ⊆ X̂ is a cotorsion pair,

(2) X̂ = {M ∈ A : ∃ 0→ YM → XM
p−→M → 0 with YM ∈ ω̂ and XM ∈ X} and

X̂ = {M ∈ A : ∃ 0→M
j−→ YM → XM → 0 with YM ∈ ω̂ and XM ∈ X},

(3) ω = X ∩ X⊥.
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Definition 8.10. The morphism p : XM →M is called an Auslander-Buchweitz approxi-

mation of M (or CM approximation) and j : M → YM is called an ω̂-hull of M .

Proof. Let M ∈ X̂ . Then there is an exact 0→ Xn → · · ·
d0−→ X0 →M → 0 with Xi ∈ X .

If n = 0 take 0→ 0→M →M → 0 where 0 ∈ ω̂ and M ∈ X . Now ω ⊆ X cogenerating

gives 0→M →W → X → 0 with W ∈ ω and X ∈ X .

If n ≥ 1, set K = im(d0) and consider 0 → K → X0 → M → 0 and 0 → Xn → · · · →
X1 → K → 0. By induction hypothesis there is 0→ K → Y K → XK → 0 with Y K ∈ ω̂.

Consider
0

0 K Y K Y K 0

0 X0 E XK 0

M M

0 0

The third column yields a right X -approximation of M .

8.3 Examples

1.

• R Iwanaga-Gorenstein

• A = mod(R)

• X = CM(R) = ⊥R = {M ∈ mod(R) : Ext>0(M,R) = 0}

• ω = proj(R) finitely generated projective R-modules

•
CM(R) CM(Rop)

proj(R) proj(Rop)

∼

∼

⊆ ⊆

• ⇒ M ∼= M∗∗ for all M ∈ CM(R), i.e. M is reflexive.

• proj(R) ⊆ CM(R) is cogenerating.

• Let M ∈ CM(R). Then

0 Ω(M∗) P ′0 M∗ 0
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where M∗,Ω(M∗) ∈ CM(Rop), P ′0 ∈ proj(Rop) and

0 M∗∗ (P ′0)∗ (Ω(M∗))∗ 0

where (Ω(M∗))∗ ∈ CM(R), (P ′0)∗ ∈ proj(R).

• X = CM(R)

• X̂ = mod(R):

Let M ∈ mod(R). Since n = inj. dim(RR) <∞, we have

Ext>n(M,R) = Ext>n−1(Ω(M), R) = · · · = Ext>0(Ωn(M), R) = 0 ,

so Ωn(M) ∈ CM(R). So we have

0→ Ωn(M)→ Pn−1 → · · · → P0 →M → 0

with Ωn(M) ∈ CM(R) and Pi ∈ proj(R) ⊆ CM(R).

• ω̂ = ̂proj(R) = {M ∈ mod(R) : proj. dim(M) <∞} =: P<∞

• ⇒ (CM(R),P<∞) ⊆ mod(R) is a cotorsion pair.

• ω = CM(R) ∩ P<∞ = proj(R)

2.

• R commutative noetherian local Cohen-Macaulay ring with canonical module ωR
(i.e. ωR ∈ mod(R) with Ext>0(ωR, ωR) = 0, inj.dim(ωR) <∞, R

∼−→ End(ωR))

• CM(R) := {M ∈ mod(R) : Ext>0(M,ωR) = 0}

• ⇒ (CM(R), I<∞) is a cotorsion pair in mod(R) and CM(R) ∩ I<∞ = add(ωR).
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9 Algebraic McKay correspondence

Wednesday 14th 8:30 – Sarah Kelleher (Glasgow, United Kingdom)

Goal.

• k field

• G ≤ GL(n, k) finite with |G| invertible in k and G having no pseudoreflections

• S polynomial ring or power series ring with G acting linearly

• R = SG

• The natural morphism γ : S#G→ EndR(S), γ(s · σ)(t) = sσ(t), is an isomorphism.

Example 9.1. n = 2, S = C[[x, y]].

Definition 9.2. Invariant ring R = SG with s ∈ R iff σ(s) = s for all σ ∈ G.

Example 9.3. G = 1
3(1, 2) :=

〈(
ε3 0

0 ε2
3

)〉
acting by x 7→ ε2

3x, y 7→ ε3y.

Then x3 7→ x3, y3 7→ y3, xy 7→ xy. So R = C[[x3, y3, xy]] ∼= C[[a, b, c]]/(ab− c3).

Definition 9.4. Skew group ring S#G, group homomorphism ϕ : G→ Aut(S), then

S#G :=

∑
g∈G

agg : ag ∈ S, g ∈ G


with multiplication ag · bh = aϕ(g)(b)gh for a, b ∈ S, g, h ∈ G.

Example 9.5. S#G = S ⊗C CG, (a⊗ g)(b⊗ h) = (a · g(b))⊗ gh.

Theorem 9.6. G ≤ SL(n,C), S = C[[x1, . . . , xn]], R = SG. Then:

S#G ∼= EndR

(⊕
p∈Irr(G)((S ⊗ p)G)dim(p)

)
Definition 9.7. σ ∈ GL(n, k) is a pseudoreflection if rank(σ − 1) ≤ 1 for all σ 6= id.

Example 9.8. G =

〈(
1 0

0 −1

)〉


1 0
. . .

1

0 ε
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Example 9.9. There are 3 one-dimensional representations p0, p1, p2.

g acts on ei with e0, e1, e2 by weight εi3.

M0 = (C[[x, y]]⊗ p0)G = R

M1 = (C[[x, y]]⊗ p1)G

M2 = (C[[x, y]]⊗ p2)G

So

S#G ∼= EndR(R⊕M1 ⊕M2) .

McKay quiver

Definition 9.10. G a finite group acting on a fixed space V (= C2).

Then the McKay quiver of V is the directed graph with vertices V0, . . . , Vd (non-isomor-

phic representations of G) and arrows Vi → Vj with multiplicity

dimC HomCG(Vi, Vj ⊗ V ) .

Example 9.11.

p0 =

〈(
ε3 0

0 ε2
3

)〉
p1 ⊕ p2

p0 ⊗ V = p0 ⊕ p2

p1 ⊗ V = p0 ⊕ p2

p2 ⊗ V = p0 ⊕ p2

So the McKay quiver is:
p0

p1 p2

Proposition 9.12. R normal surface. Then CM(R) ∼= add(RS).

Fact 9.13. If M ∈ mod(R), then

HomR(M,−) : mod(R)→ mod(EndR(M))

induces add(M) ∼= proj(EndR(M)).

projectivization  
CM(R) ∼= proj(C[[x, y]]#G)

Lemma 9.14. Let G ≤ GL(V ) be a finite subgroup.

Then C[V ]#G is Morita equivalent to the McKay quiver with relations.

proj(S#G) ∼= CM(R) ∼= add(RS) ∼= proj(EndR(S))
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Theorem 9.15. The AR-quiver of CM(R) is the McKay quiver of G.

Sketch of proof.

(1) No pseudoreflections.

 R→ S is unramified, Rp → Sp with p height one prime ideal.

(2) Define a right-splitting from EndR(S)→ S#G for γ and show this is a surjection.

(3) Everything is torsion-free, R-modules have rank |G|2.

 γ isomorphism

Definition 9.16. {Ei} of exceptional P1’s in minimal resolution X → Spec(R).

The dual graph is as follows:

• Draw a dot for each Ei.

• If two Ei intersect, connect the dots.

Example 9.17. X → Spec(R) = C2/G.

E1 E2

 dual graph • → •

Theorem 9.18. There are correspondences:

{dual graph} {McKay quiver} {AR-quiver}

• M 7→ D by killing trivial representations and merging arrows

• D 7→M by adding vertices and doubling arrows

p0

p1 p2

↔ • → •
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10 Knörrer’s periodicity and hypersurface singularities

Wednesday 14th 9:45 – Shiquan Ruan (Bielefeld, Germany)

10.1 Matrix factorizations

Notations.

• (S, n, k) regular local ring

• R = S/(f) and m = n/(f) with 0 6= f ∈ n2

• dim(R) = d = dim(S)− 1

Definition 10.1. A matrix factorization of f in S is a pair (ϕ,ψ)

G F
ϕ

ψ

where F , G are free S-modules of the same rank n such that

ϕψ = fIn =


f

. . .

f

 .

A homomorphism between (ϕ,ψ) and (ϕ′, ψ′) is a pair of (α, β) ∈ mod(S) such that the

following diagram commutes:

G F

G′ F ′

ϕ

α
ψ

β

ϕ′

ψ′

We obtain the category MFS(f) of matrix factorizations of f with direct sums

(ϕ,ψ)⊕ (ϕ′, ψ′) =
(( ϕ

ϕ′
)
,
(
ψ
ψ′

))
.

Remark 10.2.

(1) ϕ, ψ are both injective.

(2) ϕψ = fI ⇔ ψϕ = fI

βϕ = ϕ′α ⇔ αψ = ψ′β

(3) (ϕ,ψ) ∈ MFS(f) ⇔ (ψ,ϕ) ∈ MFS(f)

(4) (1, f), (f, 1) ∈ MFS(f)

For any (ϕ,ψ) ∈ MFS(f) write (ϕ,ψ) = (ϕ′, ψ′)⊕ (1, f)⊕p⊕ (f, 1)⊕q and call (ϕ′, ψ′)

reduced (any entry in ϕ′ and ψ′ is not a unit).
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Example 10.3.

• S = k{x, y}, f = x2 + y4 = (x+ iy2)(x− iy2)

• (1, f), (f, 1) ∈ MFS(f)

• i ∈ S:

S S
x+iy2

x−iy2

• With A =
(
x y
y3 −x

)
= fI and B =

(
x y
y3 −x

)
:

S2 S2
A

B

Proposition 10.4. Assume R = S/(f).

(i) For all M ∈ CM(R) there is (ϕ,ψ) ∈ MFS(f) such that coker(ϕ) ∼= M .

(ii) For all (ϕ,ψ) ∈ MFS(f) we have coker(ϕ) ∈ CM(R).

Proof. (i) For M ∈ CM(R) we have by Auslander-Buchsbaum

proj. dim(SM) = depth(S)− depth(SM) = (d+ 1)− d = 1 .

0 S(n) S(n) M 0
ϕ

ψ

π

So fM = 0, so M ∈ tor(S).

π(fx) = fπ(x) ∈ fM = 0 ⇒ fx ∈ ker(π) = im(ϕ) ⇒ fx = ϕ(y) for a unique y

Define ψ : x 7→ y (satisfying fx = ϕ(y) = ϕψ(x) ⇒ fI = ϕψ ⇒ ψϕ = fI).

⇒ (ϕ,ψ) ∈ MFS(f)

(ii) (ϕ,ψ) ∈ MFS(f) ⇒ G F
ϕ

ψ
with ϕψ = fIn = ψϕ

The sequence

· · · F G F · · ·ψ ϕ ψ

in mod(R) is exact. . . . ⇒ coker(ϕ) ∈ CM(R)

Define coker((ϕ,ψ)) := coker(ϕ).

Remark 10.5. coker((1, f)) = 0 and coker((f, 1)) = S/(f) = R.

G F coker(ϕ)

G′ F ′ coker(ϕ′)

ϕ

α
ψ

β

ϕ′

ψ′

 additive functor MFS(f)→ MFS(f), (ϕ,ψ) 7→ coker(ϕ)
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Theorem 10.6 (Eisenbud). R = S/(f). Then

coker : MFS(f)/{(1, f)} ∼−−→ CM(R)

and between the category of reduced matrix factorizations and stable CM modules

coker : MFS(f)/{(1, f), (f, 1)} ∼−−→ CM(R)/{R} = CM(R) .

10.2 Double branch covering

Definition 10.7. The double branch covering of R = S/(f) is

R] = S[[z]]/(f + z2) .

Remark 10.8.

• There is a surjection R] → R killing the class of z.

• R] is a free S-module generated by 1 and z (S is complete).

Definition 10.9.

• For each M ∈ CM(R) set M ] := syzR
]

1 (M).

• For each N ∈ CM(R]) set N [ := N/zN .

S[[z]] S

R] = S[[z]]/(f + z2) R = S/(f)
/z

Lemma 10.10. Let G F
ϕ

ψ
be in MFS(f) and M = coker(ϕ). Let π : F̃ � F �M .

(i) There exists an exact sequence of R]-modules

F̃ ⊕ G̃ G̃⊕ F̃ F̃ M 0

M ]

A (ϕ̃, zI) π

where A =
(
ψ̃ −zI
zI ϕ̃

)
.

(ii)
((

ψ −zI
zI ϕ

)
,
(

ϕ zI
−zI ψ

))
∈ MFS[[z]](f + z2)

(iii) M ] ∼= coker
((

ψ −zI
zI ϕ

))
(iv) R]M

] stable ⇔ RM stable, in which case syzR
]

1 (M ]) ∼= M ].
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Proposition 10.11. Let M ∈ CM(R). Then (M ])[ ∼= M ⊕ syzR1 (M).

Proof. . . .

Dually:

Proposition 10.12. Let N ∈ CM(R]) and char(k) 6= 2 Then (N [)] ∼= N ⊕ syzR
]

1 (N).

Corollary 10.13. M ∈ CM(R) indecomposable and stable. Then:

(i) M ] is a direct summand of either one or two indecomposable R]-modules.

(ii) M is a direct summand of N [ for some indecomposable non-free R]-module.

Theorem 10.14 (Knörrer’s Theorem). Let R = S/(f) and char(k) 6= 2. Then:

R] CM-finite ⇔ R is CM-finite

Example 10.15.

• Rn,d = k[[x, z1, . . . , zd]]/(x
n+1 + z2

1 + · · ·+ z2
d) with n ≥ 1, d ≥ 0 is CM-finite.

(since Rn,0 = k[[x]]/(xn+1) is CM-finite)

• i ∈ k, R′ = k{x1, . . . , xt, y1, . . . , yt}/(x1y1 + · · ·+ xtyt) is CM-finite.

(Write xjyj = u2
j + v2

j where xj = uj + ivj and yj = uj − ivj . Then R′ ∼= R1,2d+1.)

10.3 Knörrer’s periodicity

R] R
[

]

Proposition 10.16. Assume char(k) 6= 2.

(1) M ∈ CM(R) indecomposable non-free:

M ] decomposable

⇔ M ∼= syzR1 (M)

⇒ M ] ∼= N ⊕ syzR
]

1 (N) with indecomposable N 6∼= syzR
#

1 (N)

(2) N ∈ CM(R]) indecomposable non-free:

N [ decomposable

⇔ N ∼= syzR
]

1 (N)

⇒ N [ ∼= M ⊕ syzR1 (M) with indecomposable M 6∼= syzR1 (M)

Definition 10.17. Set R]] = S{u, v}/(f + uv) ∼= S{z1, z2}/(f + z2
1 + z2

2).

For M ∈ CM(R) corresponding to G F
ϕ

ψ
in MFS(f) define

MX = coker
((

ϕ −vI
uI ψ

)
,
(

ψ vI
−uI ϕ

))
.
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Theorem 10.18 (Knörrer). M 7→MX defines a bijection between isoclasses of indecom-

posable non-free CM modules over R and R].

Proposition 10.19.

(i) M ]] ∼= MX ⊕ syzR
]]

1 (MX)

(ii) (MX)[[ ∼= M ⊕ syzR1 (M)

(iii)
(

syzR1 (M)
)X ∼= syzR

]]

1 (MX)

40



11 What is (should be) a noncommutative resolution of singularities? – I

. . . and why should it have to do with MCM modules?

Wednesday 14th 11:00 – Graham Leuschke (Syracuse, United States)

See also Graham’s notes!

Goal. Global dominations for algebra over algebraic geometry.

Can we completely remove the geometry from resolution of singularities?

Recall 11.1. A resolution of singularities of an algebraic variety X is a morphism

π : X̃ → X

with

(1) X̃ is smooth (nonsingular),

(2) π is proper (e.g. projective or finite),

(3) π is birational (induces an isomorphism on function fields).

The dictionary “algebra ↔ geometry” reverses arrows, so we might want to consider a

ring homomorphism R
ϕ−→ S “resolving” the singularities of R. It should satisfy:

(1) S is regular / nonsingular,

(2) S is a finitely generated R-module (probably stronger than necessary),

(3) R and S share a quotient field: Quot(R)⊗R S = Quot(R).

Problem. These don’t exist, e.g. R = C[[x, y, z]]/(x3 + y2 + z2) has no such algebras S.

Let’s allow S = Λ to be a
::::::::::::::::
noncommutative ring and require (R→ Λ sends R→ Z(Λ))

(1) Λ has finite global dimension,

(2) Λ is a finitely generated R-module,

(3) Quot(R)⊗R Λ is
::::::
Morita

:::::::::::
equivalent to Quot(R):

Quot(R)⊗R Λ ∼= Mn(Quot(R)) .

Weakest Possible Definition. A (weak) noncommutative resolution of singularities of a

ring R is a module-finite R-algebra Λ of finite global dimension with

Quot(R)⊗R Λ ∼= Mn(Quot(R)) “birational” .

Example 11.2 (McKay Correspondence).

• S = k[[x1, . . . , xd]]
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• G ⊆ GLd(k) finite with |G| ∈ k×

• R = SG.

• Technical assumption: no pseudoreflections.

• R is a complete local
::::::::::::::::
Cohen-Macaulay (Hochster-Roberts Theorem) normal domain.

• R is Gorenstein iff G ⊆ SLd(k) (since no primitive roots).

• As an R-module S is finitely generated (and MCM).

• (By the way: They have different fraction fields.)

Take the skew group ring S#G.

• It has finite global dimension!

• It is finitely generated free as an S-module, hence finitely generated (and MCM) as

R-module,

• It is birational: we know

S#G ∼= EndR(S)

and passing to Quot(R)

EndR(S)⊗R Quot(R) = EndQuot(R)(Quot(R)|G|) = M|G|(Quot(R)) .

Remark 11.3. HomS#G(−,−) ∼= HomS(−,−)G and (−)G is exact (|G| ∈ k×), so

ExtiS#G(−,−) ∼= ExtiS(−,−)G ,

so gl.dim(S#G) = dim(S) = d (the smallest possible finite global dimension for an S-

algebra).

Example 11.4 (Finite Cohen-Macaulay Type).

Let (R,m) be a CM local ring of finite CM-representation type.

E.g. k[t2, tn] (with n odd), k[t3, t4, t5], k[x, y]/(xy) (A1 singularity).

Let M1, . . . ,Mr be the indecomposable MCM R-modules.

G =
r⊕
i=1

Mi a CM-generator  CM(R) = add(G)

Set

Λ = EndR(G)

an Auslander algebra for R.

Fact (Iyama, Leuschke, Quarles 2005; Auslander 1980’s).

gl.dim(Λ) ≤ max{dim(R), 2} < ∞ .

• It is birational over R (same proof),
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• It is module-finite over R.

So Λ is a weak noncommutative resolution of singularities.

Remark 11.5. More precisely, Iyama proves Λ has one simple module for each Mi and

proj.dim(ΛSi) =

{
2 if Mi 6∼= R,

1 if Mi
∼= R.

So gl. dim(Λ) = d when d ≥ 2 but Λ is not homologically homogeneous (simples have same

projective dimension) if d ≥ 3.

The best case is d = 2.

Theorem 11.6 (Auslander 1986). The 2-dimensional complete local C-algebras of finite

CM type are precisely the invariant rings C[[u, v]]G for G ⊆ GL2(C).

So in this case Example 11.4 = Example 11.2.

Complaints (from a commutative algebraist)

For noncommutative rings, finite global dimension is not strong enough for most purposes.

Particular issues:

(a) No Auslander-Buchsbaum formula for proj.dim(ΛM). In fact, we don’t even know

the finitistic dimension conjecture.

(b) We don’t have analogs of the implications

regular ⇒ Gorenstein ⇒ CM

for noncommutative rings.

(c) Finite global dimension doesn’t localize well.

Strengthen the definitions to address (a), (b), (c).

(c) Say Λ is nonsingular if gl.dim(Λp) = dim(Rp) for all p ∈ Spec(R).

(Biao defined it on Monday
:::
for

::::::
orders as gl.dim(Λ) = dim(R).)

From now on: R is a Cohen-Macaulay normal domain, for simplicity, and assume that

R has a canonical module ωR. Most important things:

i) R is Gorenstein ⇔ ωR = R

ii) HomR(−, ωR) gives a duality on CM(R).

iii) CM(R) =
{
M ∈ mod(R) : Ext>0

R (M,ωR) = 0
}
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(b) Λ is a Gorenstein R-algebra if

HomR(Λ, ωR) =: ωΛ

is a projective (left) Λ-module. It is symmetric if

HomR(Λ, R) ∼= Λ

as Λ-bimodules.

When R is Gorenstein

symmetric ⇒ Gorenstein

but not conversely.

If R is not Gorenstein, they are independent, so we may have to impose both.
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12 Buchweitz’s Theorem

Thursday 15th 8:30 – Simon May (Leeds, United Kingdom)

(after Happel ’88)

APC(S)

CM(S) Dbsg(S)

Ω0
σ≤k

∼
ιS

Setting.

• B additive category, fully and extension closed embedded in an abelian category A

• S set of exact sequences in A such that terms are in B

• A morphism α : Y → Z in B is a proper epimorphism if there exists an exact sequence

0→ X → Y
α−→ Z → 0 .

• An object P in B is called S-projective if for all proper epimorphism α : Y → Z and

f : P → Z in B there exists g : P → Y such that f = αg:

P

Y Z

g
f

α

• (B,S) has enough S-projectives if for every Z in B there exists a proper epimorphism

α : P → Z with P an S-projective.

Definition 12.1. (B,S) is called a Frobenius category if it has enough S-projectives and

enough S-injectives and they are the same.

Let I(X,Y ) be the subgroup of morphisms X → Y such that they factor through an

S-projective.

Definition 12.2. Let (B,S) be a Frobenius category, then B is the stable category with

• obj(B) = obj(B),

• HomB(X,Y ) = HomB(X,Y )/I(X,Y ).

Triangulated structures.

• B additive category

• T automorphism of B, the translation functor
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• a sextuple (X,Y, Z, u, v, w)

X Y Z TXu v w

• morphism:

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v w

Tf

u′ v′ w′

• A set of sextuples ∆ is called a triangulation of B if the following hold:

(TR1) Every sextuple isomorphic to a triangle is a triangle.

Every morphism u : X → Y can be embedded into a triangle (X,X, 0,1X , 0, 0).

(TR2) (X,Y, Z, u, v, w) ∈ ∆ ⇒ (Y,Z, TX, v, w,−Tu) ∈ ∆

(TR3) If we have f , g in the diagram, we can extend to a morphism.

(TR4) octahedral axiom.

Triangulation of the stable category.

• B additive

• B stable category

Lemma 12.3. Let

0 X I ′ X ′ 0

0 X I ′′ X ′′ 0

with I ′ and I ′′ S-injective. Then X ′ and X ′′ are isomorphic.

Let 0→ X → I ′ → Y ′ → 0. Assume there is a bijection γX : [X]→ [X ′]. For all objects

X in B we choose elements

0 X I(X) TX 0

where TX = γX(X).

X I(X) TX

Y I(Y ) TY

u

f

I(f)

Tf

T is an automorphism of B.

Let (B,S) be Frobenius. Define a set of sextuples in B via X,Y ∈ B, u : X → Y :
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X Y

I(X) Cu

TX TX

u

v

w

 (X,Y,Cu, u, v, w) standard in B is standard in B.

Theorem 12.4. Let ∆ be the set of all isomorphic sextuples of a standard triangle.

Then ∆ is a triangulation of B.

Proof. Checking axioms.

Derived category.

• A abelian

• C(A) category of complexes

· · · Xi−1 Xi Xi+1 · · ·
di−1
X diX

• K(A) homotopy category with

HomK(A)(X,Y ) := HomC(A)(X,Y )/null(X,Y ) .

• D(A) := K(A)[quasi−1]

• Db(A) subcategory of D(A) with all complexes isomorphic to bounded complexes

• X[1] = (Xn+1,−dn+1
X )n

• X g−→ Y → cone(g)→ TX

Singularity category.

• S ring

• A complex is perfect if in D(mod(S)) =: D(S) it is isomorphic to a finite complex

of finitely generated projective S-modules.

• Dbperf(S) category of perfect complexes

• Dbsg(S) = Db(S)/Dbperf(S)

47



Now:

• S Gorenstein ring

• APC(S) full subcategory of K(A) of chain complexes that are isomorphic to an

acyclic projective complex

• mod(S) finitely generated S-modules

• mod(S) projectively stabilized category of mod(S)

• CM(S) the full subcategory of mod(S) of (maximal) Cohen-Macaulay modules in

the sense

CM(S) = {X ∈ mod(S) : ExtiS(X,S) = 0 for i 6= 0}

• CM(S) is Frobenius, so CM(S) has a natural triangulated structure.

Theorem 12.5 (Buchweitz’s Theorem). If we take S to be an Iwanaga-Gorenstein ring,

then there is a triangulated equivalence

Dbsg(S)
∆∼= CM(S) .

• APC(S) ∼= CM(S):

– Let k ∈ Z.

– Consider Ωk : APC(S)→ CM(S), X → coker
(
d−k−1
X : X−k−1 → X−k

)
.

– A module M ∼= M∗∗ is CM iff it has a projective coresolution.

– A complex A in APC(S) is acyclic,

coker(d−k) ∼= im(d1−k) ∼= ker(d2−k) ,

so we get a projective coresolution

0 coker(d−k) A1−k A2−k · · · ,

so coker(d−k) is CM.

• APC(S) ∼= Dbsg(S):

– For X ∈ APC and k ∈ Z:

σ≤k(X) = · · · Xk−1 Xk 0 · · ·
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13 Stably semisimple Gorenstein orders in dimension one

Thursday 15th 10:00 – Wassilij Gnedin (Bochum, Germany)

(0) orders in dimension one

(1) stably semisimple

(2) Gorenstein

(0) Setup

• k = k, R = k[[x]], K = k((X))

• Λ a basic ring-indecomposable R-order in a
:::::::::::
semisimple K-algebra A

•  CM(Λ) = Ω(mod(Λ)) has an AR-quiver.

• Λ is Gorenstein if ω = HomR(Λ, R) ∈ proj(Λ).

 inj(CM(Λ)) = proj(CM(Λ)), so

CM(Λ) [1]=Ω−1 .

Example 13.1. Γ hereditary with two simples

 Γ =
[
R m
R R

] ∼= kQ̂ where Q̂ = • •

 ω ∼=
[

R R
m−1 R

] ∼−→ [ m m
R m ] = rad(Γ) ∈ proj(Γ)

Remark 13.2. Γ Gorenstein such that CM(Γ) = 0 ⇔ Γ hereditary

(1) rad CM(Λ) = 0

Lemma 13.3. The following are equivalent:

(a) CM(Λ) is semisimple, that is, for all L,M ∈ ind(CM(Λ))

HomΛ(L,M) ∼=

{
k L ∼= M ,

0 L 6∼= M .

(b) For all L ∈ ind(CM(Λ))

0→ Ω(L)→ P (L)→ L→ 0 ,

where P (L)→ L is the projective cover, is the AR sequence ending in L.

In this case, CM(Λ) = add(Λ⊕ rad(Λ)⊕ ω).
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Example 13.4 (Zh. ’57, GP ’67).

R→ Λ =
[
k[[y,z]]/(yz) (y)

k[[y]] k[[y]

]
, x 7→

[
y+z 0

0 y

]
P2

·a−→ P1
·z−→ P1

·b−→ P2

1 2z

a

b

 AR-quiver of CM(Λ):

(z) P1 P2

(b)

To obtain the AR-quiver of CM(Λ) remove P1 and P2.

(2) Rejection Lemma

Lemma 13.5 (Drozd–Kirichenko ’67). Let Λ be a non-maximal order and B1 an inde-

composable projective-injective CM module.

Then there is a unique overorder Γ1 of Λ in A such that

ind(CM(Λ \ [B1])) ind(CM(Γ1))

ΛN N

1:1

Moreover, Γ1 is the minimal overorder such that

0→ Λ→ ΛΓ1 → Sν(1) → 0 B1
∼= D

(
eν(1)Λ

)
where D = HomR(−, R).

Recall 13.6. Λ ↪→ Γ1 ⇒ CM(Γ1) ↪→ CM(Λ)

Remark 13.7. `(ΛΓ1 ⊗ S1) ≤ 2 where S1 = top(B1).

Idea of proof. B1 has a unique maximal overmodule C1 = D (rad (D(B1)))

 0→ B1 → C1 → Sν(1) → 0 .

Set Γ1 = EndΛ(C1 ⊕ P )op where Λ = B1 ⊕ P .
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Example 13.8 (Gelfand ’72).

Λ =
[
R m m
R R m
R m R

]
with columns corresponding to projective modules P0, P+, P−.

+ 0 −
b

a c

d /
(ba− dc)

ω =
[
m m m
R m R
R R m

]
with columns corresponding to injective modules

I0 = rad(P0) I+ = P− I− = P+

0 P+ =
[
m
R
m

]
rad(P0) =

[
m
R
R

]
S =

[
0
0
k

]
0

Λ Λ+ =
[
R m m
R R m
R R R

]
Λ−+ =

[
R m m
R R R
R R R

]
rej. rej.

rad(Λ) = rad(Λ+)

P̃ the second column of Λ+

P0 P̃

P−

CM(Λ):

P+

P0 rad(P0) = P̃

P−

(3) Gluing some orders

• Choose cyclic quiver.

•

x

•

• •

ba

c

• Attach the sinks of:
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A2 • • ∅

A′3
•

•
•

“gluing”

A′′3
•

•
•

“blow-up”

Q̃ = Q̃(1) × Q̃(2)

•

• •

•

b+x
a−

a+

b−
c

b+a+ = b−a−

 k̂Q̃ ∼= Γ =
[
R m m
R R m
R R R

]
 Bäckström species SΛ

The outcome.

nodal orders / quadratic orders

= Bäckström orders of type A2, A′3, or A′′3

= Bäckström orders such that `(ΛΓ⊗ S) ≤ 2 ∀S

Theorem 13.9 (Roggenkamp ’85). Let Λ be Gorenstein and non-hereditary.

Then the following are equivalent:

(a) CM(Λ) is semisimple.

(b) CM(Λ) = add(Λ⊕ rad(Λ)).

(c) Λ is Bäckström.

(d) Λ is nodal without A2.

Remark 13.10. (a) ⇒ (b) and (d) ⇒ (c) are clear. (d) ⇒ (b) by Rejection Lemma.

Λ nodal Gorenstein, Λ ↪→ Γ with gl.dim(Γ) = 1 and rad(Λ) ⊆ rad(Γ)

⇒ CM(Λ) = add(Λ⊕ rad(Λ))

⇒ rad(Λ) = rad(Γ)
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(4) Ribbon graph orders

Λ is a ribbon graph order if Λ is Bäckström of type A′3 (“gluing”).

• Λ ∼= k̂Q/I for some (Q, I) such that for all i ∈ Q0:

i

σ−1(b) =ϕ(α(b))

α(b)

bϕ(b)

 I = 〈bϕ(b) : b ∈ Q1〉

 
Q1

σ,α,ϕ−−−−→
1:1

Q1 ϕασ = id , α2 = id , α(j) 6= j

 (σ, α, ϕ) “combination map” = “ribbon graph” ↪→ surface

Example 13.11.

2

1 3

y

a=σ(c)

x

c=σ(b)

z

b=σ(a)

σ = (abc)(xyz)

α = (xc)(ay)(bz)

ϕ = (xazcyb)

ax = 0 = za = · · ·

Proposition 13.12.•

ind(CM(Λ)) Q1

Λa a

Ω
1:1 ϕ

• Sg has genus g where

2− 2g = c(ϕ)− c(α) + c(σ)

In the example: = 1− 3 + 2 = 0 ⇒ g = 1.

Summary.

projective resolutions of arrow ideals

= AR-sequences in CM(Λ)

= “Green walks around the ribbon graph”

53



14 What is (should be) a noncommutative resolution of singularities? – II

Thursday 15th 11:15 – Graham Leuschke (Syracuse, United States)

See also Graham’s notes!

Last time:

Maybe a noncommutative resolution of CM local R is an R-algebra Λ which is

• of finite global dimension nonsingular (gl. dim(Λp) = dim(Rp) for all p ∈ Spec(R))

• birational

• module-finite

+ Gorenstein ?

+ symmetric ?

Definition 14.1. Say Λ is an R-order if Λ is MCM as an R-module.

Why?

1) Iyama–Wemyss 2010 [Auslander 1984]

The following are equivalent for an
:::::
order over CM local R:

(i) Λ is nonsingular.

(ii) gl.dim(Λ) = dim(R).

(iii) gl.dim(Λ) <∞ and Λ is a Gorenstein R-algebra.

(iv) CM(Λ) = proj(Λ).

(Biao proved (i) ⇒ (ii).)

So for orders, finite global dimension  much better behaved than in general.

2) Stangle 2015, generalizing Iyama–Reiten 2008

Orders of finite global dimension satisfy a version of the Auslander-Buchsbaum formula:

dim(R) ≤ depth(RX) + proj. dim(ΛX) ≤ dim(R) + n

where n = proj. dim(Λ(ωΛ)).

In particular, if Λ is a Gorenstein R-order of finite global dimension (nonsingular by

(i)), then Λ(ωΛ) is projective, and we get an A-B equality on the nose [Iyama–Reiten].
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3) van den Bergh 2004

If Λ is a nonsingular
:::::
order, then Λ is

:::::::::::::
homologically

:::::::::::::
homogeneous (all simples have the

same projective dimension).

Definition 14.2 (Stronger definition). A (medium-strength) noncommutative resolution

of singularities of a CM local ring R is a nonsingular, birational R-order Λ.

Back to the examples.

[i] McKay Correspondence:

EndR(S) ∼= S#G

is an R-order (last time) and has global dimension d = dim(R), so is nonsingular by

Iyama–Wemyss and is birational (last time).

[ii] The Auslander algebra of a ring of finite CM type might not be an order.

(If dim(R) ≥ 3 it’s not! It has simples of different projective dimensions.)

E.g. A1 in dimension 2:

R = k[[x, y, z]]/(xy − z2)

Then

ind(CM(R)) = {R, I = (x, z)} .

So G = R⊕ I,

Λ = EndR(G) =

(
R I

I∗ EndR(I)

)
∼=

(
R I

I R

)
.

So Λ ∼= R(2) ⊕ I(2)
::
is an order.

E.g. A1 in dimension 3:

R = k[[x, y, u, v]]/(xy − uv)

Then

ind(CM(R)) = {R, p = (x, u), q = (x, v)}

and

Λ = End(R⊕ p⊕ q) =


R p q

q R (p, q)

p (q, p) R

 ,

where p ∼= q∗ and (q, p) = HomR(q, p). But

(p, q) = HomR(p, q) =

(
x, u,

u

y

)
(a fractional ideal)

:
is

::::
not MCM

(
u
y v = uv

y = xy
y = x

)
.
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Connection with “classical orders” and the symmetric property:

Definition 14.3 (Auslander–Goldman 1960). Let R be a normal domain.

An õrder (classical order) over R is a module-finite R-algebra in a semisimple algebra D.

Maximal means maximal.

Remark 14.4. Yuta (et al.) defined this when R = k[[x]]. We allow dim(R) ≥ 1.

Proposition 14.5 (Auslander–Goldman). Let R be a normal domain and Λ an õrder in

Mn(Quot(R)). If

(i) Λ is nonsingular,

(ii) Λ⊗R Quot(R) = Mn(Quot(R)),

(iii) Λ is a symmetric R-algebra, i.e. HomR(Λ, R) ∼= ΛΛΛ,

then Λ is a maximal õrder.

Remark 14.6. Yuta stated a version of this when R = k[[x]]. (hereditary ⇒ maximal)

Theorem 14.7 (Auslander–Goldman). If Λ is a maximal õrder in Mn(Quot(R)), then

Λ ∼= EndR(M)

for some reflexive R-module M .

Corollary 14.8 (van den Bergh 2004). The following are equivalent for a module-finite

algebra Λ over a
:::::::::::
Gorenstein normal domain R:

(1) Λ is a symmetric birational R-order.

(2) Λ ∼= EndR(M) for some reflexive R-module M , is an R-order, and is homologically

homogeneous.

(3) Λ ∼= EndR(M) as above and gl. dim(Λ) <∞.

Definition 14.9 (van den Bergh). A noncommutative crepant resolution (NCCR) of a

Gorenstein normal domain R is a symmetric birational R-order Λ.

Equivalently, an R-order of the form EndR(M) with finite global dimension.

Suddenly R became Gorenstein. That is essential for the corollary.

Example 14.10.

(1) R = k[[x, y, z, u, v]]/I where I = I2 ( x y uy z v ) (scroll of type (2, 1)).

Then R is a 3-dimensional normal domain,
:::
not Gorenstein (ω = (x, y) not projec-

tive), but R has finite CM type [Yoshino, 16.12]:

ind(CM(R)) = {R,ω,Ω1ω,Ω2ω, (Ω1ω)∨}
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By Example [2], the Auslander algebra

Λ = EndR(R⊕ ω ⊕ Ω1ω ⊕ Ω2ω ⊕ (Ω1ω)∨)

has global dimension 3. It is not homologically homogeneous and is not an order.

So Λ is an endomorphism ring and has finite global dimension but is not an order.

So (3) 6⇒ (2) when the base ring is not Gorenstein.

(2) R = k[[x2, xy, y2, yz, xz, z2]] = k[[x, y, z]](2).

Then R is a 3-dimensional CM normal domain,
:::
not Gorenstein. It does have finite

CM type [Yoshino, 16.10]:

ind(CM(R)) = {R,ω,Ω1ω} .

Two noncommutative resolutions:

(a) The Auslander algebra Λ = EndR(R ⊕ ω ⊕ Ω1ω) has global dimension d = 3,

but has bad depth (depth(HomR(ω,R)) = 2 < 3), so is not an order.

(b) McKay Correspondence Γ = EndR(k[[x, y, z]]) = EndR(R⊕R(x, y, z)) and the

fractional ideal

(x, y, z)R ∼= (x2, xy, xz)

is isomorphic to ωR. So

Γ = EndR(R⊕ ω)

is an order of finite global dimension and (if the definition allowed non-Gorenstein

R) qualifies to be an NCCR.

Point:

These two examples (Veronese and scroll) are the only two known examples of CM local

rings of finite CM type in dimension ≥ 3 other than the ADE hypersurfaces.
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15 Orlov’s Theorem

Thursday 15th 14:00 – Maximilian Hofmann (Bonn, Germany)

Setting.

• Λ noetherian graded ring:

Λ =
⊕
i≥0

Λi

• gr(Λ) category of finitely generated graded Λ-modules

• HomΛ(−,−) = Homgr(Λ)(−,−)

15.1 The category qgr(Λ)

Definition 15.1. For M ∈ gr(Λ), m ∈M is torsion if m · Λ≥p = 0 for some p ≥ 1.

Denote by τ(M) ⊆M the submodule of all torsion elements.

M is torsion iff τ(M) = M .

tors(Λ) = {M ∈ gr(M) : M torsion}

Proposition 15.2. tors(Λ) is a Serre subcategory of gr(Λ), i.e. for short exact sequences

0→ X ′ → X → X ′′ → 0

in gr(Λ) we have X ∈ tors(Λ) iff X ′, X ′′ ∈ tors(Λ).

The same is true for Tors(Λ) in Gr(Λ) (Serre subcategory, but also closed under
∐

).

Definition 15.3. Define the category

qgr(Λ) := gr(Λ)/ tors(Λ) .

Similarly, QGr(Λ) := Gr(Λ)/Tors(Λ).

• qgr(Λ) has the same objects as gr(Λ).

• qgr(Λ) is abelian and there is an exact Π: gr(Λ)→ qgr(Λ).

• For morphisms f in gr(Λ): Πf isomorphism ⇔ ker(f), coker(f) ∈ tors(Λ)

Remark 15.4.

• Λ commutative noetherian graded ring

• Λ is generated in degree 1, Λ0 = k a field

• X = Proj(Λ)

[Serre]:

QCoh(X) ' QGr(Λ)

coh(X) ' qgr(Λ)
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15.2 Semiorthogonal decompositions

Let T be a triangulated category.

Orlov’s Theorem.

Definition 15.5. Let N ⊆ T be a full triangulated subcategory and let I : N ↪→ T the

inclusion functor.

We say that N is right admissible if I has a left adjoint.

Dually, define left admissible.

N⊥ := {Y ∈ T : HomT (N , Y ) = 0}
⊥N := {X ∈ T : HomT (X,N ) = 0}

Definition 15.6. Let N ⊆ T be thick and right admissible, then T has the SOD (semiorthogonal

decomposition)

T = 〈N⊥,N〉 .

If N ⊆ T is thick and left admissible, then T has the SOD

T = 〈N ,⊥N〉 .

Remark 15.7. Equivalently, an SOD is a pair A,B ⊆ T of thick subcategories with A
left admissible and B right admissible and ⊥A = B and B⊥ = A. We write

T = 〈A,B〉 .

For this observe:

N right admissible ⇒ ⊥(N⊥) = N
N left admissible ⇒ (⊥N )⊥ = N

Definition 15.8. We say that T has an SOD

T = 〈N1, . . . ,Nn〉

if Ni ⊆ T are thick subcategories and there exist

T1 = N1 ⊆ T2 ⊆ · · · ⊆ Tn = T

where Ti are left admissible in T and

Ti = 〈Ti−1,Ni〉 .

Example 15.9. 〈N1,N2,N3〉 = 〈〈N1,N2〉,N3〉.

Warning 15.10. Orlov calls this weak semiorthogonal decomposition.
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Example 15.11. Suppose T is k-linear.

A full exceptional collection is a sequence (E1, . . . , En) with Ei ∈ T

HomT (Ei, Ej [p]) =


k i = j, p = 0,

0 i = j, p 6= 0,

0 i > j.

Write Ei := thick(Ei).

Example 15.12 (Beilinson’s collection). Db(coh(Pn)) = 〈O,O(1), . . . ,O(n)〉.

15.3 The graded singularity category and Orlov’s theorem

• Λ as in § 15.1

• gl.dim(Λ0) <∞

• grading shift on gr(Λ) via M 7→M(1) with M(1)i = Mi+1

Definition 15.13. M ∈ Db(gr(Λ)) is perfect if M ∈ thick{Λ(e) : e ∈ Z} ⊆ Db(gr(Λ)).

 thick triangulated subcategory perf(Λ) ⊆ Db(gr(Λ))

Definition 15.14. The graded singularity category is the Verdier quotient

Dgr
sg(Λ) := Db(gr(Λ))/ perf(Λ) .

HomΛ(M,N) :=
⊕
n∈Z

Hom(M,N(n))

is in gr(Λ) for all M,N ∈ gr(Λ).

Definition 15.15. Λ is called (Artin-Schelter-)Gorenstein if:

• inj. dim(ΛΛ) <∞ and inj. dim(ΛΛ) <∞.

• There are n, a ∈ Z such that

RHomΛ(Λ0,Λ) ' Λ0[n](a)

where [n] is the shift in Db(gr(Λ)).

The integer a is called the Gorenstein parameter of Λ.
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Notation: We have two induced functors:

Π: Db(gr(Λ)) Db(qgr(Λ))

q : Db(gr(Λ)) Dgr
sg(Λ)

Theorem 15.16 (Orlov ’09). Let Λ =
⊕

i≥0 Λi be a graded noetherian ring such that

• Λ is (AS-)Gorenstein with Gorenstein parameter a,

• gl.dim(Λ0) <∞,

• there exists a commutative ring k such that Λ is a flat k-algebra.

Then the following hold:

(1) If a > 0, there are fully faithful exact functors

Φi : Dgr
sg(Λ)→ Db(qgr(Λ)) for all i ∈ Z

and SODs

Db(qgr(Λ)) =
〈
πΛ(−i− a+ 1), . . . , πΛ(−i),ΦiDgr

sg(Λ)
〉
.

(2) If a < 0, there are fully faithful exact functors

Ψi : Db(qgr(Λ))→ Dgr
sg(Λ) for all i ∈ Z

and SODs

Dgr
sg(Λ) =

〈
qΛ0(−i), . . . , qΛ0(−i+ a+ 1),ΨiDb(qgr(Λ))

〉
.

(3) If a = 0, then there is an exact equivalence

Db(qgr(Λ)) ∼= Dgr
sg(Λ) .

Application:

• Λ = k[x0, . . . , xn] with |xi| = 1 is (AS-)Gorenstein with a = n+ 1, gl. dim(Λ) <∞.

 Dgr
sg(Λ) = 0

 Db(coh(Pn)) ∼= Db(qgr(Λ)) = 〈πΛ(0), . . . , πΛ(n)〉

• Λ = k[x]/(xn+1) with |x| = 1 is (AS-)Gorenstein with parameter a = −n.

 Dgr
sg(Λ) ∼= 〈qk(0), . . . , qk(a+ 1)〉

 Dgr
sg(Λ) ∼= Db(k ~An)
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16 Tilting theory for Gorenstein rings in dimension one

Thursday 15th 15:15 – Umamaheswaran Arunachalam (Prayagraj, India)

Umamaheswaran:

The study of maximal Cohen Macaulay (CM) modules is one of the central subjects

in commutative algebra and representation theory [1,2,4–6]. A Frobenius category is

an exact category in which the notion of injective objects coincide with the projective

objects and there are enough injectives (or equivalently enough projectives). When the

ring R is Gorenstein, the category

CM(R) = {X ∈ mod(R) : ExtiR(X,R) = 0 for all i ≥ 1}

of CM(R)-modules forms a Frobenius category and its stable category CM(R) has a

natural structure of a triangulated category.

Tilting theory controls triangle equivalence between derived categories of rings, and

plays an important role on various areas of mathematics. Tilting theory also gives a

powerful tool to study the stable categories of Gorenstein rings.

If dim(R) = 0, then CMZ
0 (R) = modZ(R) always has a tilting object.

Our main aim of this notes is to study about the following problem:

Question: Let R =
⊕
Ri be a Z-graded Gorenstein ring such that R0 is a field. When

does the stable category CMZ
0 (R) of Z-graded CM R-modules have a tilting object?

Umamaheswaran:

Recently, Ragnar-Olaf Buchweitz, Osamu Iyama and Kotya Yamaura gave a complete

answer to the above problem when dim(R) = 1.

Definition 16.1. A graded ring is a ring that is a direct sum of abelian groups Ri such

that RiRj ⊆ Ri+j.

Setting.

(R1) R is a Z-graded commutative Gorenstein ring of Krull dimension one.

(R2) R =
⊕

i≥0Ri and k := R0 is a field.

Setting.

• modZ(R) the category of Z-graded finitely generated R-modules

• modZ
0 (R) the category of Z-graded finitely generated R-modules of finite length

• projZ(R) the category of Z-graded finitely generated projective R-modules
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Remark 16.2. Clearly, modZ
0 (R) ⊆ modZ(R).

Consider the quotient category

qgr(R) := modZ(R)/modZ
0 (R) .

Let perf(qgr(R)) be the thick subcategory generated by projZ(R).

Definition 16.3.

Umamaheswaran:

Let T be a triangulated category with suspension functor. A full subcategory of T is

thick if it is closed under cones, [±1] and direct summands. We call on object T ∈ T
tilting (resp. silting) if HomT (T, T [i]) = 0 holds for all integers i 6= 0 (resp. i > 0), and

smallest thick subcategory of T containing T is T .

For X ∈ modZ(R) and n ∈ Z let

X≥n :=
⊕
i≥n

Xi .

Let S be the set of all homogeneous non-zero divisors in R and

K := RS−1 the Z-graded total quotient ring of R.

There exists an integer p > 0 such that K(p) = k as graded R-module.

Theorem 16.4. Under the settings (R1) and (R2) the following are true:

(a) qgr(R) has a progenerator

U :=

p⊕
i=1

K(i)≥0 =

p⊕
i=1

K(i)≥i(i)

and perf(qgr(R)) has U as a tilting object.

(b) We have an equivalence

qgr(R) ∼= mod(Λ)

and a triangle equivalence

perf(qgr(R)) ∼= Kb(proj(Λ)) .

(c) We have Λ ∼= EndZ
R(U) with

Λ =



K0 K−1 · · · K2−p K1−p

K1 K0 · · · K3−p K2−p
...

...
. . .

...
...

Kp−2 Kp−3 · · · K0 K−1

Kp−1 Kp−2 · · · K1 K0


.
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(d) Λ is a finite-dimensional selfinjective k-algebra.

(e) If R is reduced, then Λ is a semisimple k-algebra.

Otherwise, Λ has infinite global dimension.

Proposition 16.5.

(a) P =
⊕p

i=1K(i) is a progenerator of modZ(K) such that EndZ
R(P ) ∼= Λ.

(b) There is an equivalence

HomZ
R(P,−) : modZ(K)

'−→ mod(Λ) .

(c) U =
⊕p

i=1K(i)≥0 is a progenerator in qgr(R).

Therefore U is a tilting object in perf(qgr(R)).

(d) Λ is a finite-dimensional selfinjective k-algebra.

(e) If R is reduced, then Λ is a semisimple k-algebra.

Otherwise, Λ has infinite global dimension.

Proof of theorem.

Umamaheswaran:

Theorem follows from the following Proposition.

Proof of proposition.

(a) Since {K(i) : i ∈ Z} is a progenerator of modZ(K) and K(i+ p) = K(i) for all i, it

follows that P is a progenerator. Since EndR(P ) = EndK(P ), we have

EndZ
R(P ) = EndZ

K(P ) ∼= Λ .

(b) Use:

Theorem (Morita). Two rings R and S are Morita equivalent iff there is a progenerator P

of mod(R) such that S ∼= EndR(P ).

By (a) and Morita’s Theorem, Λ ∼= EndZ
R(P ) and then

HomZ
R(P,−) : modZ(K)

'−→ mod(Λ) .

(c) Considering the functors

(−)≥0 : modZ(K) −→ modZ(R)

and

K ⊗− : modZ(R) −→ modZ(K) ,
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one can check that they induce mutually quasi-inverse equivalences

modZ(K) ∼= qgr(R) .

Quasi-equivalence relation: Let F : C → D be an equivalence of categories, i.e. there is

a functor G : D → C (called quasi-inverse of F ) such that

F ◦G ∼= idD and G ◦ F ∼= idC .

Since P ∈ modZ(K) corresponds to U ∈ qgr(R), U is a progenerator in qgr(R) by (a).

⇒ U is a tilting object in perf(qgr(R)).

(d)

Lemma. For any i ∈ Z, K(i)≥0 ∈ modZ(R) holds.

By the lemma for any X ∈ modZ(K) we have K ⊗R ⊗X≥0 = X.

Proposition. K is an injective object in modZ(K).

Proof. Let X ∈ modZ(K). Then we have X≥0 ∈ modZ(R). Since dim(R) = 1, we have

X≥0 ∈ CMZ(R). Thus Ext1
K(X,K) ∼= Ext1

K(K⊗RX≥0,K) ∼= K⊗Ext1
K(X≥0,K) = 0.

By the proposition, P is injective in modZ(K).

⇒ Λ is injective in mod(Λ).

(e) R reduced ⇔ K reduced ⇔ Any homogeneous element of K is invertible.

This is equivalent to that any object in modZ(K) is projective.

⇒ gl.dim(modZ(K)) = 0. By (b), Λ is semisimple.

On the other hand, by a classical result of Eilenberg and Nakayama, a selfinjective

algebra is either semisimple or of infinite global dimension.

(e) follows from (d).

a-invariant: There exists an integer a ∈ Z such that

Ext1
R(k,R(a)) ∼= K

in modZ(R). We call a the a-invariant or the Gorenstein parameter of R.

CMZ
0 (R) :=

{
X ∈ modZ(R) : X ∈ CM0(R) as an ungraded R-module

}
with stable category CMZ

0 (R).

Umamaheswaran:

Notations:

It is known in representation theory that the following subcateogory

CM0(R) = {X ∈ CM(R) : Xp ∈ proj(Rp) ∀ p ∈ Spec(R)} .
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Theorem 16.6. Under the settings (R1) and (R2). Assume moreover that the a-invariant

of R is negative. Then:

(a) CMZ
0 (R) has a silting object

a+p⊕
i=1

R(i)≥0 .

(b) We have a triangle equivalence

CMZ
0 (R) ∼= Kb(proj(Λ))/ thick(P ) ,

where Λ is given as in Theorem 16.4 and P is the projective Λ-module corresponding

to the first −a rows.

(c) CMZ
0 (R) has a tilting object ⇔ R is regular.

Umamaheswaran:
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17 Stable categories of Cohen-Macaulay modules and cluster categories

Thursday 15th 17:00 – Julia Sauter (Bielefeld, Germany)

Literature:

[AIR 15]

[I1] Auslander-Reiten theory revisited

[I2] Tilting Cohen-Macaulay representations

[IY 08]

17.1 Quotient singularities

• V affine variety

• G ⊆ Aut(V ) finite subgroup

•  V/G “quotient singularity”

Here only:

• finite subgroup G ⊆ GLd(k) acting on V = kd

• V = Spec(k[x1, . . . , xd])

• V/G = Spec((k[x1, . . . , xd])
G)

 complete rings:

Main setup:

• S = k[[x1, . . . , xd]]

• R = SG and assume k = k with char(k) = 0 and G has no pseudoreflections

• R Gorenstein ⇔ G ⊆ SLd(k)

• R isolated singularity ⇔ rank(σ − 1) = d ∀σ 6= 1 in G

Recall in general:

• R a commutative noetherian, local Gorenstein ring with d = dim(R)

(CM with R(ωR) ∼= RR)

• Λ an R-order

• Λ Gorenstein R-order (= Gorenstein R-algebra in the sense of Leuschke)

⇔ ωΛ = HomR(Λ, R) ∼= Λ as left Λ-module

• Λ symmetric

:⇔ ωΛ
∼= Λ as Λ-Λ-bimodule

[I2]⇔ Λ d-Iwanaga-Gorenstein R-order

For any Iwanaga-Gorenstein ring A there is the Frobenius category

gp(A) := 0<⊥A .
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Warning 17.1. In general CM(A) 6= gp(A).

But if Λ is an R-order which is Iwanaga-Gorenstein, then:

CM(Λ) = 0<⊥ωΛ = 0<⊥Λ = gp(Λ)

⇔ Λ(ωΛ) ∼= ΛΛ ⇔ Λ Gorenstein order

Example 17.2.

1) R = k:

Λ R-order ⇔ Λ finite-dimensional k-algebra

Λ Gorenstein order ⇔ Λ selfinjective

2) Assuming the main setup:

R Gorenstein order, symmetric over R

⇒ CM(R) = 0<⊥R Frobenius category

CM(R) ∼= Db
sg(R) according to Buchweitz

R also Z-graded (S Z-graded, deg(xi) = 1, G action by graded automorphisms)

CMZ(R) := modZ(R) ∩ CM(R) Frobenius category

CMZ(R) ∼= DZ
sg(R) by [I2, 2.10]

Definition 17.3. Let E be an exact category and n ∈ N≥1.

Then E ∈ E is an n-cluster tilting object if

add(E) =
n−1⋂
i=1

ker ExtiE(−, E) =
n−1⋂
i=1

ker ExtiE(E,−) .

Theorem 17.4 (IY08, Theorem 8.4). Assume the main setup.

Then RS ∈ CM(R) is a (d−1)-cluster tilting object iff EndR(S) is a NCCR by [I1,3.17].

The “quiver” of add(RS) is the McKay quiver of G with respect to V = kd.

In case d = 2: add(RS) = CM(R) (cp. Sarah’s talk).

Definition 17.5. Let T be a triangulated category with functorially finite subcategory C.

Then C is an n-cluster tilting subcategory iff

C =

n−1⋂
i=1

C[−i]⊥ =

n−1⋂
i=1

⊥C[i] .

Corollary 17.6. Assume the main setup.

add(RS) ⊆ CM(R) is a (d− 1)-cluster tilting subcategory.
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Definition 17.7. Let T be an R-linear triangulated category with HomT (X,Y ) ∈ f. l.(R)

for all X,Y ∈ T .

We call an autoequivalence S : T → T a Serre functor if there is a bifunctorial isomor-

phism for all X,Y ∈ T
HomT (X,Y )→ DHomT (Y,SX)

where D : f. l.(R)→ f. l.(R) is the Matlis duality.

We call T an n-Calabi-Yau triangulated category if S = [n] is a Serre functor where [n]

is the shift by n.

Theorem 17.8 (I1, 3.21, 3.22). Assume the general setup.

(1) Let Λ be a Gorenstein R-order that is an isolated singularity.

Then CM(Λ) is a triangulated category with respect to [1] = Ω−1
Λ and has the Serre

functor Ω−1
Λ ◦ τ .

(2) Let Λ be as above and symmetric over R.

Then τ = Ω2−d and [d− 1] is a Serre functor of CM(Λ).

So CM(Λ) is a (d− 1)-Calabi-Yau triangulated category.

Proof. For X,Y ∈ CM(Λ)

Hom(X,Ω−1τY ) = Hom(ΩX, τY )
(∗)
= Ext1(X, τY )

where (*) follows by applying (−, τY ) to

0→ ΩX → P → X → 0

with P projective. By AR-duality Ext1(X, τY ) = DHom(Y,X).

17.2 Cluster categories

[Amiot 09, Guo 10] for finite-dimensional k-algebras A with gl. dim(A) ≤ n defined an

n-Calabi-Yau triangulated category Cn(A) together with a triangle functor

π : Db(A) := Db(mod(A))→ Cn(A)

where add(π(A)) is an n-cluster tilting subcategory and π factors through the fully faithful

Db(A)/Sn ↪→ Cn(A)

where S = −⊗Λ DΛ and Sn := S ◦ [−n].

The category on the left hand side is not necessarily triangulated!

([Keller 05] investigates when it is.)

Example 17.9.

• A = KQ  [Happel]:

C2(KQ) = Db(KQ)/S2
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• A = KQ where Q is an ADE Dynkin quiver, for all d ≥ 1:

Cd(KQ) = Db(KQ)/Sd

(C1(KQ) = Db(KQ)/τ)

Question: Find a Z-graded . . . R-order Λ and a finite-dimensional . . . algebra A such

that there is a commutative diagram:

CMZ(Λ) Db(A)

CM(Λ) Cn(A)

∼

π

∼

Example 17.10. Q = ~An and Λ = K[X]/(Xn+1) Gorenstein order:

Then CM(Λ) = mod(Λ) has the AR-quiver with rightmost vertex deleted:

K K[T ]/(T 2) · · · K[T ]/(Tn+1)

See the poster of the summer school for a picture ofDb(K ~An)→ C1(K ~An) = Db(K ~An)/τ .

Example 17.11.

1) Q Dynkin, R = SG, G of some Dynkin type, d = 2:

CM(R)
[IY]
= mesh category of the double quiver Q ∼= C1(KQ)

(Knörrer’s periodicity: CM(Λ) ∼= CM(k[[x, y, z]]/(xn+1 + yz)))

2) This generalizes for G cyclic ([AIR 15]). They also have examples from dimer models.

3) [DL] for certain tiled orders (see David’s talk tomorrow).

17.3 AIR construction

Setting.

• B =
⊕

`≥0B` a graded noetherian k-algebra

• dim(kB0) <∞

• There is an idempotent 1 6= e = e2 ∈ B0 such that

B/(e) is a finite-dimensional k-algebra and

(A1*) B is bimodule d-Calabi-Yau with Gorenstein parameter 1.

• ⇒ C = eBe Iwanaga-Gorenstein
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• BeC is a (d− 1)-cluster tilting object in CM(C)

• B ∼= EndC(Be)

• A = B0 is a (d− 1)-representation-infinite algebra

(i.e. gl. dim(A) < d and S−id−1A ∈ mod(A) for all i ≥ 0)

• B = Πd(A)
:::::::::::::::
d-preprojective

:::::::
algebra of A where

Πd(A) := TA
(
A Extd−1(DA,A)A

)
= A⊕ AMA ⊕ A(M ⊗M)A ⊕ · · ·

• A := A/(e) (d− 1)-Auslander

C B A A
alg. deg.0

e(−)e

(−)/(e)

Πd(−)

• d = 2, Q Dynkin and Q̃ extended Dynkin:

R = SG S#G = EndR(S) ∼ Π(KQ̃) KQ̃ KQ

Theorem 17.12. Let gl. dim(A) ≤ d− 1 and A� A. Then:

CMZ(C) Db(gr(C)) Db(A) Db(A)

CM(C) Cd−1(A)

π

∼

∼

Theorem 17.13. Assume the main setup.

Let ζ be an n-th primitive root of unity.

Let aj ∈ {1, . . . , n− 1} with
∑

j aj = n and gcd(aj , n) = 1 and

G =

〈(
ζa1

...
ζad

)〉

and S 1
nZ-graded with deg(xi) = ai

n . Then:

• C = R = SG =
⊕

`∈Z S`

• T :=
⊕n−1

i=0 T
i ∈ CMZ(R) where T i =

⊕
`∈Z S`+ i

n

• B = EndR(T ) = S#G

• A = Endgr(R)(T )

• B = EndCM(R)(T )

• A = EndCMZ(R)(T )
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Example 17.14. d = 3 and G = 1
5(1, 2, 2) = 1

n(a1, a2, a3):

1

0 2

4 3

x

y

z

x

y

z

x

y

zx

y
z

x

modulo xy = yx, yz = zy, zx = xz describes mod(A). Deleting 0 gives mod(A).
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18 Triangulations, ice quivers and Cohen-Macaulay modules over orders

Friday 16th 8:30 – David Fernández Alvarez (Bielefeld, Germany)

You find David’s handwritten notes after the following notes of his talk!

Goal. Give a survey of Demonet–Lu: “Ice quivers with potential associated with triangu-

lations and Cohen-Macaulay modules over orders”, Trans. AMS 368(6), 2016, 4257–4293.

Notations.

• k field

• R = k[x]

• Pn regular polygon of n sides and n vertices

• Q = (Q0, Q1, h, t) finite connected quiver without loops, Q0 = {1, . . . , n}

 kQ with multiplication ab =
a b

18.1 Introduction

Representation theory: If you want to study a k-algebra A, you should study mod(A)

(maybe with some restrictions).

Fruitful idea: Associate to mod(A) certain combinatorial invariants:

 Auslander-Reiten quiver, exchange graph

Algebra Geometry

(hard) (hopefully easier)

However, in geometry . . .

[Caldero–Chapoton–Schiffler]

[Fomin–Shapiro–Thurston

[Labardini-Fragoso]

Geometry “Combinatorics” Algebra

triangulated surface quiver with potential Jacobian algebra

J = kQ/〈∂aW 〉a∈Q1

::
in

::::
this

:::::
talk: [Demonet-Lu]

triangulated polygon Pn ice quiver with potential · · · +Wσ frozen Jacobian algebra Γσ

73



Idea: Study Γσ from the viewpoint of CM-representation theory; a lot of properties can

be deduced from the triangulation of Pn.

18.2 Ice quivers with potential associated to triangulations

Triangulations of polygons

A diagonal of Pn is a line segment connecting two vertices of Pn and lying in its interior.

•

• •

• •

•

• •

• •

::::
non-crossing diagonals crossing diagonals

Definition 18.1. A triangulation of Pn is a decomposition of Pn into triangles by a

maximal set of non-crossing diagonals.

:::
not triangulations:

•

• •

• •

•

• •

• •

a triangulation:
•

• •

• •
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Quivers associated to triangulations

•
:::::::
vertices: middle points of diagonals and sides (edges)

•
:::::::
internal

:::::::
arrows: if two edges a and b are sides of a common triangle in σ there is an

arrow a→ b if a is a predecessor of b with respect to the anti-clockwise orientation

centered at the common vertex.

•
::::::::
external

:::::::
arrows: there is a→ b where a and b are incident sides at a common vertex

(with at least one incident diagonal) such that a is a predecessor of b.

Algorithm

1. Draw the triangulation.

2. Tag the vertices.

3. Put the vertices of the quiver.

4. Draw internal arrows.

5. Draw external arrows.

Example 18.2.

•

• •

• •

b

a

c

e

f

d

h

i
g

α

γ

β

 triangulation σ

 quiver Qσ
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Definition 18.3. A minimal cycle of Qσ is a cycle in which
::
no arrow appears more than

once and which encloses a part of the plane whose interior is connected and does
:::
not

contain any arrows of σ.

Example 18.4. Non-examples: abcβγgh, cβdehαb

Two types of minimal cycles:

•
:::::
cyclic

:::::::::
triangles:

abc, def , ghi

•
:::
big

::::::
cycles: internal arrows and one external arrow around a vertex of Pn:

αbeh, βdc, γgf

Ice quivers with potential associated to triangulations

In the previous situation:

•
::::::
frozen

::::::::
vertices: F = {1, . . . , n} ⊆ (Qσ)0

•
::::::
frozen

:::::::
arrows: (Qσ)F1 = {a ∈ (Qσ)1 : h(a) ∈ F

::::
and t(a) ∈ F}

Example 18.5. F = {1, . . . , 5} and (Qσ)F1 = {a, i, α, β, γ}

Definition 18.6. An ice quiver (associated to a triangulation σ) is the pair (Qσ, F ).

Potentials (in general)

• Q arbitrary quiver

• kQi k-vector space with basis the paths of length i

• kQi,cyc := kQ/[kQj , kQt]j+t=i spanned by cycles in kQi

Definition 18.7. An element W ∈
⊕

i≥1 kQi,cyc is a potential.

Kontsevich defined the cyclic derivative for each arrow a ∈ Q1 as the k-linear maps⊕
kQi,cyc −→ kQ

defined on cycles as

∂a(a1 · · · ad) =
∑
ai=a

ai+1 · · · ada1 · · · ai−1 .

Example 18.8. ∂e(αbeh) = hαb.
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Ice quivers with potential

We define the potential Wσ of (Qσ, F ) as

Wσ =
∑

(cyclic triangles) −
∑

(big cycles) .

Definition 18.9. An ice quiver with potential is a triple (Qσ, F,Wσ).

Example 18.10. Wσ = abc+ def + ghi− αbeh− βdc− γgf .

Frozen Jacobian algebras

Definition 18.11. Let (Qσ, F,Wσ) as above. We define the frozen Jacobian algebra as

Γσ := kQσ

/〈
∂aWσ

〉
a∈(Qσ)1\(Qσ)F1

.

18.3 Γσ is a tiled R-order

Theorem 18.12. The frozen Jacobian algebra Γσ has the structure of a tiled R-order.

Now set

eF = sum of idempotents at all frozen vertices in Qσ

and define the suborder

Λσ := eFΓσeF .

Theorem 18.13. The R-order Γσ is isomorphic to

Γ :=



R R R · · · R (x−1)

(x) R R · · · R R

(x2) (x) R · · · R R
...

...
...

...
...

(x2) (x2) (x2) · · · R R

(x2) (x2) (x2) · · · (x) R


.

18.4 CM-modules over Λ

Theorem 18.14.

(i) For any triangulation σ and (Pt, Ps) ∈ σ with 1 ≤ s < t ≤ n the vertex j = (Ps, Pt)

satisfies

eFΓσeF ∼= (s, t) =
[
R · · · R (x) · · · (x) (x2) · · · (x2)

]
where there are s entries R, t− s entries (x), and n− t entries (x2).
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(ii) The construction in (i) induces 1:1 correspondences:{
edges of Pn

} {
ind. objs. of CM(Λ)

}
{

sides of Pn
} {

ind. projs. of CM(Λ)
}

{
triangulations of Pn

} {
basic cluster tilting objs. of CM(Λ)

}
18.5 Relation to cluster categories

Question: If we view the cluster algebra as a combinatorial invariant associated to the

cluster category. Is the category determined by this invariant?

Using [Keller–Reiten ’08]:

Theorem 18.15. Let Λ be the R-order given above.

(i) The stable category CM(Λ) is 2-Calabi-Yau.

(ii) If k is perfect, then there exists a triangle equivalence C(kQ) ∼= CM(Λ) for a quiver

Q of type An−3.
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19 What is (should be) a noncommutative resolution of singularities? – III

Friday 16th 10:00 – Graham Leuschke (Syracuse, United States)

See also Graham’s notes!

Last time:

[van den Bergh]: An NCCR of a Gorenstein normal domain R is an R-algebra Λ which

is a

symmetric birational
:::::::::::
nonsingular

:::::
order .

Equivalently*,

Λ ∼= EndR(M) for some reflexive RM with gl.dim(Λ) <∞ and Λ MCM over R .

*These are not equivalent if R is not Gorenstein (example last time).

The following implication fails:

symmetric +

finite gl.dim
⇒ nonsingular

Perhaps we can improve the situation for non-Gorenstein rings by considering totally

reflexive modules rather than MCMs.

Several times this week, the distinction between CM(R) and GP(R) has come up.

Definition 19.1. An R-module M (where R is any commutative ring) is totally reflexive

(or Gorenstein projective) if

• M ∼= M∗∗ (reflexive),

• Ext>0
R (M,R) = 0,

• Ext>0
R (M∗, R) = 0.

Fact 19.2. For a Gorenstein local ring R, this is equivalent to M being MCM.

For CM rings, total reflexivity is
::::::::
stronger.

So let’s consider totally reflexive R-algebras Λ.

Definition 19.3. A strong noncommutative resolution of singularities of a Cohen-Macaulay

normal domain R is an R-algebra Λ of the form Λ = EndR(M) for some reflexive RM

with gl.dim(Λ) <∞ and ω totally reflexive as R-module.

Observation 19.4. If R is Gorenstein, this is just an NCCR.

Theorem 19.5 (Stangle ’15). If R has a strong NC resolution, then R is Gorenstein.

(so “strong” means “too strong”)
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Proof. Enough to consider local (R,m, k) and show

ExtiR(k,R) = 0 for i� 0 .

Let Λ be a strong NC resolution. Then Λ/mΛ is a k-vector space of finite dimension, so

it is enough to show

ExtiR(Λ/mΛ, R) = 0 for i� 0 .

Since Λ is totally reflexive as R-module, we know

ExtjR(Λ, R) = 0 for j > 0 .

One can show (spectral sequence or by hand)

ExtiR(Λ/mΛ, R) ∼= ExtiΛ(Λ/mΛ,HomR(Λ, R))

but Λ has finite global dimension, so that vanishes for i� 0.

That word “crepant”

Let X be a CM algebraic variety.

Let ωX be the canonical sheaf (dualizing sheaf) of X.

If X̃
π−→ X is a resolution of singularities, there is also a canonical sheaf ω

X̃
and in fact

ω
X̃
∼= HomOX (O

X̃
, ωX)

(
ω
X̃

is “co-induced” from ωX
)
.

We could also
::::::
induce ωX up to X̃

π∗ωX “=” ωX ⊗OX OX̃ .

The resolution π is crepant if

π∗ωX ∼= ω
X̃
.

The discrepancy divisor of π is the difference between π∗ωX and ω
X̃

.

not discrepant
[Miles Reid]

= crepant

In the special case where X is Calabi-Yau, i.e. ωx ∼= OX we get

ω
X̃
∼= HomOX (O

X̃
,OX) .

So π is crepant iff

HomOX (O
X̃
,OX) ∼= OX̃

i.e. O
X̃

is a
::::::::::
symmetric OX -algebra (sheaf).

Fact 19.6 (from Algebraic Geometry). If X over C has a crepant resolution of singular-

ities, then it has at worst rational (“nice” / “mild”) singularities.

Question If a (Gorenstein) ring R has an NCCR, must Spec(R) have at worst rational

singularities?
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Answer Yes.

Theorem 19.7 (Stafford–van den Bergh).

Let k be an algebraically closed field of characteristic 0 and ∆ a prime affine k-algebra

which is finitely generated as a module over its center Z(∆). If ∆ is a nonsingular order

over Z(∆), then Spec(Z(∆)) has at worst rational singularities.

In particular, if a Gorenstein normal domain R has an NCCR Λ, then R = Z(Λ) and

so Spec(R) has at worst rational singularities.

What are NCCRs good for?

The minimal model program (MMP) is a strategy for carrying out a birational classifi-

cation of algebraic varieties.

It consists of “moves” which are intended to improve the variety until you can’t improve

it further (terminal singularities).

Bondal & Orlov suggest to view the “moves” as operations / functors on the bounded

derived category.

Example 19.8. Blowing up a smooth subvariety (that’s one of the “moves”) induces a

fully faithful functor (even an SOD) on the bounded derived category.

Example 19.9. Another “move” is a flop: replace Y by Y ′

Y Y ′

X
f f ′

where f and f ′ are both crepant resolutions of singularities of X (+ some other technical

condition).

Conjecture 19.10 (Bondal–Orlov ’99). If Y and Y ′ are related by a flop, then they are

derived equivalent:

Db(coh(Y )) ' Db(coh(Y ′))

Theorem 19.11 (Bridgeland 2002). The BO Conjecture holds for dim(Y ) = 3.

Bridgeland’s proof uses Fourier-Mukai transforms.

Around the same time, Bridgeland–King–Reid [’01] described an approach to the McKay

Correspondence based on Fourier-Mukai transforms.

[van den Bergh]: “An essential feature of the McKay Correspondence is the appearance

of a noncommutative ring S#G, the twisted group ring.”

Theorem 19.12 (van den Bergh 2004). Let R be a Gorenstein normal C-algebra and let

X = Spec(R) and π : X̃ → X a crepant resolution of singularities. Assume the fibers of π

are at most 1-dimensional (automatic if dim(X) ≤ 3). Then R has an NCCR Λ and

Db(mod(Λ)) ' Db(coh(X̃)) .
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Corollary 19.13. The BO Conjecture holds in dimension 3:

Db(coh(Y )) Db(coh(Y ′))

Db(mod(Λ))

' '

One can strengthen the BO Conjecture:

Conjecture 19.14 (Iyama–Wemyss, “ncBO Conjecture”).
::
All crepant resolutions of a

given variety/ring are derived equivalent, the commutative and the noncommutative ones.

:::::::
Known in dimension ≤ 3 by [Iyama–Wemyss].
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