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1. Functor Categories

Talk 1 sets up the language of functor categories, to be used in the rest of the summer
school. Below we follow Popescu [Pop73, §3.4], but there are other references.

(1) Functor categories of posets.
• For a commutative ring R define: R-linear categories (resp. functors); and

the category [C,D] of functors C → D when C is small. Explain why [C,D]

is R-linear when D is. Explain how to choose C,D so that [C,D] = R –Mod.
• Recall the notion of a preordered set [BdSS15, §3.1], characterising them in

terms of categories which are small and thin.
• Write down what objects and morphisms are in the category [C, K –Mod] for

each of the following the preordered sets C, where K is a field.
– Any totally ordered set: compare Z and R.
– A product of a pair of totally ordered sets.
– Any finite partially ordered set (consider the Hasse diagram).

(2) Limits and colimits.
• Explain how to compute limits and colimits in functor categories of the form
[C,D], assuming D has such co/limits (consider currying).

• Using the point above explain how to compute certain limits and colimits in
[C, R –Mod], such as: kernels, cokernels, products and coproducts.

• Recall what it means for a category to be abelian, and show that if C is small
and R-linear category then [C, R –Mod] is abelian.

• Roughly define Grothendieck abelian categories, using R –Mod as an exam-
ple. Show that [C,D] is Grothendieck if D is Grothendieck.

(3) Persistence modules. Follow (the start of §2 up until §2.1) in [BC20].
• Starting with persistence modules, introduce the terminology from [BC20,

§2–§2.1]. For each term (e.g. indecomposable persistent module M) give a
simple non-trivial example (e.g. where Mx = k and My = 0 for y ̸= x).

• Combine (1) and (2) to consider limits and colimits of persistence modules.
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2. Representations of Finite Quivers and Posets.

Following Schiffler [Sch14], in Talk 2 quiver representations are discussed. In this
language, or in that of functor categories, one can discuss poset representations. Quivers
and posets here will be finite: in later talks they can be infinite.

(1) Representation theory of quivers.
• Define the category of representations of a finite quiver, and the subcategory

of finite-dimensional representations; see [Sch14, §1] and [Sch14, §3.4].
• Define what it means for a representation of a quiver to be indecomposable,

and state the Krull–Schmidt theorem for finite-dimensional quiver represen-
tations; see for example [Sch14, Theorem 1.2].

(2) Representations of finite posets.
• Define the category of representation of a finite partially ordered set C, as

studied by Nazarova [Naz81]. Show how it is a subcategory of [C, K –Mod].
• Explain why the category of representations of a poset C is equivalent to a

subcategory of representations of a finite quiver.
(3) Representations of quivers of type An.

• Recall what it means for a quiver to be of Dynkin type by recalling and
drawing the Dynkin graphs. Give examples of quivers of type An.

• Explain how representations of a type-An quiver can be seen as persistence
modules for a finite poset. Use an explicit (but small) example of a poset
which is not totally ordered.

• Recall thin representations, and the classification of finite-dimensional repre-
sentations of a type An quiver. Comment on the proof by Ringel [Rin13].

(4) Representation-finite quivers and posets.
• Define finite quivers which are of finite representation type. State [Sch14,

Theorem 3.1 (Gabriel’s Theorem, Part I)] on the A-D-E classification.
• Define posets of finite representation type. State a characterisation of such

posets by Klĕıner [Kle72, Theorem 1] (see also [Naz81, p. 346, Theorem 2]).
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3. Persistence Theory of a Point Cloud

This talk covers the prototypical application of persistent homology to topological data
analysis by [ELZ02].

• Define the distance function f : Rn → R, u 7→ d(u,X) associated to a finite point
cloud X ⊂ Rn.

• Define sublevel set persistent homology PH1 : R → K –Mod of f in terms of sin-
gular homology of sublevel sets as a functor from R to the category of vector
spaces over K; see also [ELZ02, BS14].

• Define the Voronoi diagram of a point cloud X ⊂ Rn as a closed convex cover
{Vor(x,X)}x∈X of Rn; see also [BE17, Section 3.3].

• Define the Delaunay complex Del(X) of a point cloud X ⊂ Rn as the nerve of the
associated Voronoi diagram {Vor(x,X)}x∈X .

• Mention the associated geometric simplicial complex with ambient space Rn of
Del(X) for a point cloud X in general spherical position [BE17, Definition 4.2].

• Define the linear map Γ: | SdDel(X)| → Rn from the barycentric subdivision
| SdDel(X)| of Del(X) to Rn sending each simplex σ ∈ Del(X), seen as a vertex
of the barycentric subdivision SdDel(X), to the center of the smallest enclosing
sphere of σ ⊆ X; see also [BE17, Section 3.3] and [BKRR22, Section 3].

• Define the Delaunay–Čech filtration
(
DelČechr(X)

)
r⩾0

of the Delaunay complex
Del(X) as in [BE17, Section 3.3].

• Show that Γ(| SdDelČechr(X)|) ⊆ f−1([0, r]) for r ⩾ 0.
• Use the nerve theorem [BKRR22, Theorem 3.1] for the closed convex cover
{Vor(x,X) ∩ f−1([0, r])}x∈X to show that Γ induces a homotopy equivalence
φr : |DelČechr(X)| ∼−→ f−1([0, r]), which is natural in r ⩾ 0;

• Define the persistent homology PH2 : R → K –Mod of
(
DelČechr(X)

)
r⩾0

in terms
of simplicial homology.

• Use the homotopy equivalences φr, r ⩾ 0 in conjunction with the isomorphism
between simplicial and singular homology to provide a natural isomorphism
PH2

∼= PH1.
• Explain how PH2 can be thought of as a representation of a type-An quiver.
• Introduce the persistence barcode as the multiset of indecomposable direct sum-

mands of PH2.
• Provide an informal topological interpretation of the persistence barcode of PH2

as ‘features’ that persist for a range of values r ⩾ 0.
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4. Decompositions of Persistence Modules

In talk 4 a result of Botnan and Crawley-Boevey [BC20, Theorem 1.1] is discussed.

(1) Background on ring and module theory.
• Recall language from noncommutative ring and module theory: local rings,

endomorphism rings, indecomposable modules and the length of a module.
• Characterise local rings in different ways, and state (without proof) Fitting’s

lemma. Note that local rings are completely primary as in [Azu48, p. 117].
(2) Uniqueness and Krull–Remak–Schmidt–Azumaya’s theorem.

• State (do not prove) Azumaya’s generalisation of the Krull–Remak–Schmidt
(KRS) theorem, seen in a previous talk; see condition (∗) and Theorem 1 in
[Azu48, pp. 118–119]. Compare to [Sch14, Theorem 1.2], seen in Talk 2.

• Explain that the Krull–Remak–Schmidt–Azumaya theorem works for
Grothendieck categories; see for example [Par70, §4.8, Theorem, p. 193].

(3) Arbitrary decompositions of persistence modules.
• Define point-wise finite-dimensional persistence modules. Using lines 8–27

on page 4585 of [BC20], show that the endomorphism ring of a point-wise
finite-dimensional persistence module is a local ring.

• State and complete the proof of Theorem 1.1 of [BC20], found in the re-
mainder of §3 of [BC20], which asserts that any pointwise finite-dimensional
persistence module is a direct sum of indecomposable persistence modules.

– Use Fitting’s lemma to prove that endomorphism rings of pointwise
finite-dimensional persistence modules are local.

– Recall Zorn’s lemma as a set-theoretic foundation and define the set D
to which it shall be applied.

– Complete the proof, time permitted.
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5. Representation Theory for Persistence Modules

In talk 5 the representation theory of persistence modules is discussed.

(1) Interval representations.
• Introduce the terminology given in §2.1 of [BC20] up to and including what

an interval is. Define the constant representation kI for a given interval I
and explain how it defines a persistence module.

• For intervals I, J describe the morphisms kI → kJ of persistence modules.
Considering kI in the category of persistence modules, prove that End(kI) ≃
k and hence that kI is indecomposable [BL18, Proposition 2.2].

• State [BC20, Theorem 1.2]. Define some interval representations for the
totally ordered sets {1, . . . , n}, N, and R.

(2) Projectivity and injectivity.
• Recall what it means for an object in a category C to be projective, and what

it means to be injective. Consider the case when C = R –Mod.
• Show representables are projective in [C, K –Mod]. Explain why projectives

are representable when C has split idempotents. See [BBOS20, Lemma 3.4].
• Survey results from [HL81] and [Höp83] in order to describe, when C is a

poset, the indecomposable projective and indecomposable injective objects
in [C, K –Mod]. Consider how these indecomposables parameterise injective
and projective representations in general.

(3) Non-totally ordered cases.
• Draw a picture which summarises the idea of middle-exact persistence mod-

ules for a product of two totally ordered sets: see for example [BC20, §5].
• Likewise draw a picture conveying the idea of zig-zag persistence modules for

a product of two totally ordered sets: see for example [BC20, §5].
• Mention in passing other situations which have been considered, for example,

posets given on a circle S1; see for example [HR20].
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6. Interleaving Distance of Persistence Modules

This talk introduces the interleaving distance of persistence modules by
[CdSGO16, BS14] and provides a proof of the categorical stability theorem
[BS14, Theorem 5.1]. The following notions and results should be covered in this talk:

• Define the notion of a δ-interleaving ; see [BS14, Definition 3.1].
• Prove the monotonicity of δ-interleavings, see [BS14, Lemma 3.4].
• Define the interleaving distance of persistence modules; see [BS14, Definition 3.2].
• Show that the interleaving distance is an extended pseudometric on persistence

modules; see [BS14, Theorem 3.3].
• Provide a proof of the categorical stability theorem; see [BS14, Theorem 5.1].
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7. The Algebraic Stability Theorem

The goal of this talk is to provide a proof of the Algebraic Stability Theorem
[BL20, BL15] (optionally by using the results covered in Talk 4) thereby also proving
the stability of the persistence barcode in conjunction with the results covered in Talk 6.
As an example, here is a plan following [BL20]:

• Define the category of barcodes ; see [BL20, Section 2.3].
• Define and characterize kernels, cokernels, and images of barcodes; see

[BL20, Section 2.5].
• Define and characterize δ-trivial kernels and cokernels of barcodes; see

[BL20, Definition 1 and Proposition 2].
• Show how a monomorphism of persistence modules induces a matching of persis-

tence barcodes; see [BL20, Proposition 3].
• Explain how duality of finite-dimensional vector spaces and [BL20, Proposition 3]

yield a dual result for epimorphisms of pfd persistence modules.
• Provide a characterization of homomorphisms of persistence modules with δ-trivial

(co)kernel; see [BL20, Lemma 1].
• Provide a proof of the Induced Matching Theorem using the results covered in

Talk 4; see [BL20, Section 3.4].
• Provide a proof of the Algebraic Stability Theorem; see [BL20, Section 4.2].
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8. Persistence Modules for Totally Ordered Sets*

Theorem 1.2 of [BC20] gives a decomposition theorem for persistence modules defined
on a totally ordered set, discussed in detail in talk 8.

(1) Filtered limits.
• Recall the notions of a filtered category and of a filtered limit. Explain why

filtered colimits of exact sequences (of, say, R-modules) remain exact.
• Recall the notion of a directed category and a directed limit. Recall (do not

prove) a result of Adamek and Rosicky: the first Corollary in [AR94, p. 15].
(2) Directed ideals.

• Recall the constant representation modules from talk 5, explain why directed
ideals are filtered as categories and state and prove [BC20, Lemma 2.1].

• Define codirected ideals, and state and prove [BC20, Lemma 2.2].
• Recall the hom-dual of a vector space. Use the notion of the hom-dual, and

the points above, to state and prove [BC20, Lemma 2.3].
• State and prove [BC20, Theorem 1.2] (which is in §4).

(3) Example: the real line.
• Give an example of an infinite direct sum of interval representations for R

which is pointwise finite-dimensional.
• Using Remark at the end of §2 on page 19 in the book by Oudot [Oud15],

comment on how persistence modules relate to modules over path algebras.

8



9. Levelsets Zigzag Persistent Homology

Ordinary persistent homology, as covered in Talk 3, can be understood as a par-
ticular type of invariant of R-indexed filtrations, possibly arising as the sublevel sets
of a function. Now provided that we have a function, one might also consider other
invariants of functions retaining more information about the function than ordinary
persistent homology. In the discretized setting one of such strengthening of persis-
tent homology is levelsets zigzag persistent homology by [CdM09]. This talk introduces
levelsets zigzag persistent homology and also draws the connection to ordinary persis-
tent homology through up-down persistent homology or extended persistent homology by
[CSEH09]. One key ingredient for making these connections is the diamond principle; see
[CdM09, CdSKM19, BEMP13]. An overview of different variants of persistent homology
applicable to functions and the main aspects relevant to this talk is provided in [BN22].
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10. Generalizations of the Interleaving Distance*

The speaker may provide an overview on generalizations of the interleaving distance,
or discuss one of [BdSS15, dSMS18, Sco19] in detail, based on personal preference.

As an example, a plan following [BdSS15] is given below.

(1) Generalisations of persistence modules
• Recall categories given by preordered sets from Talk 1. Characterise functors

between them, and explain the Thin lemma [BdSS15, Lemma 3.1].
• Define the preordered monoid of translations in the sense of [BdSS15, §3.2],

consider an example, and define what it means for there to be an interleaving
between a pair of persistence modules [BdSS15, Definition 3.4].

(2) Sublinear projections.
• State results concerning functoriality monotonicity and the triangle inequal-

ity ; [BdSS15, Propositions 3.9, 3.10 and 3.11]. Prove the triangle inequality.
• Define sublinear projections, and for ε ⩾ 0 define what it means for: a trans-

lation to be an ε-translation; and a pair of persistence modules to be ε-
interleaved. Explain these terms with a simple non-trivial example.

• Recall the notion of an extended psuedo-metric, and define the interleaving
distance between persistence modules. Prove [BdSS15, Theorem 3.15].

(3) Superlinear projections.
• Introduce the language of superlinear projections and an adjusted definition

of the interleaving distance [BdSS15, Definition 3.20].
• State [BdSS15, Theorems 3.21, 3.24] explaining roughly what they mean.
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11. Sheaves and Persistence Theory

The foundations of sheaf-theoretical persistence theory are laid out in [Cur14, KS18].
This talk provides the necessary background from sheaf theory as well as the sheaf-
theoretical version of level set persistence.

• Define the notion of a sheaf on a topological space taking values in the category
of vector spaces over some field, mention locally constant and skyscraper sheaves
as examples, and characterize isomorphisms of sheaves as those homomorphisms
inducing isomorphisms on all stalks; see for example [KS90, Section 2.2].

• Define direct images and pullbacks of sheaves; see for example [KS90, Section 2.3].
• Introduce homotopies and homotopy equivalences between complexes of sheaves.
• Introduce the notion of a quasi-isomorphism between complexes of sheaves and

the derived category of sheaves.
• Introduce derived levelset persistence of a function f : X → R as the right-derived

pushforward of the sheaf of locally constant functions on X along f .
• Extend this construction to a contravariant functor from R-spaces to derived

sheaves on the real numbers using the adjunction between direct image and pull-
back; see [KS90, Equations (2.7.3) and (2.7.4)].
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12. Decompositions of Sheaves*

This talk connects the sheaf-theoretical approach to levelset persistence from Talk
11 and the discrete approach from Talk 9 and also provides a structure theorem for
constructible sheaves on the reals. As a note of caution, there are two different notions
of a constructible sheaf on the real numbers appearing in the outline below.

• Introduce the full subcategory of sheaves on the reals that are definable in the
sense of [Cur14, Definition 15.3.1] or equivalently constructible in the sense of
[Gui16, Section 7] and draw the connection to type-An quiver representations.

• Explain how the classification of finite-dimensional type-An quiver representations
covered in Talk 2 yields a structure theorem for definable sheaves on the reals; see
[Cur14, Section 15.3] or [Gui16, Corollary 7.3].

• Introduce constructible derived sheaves on a simplicial complex taking values in
the category of vector spaces over some field; see [KS90, Section 8.1].

• Mention the equivalence of constructible derived sheaves and the derived category
of constructible sheaves; see [KS90, Theorem 8.1.11].

• As a special case of a constructible sheaf on a simplicial complex introduce the
notion of an R-constructible sheaf on the reals in the sense of [KS18, Section 1.5].

• Explain how the structure theorem for the first notion of a constructible sheaf on
the reals yields a structure theorem for R-constructible sheaves on the reals; see
[KS18, Theorem 1.17].

• Show that the category of R-constructible sheaves on the reals is hereditary; see
[KS18, Corollary 1.18].

• Mention that any object of a derived category of a hereditary category decom-
poses into its cohomology objects and use this in conjunction with the equivalence
between constructible derived sheaves and the derived category of constructible
sheaves to conclude with a structure theorem for R-constructible derived sheaves;
see also [KS18, Corollary 1.20].
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13. Multidimensional Persistence

Provide an introduction to multidimensional persistence theory [CZ07, BL22].

(1) Multifiltered spaces.
• Explain how the relation ≾ on Nn from [CZ07, §2], restricted to any multiset

as in [CZ07, §4.1] gives a quasi -partial order, which is the same thing as a
preordered set in the sense of [BdSS15, §3.1] seen in talks 1 and 10.

• Hence explain how the corresponding notion of a persistence module [CZ07,
Definition 1] is a special case of [BdSS15, §2.2].

• Give the definition of a multifiltered space [CZ07, §3], explain the bifiltered
triangle [CZ07, Fig. 2] and sketch details for a different example.

(2) Graded ring theory and the correspondence theorem.
• Introduce, in a minimal way, preliminaries of graded rings, the example An =

k[x1, . . . , xn] and graded modules from the end of [CZ07, §2]. Give examples
and non-examples for n = 2.

• Give the construction of the correspondence α from [CZ07, Definition 2]. For
n = 2 calculate α(M) where M is given by the bifiltered triangle.

• State the Correspondence theorem [CZ07, Theorem 1] and the Realization
theorem [CZ07, Theorem 2]. Consider what these say when n = 1, 2.

(3) Representation theory of the grid poset.
• Explain roughly the meaning of tame representation type by considering the

Jordan-block classification of matrices up to simultaneous similarity, and then
consideringer representations of the Kronecker quiver.

• Loosely explain what wild representation type is: [BL22, Definition 8.7(iii)]
• Explain [BL22, Theorem 8.9] which characterises grid posets in terms of

their representation type. Draw three different grids displaying finite, tame
and wild representation types.

• Explain Figure 8.1 and the diagram (8.2) from [BL22].
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14. Signed Barcodes for Multidimensional Persistence*

This talk introduces the signed barcode for multi-parameter persistence modules
[MP22, BOO22] and discusses one or more aspects such as their rank decompositions
[BOO22], effective computation [CGR+22], relative homological algebra [BOO22, BBH21,
CGR+22], or one of the approaches to obtain algebraic stability for signed barcodes:
[MP22, OS21, BOOS22].
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15. Saecular Persistence*

Most decomposition results in persistence theory assume field coefficients. Saecular
persistence generalizes some of these results to persistence modules taking values in cat-
egories other than the category of vector spaces over some field; see [GH21].
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16. Computation of Persistent Homology*

There are several methods to compute persistent homology [OPT+17, BDM13]. The
speaker may provide an overview or discuss one of these in detail based on personal
preference.
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17. Application: Clustering with ToMATo or Persistable*

Persistent homology can help to prove clustering algorithms. In [COSG11] a method
is discussed how persistent homology in dimension 0 can be used to improve a classical
mode-seeking clustering approach and how persistence diagrams then help with finding
an adequate clustering among many possible. Persitable, the theory of which is developed
in [RS20], is a more recent approach to clustering related to ToMATo.

17
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18. Clustering and Tilting Theory*

Ordinary persistent homology as covered in Talk 3 is not robust with respect to outliers.
One approach to overcome this limitation is to filter by distance as well as some form
of density, effectively obtaining a filtration in two parameters. However, two-parameter
persistence modules are far more complex than one-parameter persistence modules. In
degree 0, the internal maps in the direction of increasing distance and constant density
are surjective. Thus, one may hope that such two-parameter persistence modules are
easier to classify. However, the article by [BBOS20] shows that such persistence modules
are of similar complexity.

In talk 18 a connection between clustering, tilting theory and persistent modules is
described, following [BBOS20].

(1) Subcategories of grid representations.
• Recall the poset defined by the product of two finite totally ordered sets.

Define the subcategory of representations of this poset with additional con-
ditions on the horizontal or vertical morphisms; see [BBOS20, p. 7].

• Use [BBOS20, Construction 1.4] to explain how to pass between the subcat-
egories discussed above and representations of grids of smaller size.

• Recall [BBOS20, Theorem 1.3], already seen in talk 13. Combine this descrip-
tion with [BBOS20, Theorem 1.5] to state and prove [BBOS20, Corollary 1.6].

(2) Torsion theory.
• Recall what it means for a category to have enough projective objects or

enough injective objects.
• Define torsion pairs for an abelian category [BBOS20, Definition 2.3], and

discuss [BBOS20, Example 2.5], which considers torsion pairs for the abelian
category of persistence modules (see Talk 1(2)).

• Define cotorsion pair for an abelian category [BBOS20, Definition 2.6], and
discuss [BBOS20, Example 2.8], which considers cotorsion pairs for the
abelian category of persistence modules.

• State [BBOS20, Theorem 3.12, Corollaries 3.14 and 3.15].
• Explain the results discussed so far for [BBOS20, Examples 3.19 and 3.20].
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19. Application: Complex Networks and Dynamic State Detection*

In [MMK19] a new method is presented to study graph representations of time se-
ries of dynamical systems. In particular it is shown how persistent homology allows to
distinguish between periodic and chaotic behaviour.
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20. Middle Exactness and Block Decomposition*

Talk 9 covers level set zigzag persistent homology, which is an invariant retaining more
information than sublevel set persistent homology, both on the level of objects as well
as on the level of homomorphisms. Another invariant retaining yet more information
on the level homomorphisms (but not on the level of objects) is interlevel set persistent
homology ; see [CdM09, BEMP13, BL18, CdSKM19, BGO19, CO20, BC20, BL22, Section
10.2]. First explain how interlevel set persistence yields middle-exact representations, see
for example [CO20, Section 9.3]. Optionally, also explain how interlevel set persistent
homology retains more information on the level of homomorphisms. Then discuss the
block decomposition of interlevel set persistent homology as in [BC20, Section 5].

20



References

[AR94] Jirí Adámek and Jirí Rosický. Locally presentable and accessible categories. Lecture note
series / London mathematical society. Cambridge University Press, 1994.

[Azu48] Gorô Azumaya. On generalized semi-primary rings and Krull-Remak-Schmidt’s theorem.
Jpn. J. Math., 19:525–547, 1948.

[BBH21] Benjamin Blanchette, Thomas Brüstle, and Eric J. Hanson. Homological approximations in
persistence theory. arXiv e-prints, page arXiv:2112.07632, December 2021.

[BBOS20] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen. Cotorsion tor-
sion triples and the representation theory of filtered hierarchical clustering. Adv. Math.,
369:107171, 51, 2020.

[BC20] Magnus Bakke Botnan and William Crawley-Boevey. Decomposition of persistence modules.
Proceedings of the American Mathematical Society, 2020.

[BDM13] Jean-Daniel Boissonnat, Tamal K. Dey, and Clément Maria. The compressed annotation
matrix: An efficient data structure for computing persistent cohomology. In Hans L. Bod-
laender and Giuseppe F. Italiano, editors, Algorithms – ESA 2013, pages 695–706, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[BdSS15] Peter Bubenik, Vin de Silva, and Jonathan Scott. Metrics for generalized persistence mod-
ules. Found. Comput. Math., 15(6):1501–1531, 2015.

[BE17] Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay complexes.
Trans. Amer. Math. Soc., 369(5):3741–3762, 2017.

[BEMP13] Paul Bendich, Herbert Edelsbrunner, Dmitriy Morozov, and Amit Patel. Homology and
robustness of level and interlevel sets. Homology Homotopy Appl., 15(1):51–72, 2013.

[BGO19] Nicolas Berkouk, Grégory Ginot, and Steve Oudot. Level-sets persistence and sheaf theory.
arXiv e-prints, page arXiv:1907.09759, July 2019.

[BKRR22] Ulrich Bauer, Michael Kerber, Fabian Roll, and Alexander Rolle. A Unified View on the
Functorial Nerve Theorem and its Variations. arXiv e-prints, page arXiv:2203.03571, March
2022.

[BL15] Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persis-
tence barcodes. J. Comput. Geom., 6(2):162–191, 2015.

[BL18] Magnus Bakke Botnan and Michael Lesnick. Algebraic stability of zigzag persistence mod-
ules. Algebr. Geom. Topol., 18(6):3133–3204, 2018.

[BL20] Ulrich Bauer and Michael Lesnick. Persistence diagrams as diagrams: a categorification of
the stability theorem. In Topological data analysis—the Abel Symposium 2018, volume 15
of Abel Symp., pages 67–96. Springer, Cham, [2020] ©2020.

[BL22] Magnus Bakke Botnan and Michael Lesnick. An Introduction to Multiparameter Persistence.
arXiv e-prints, page arXiv:2203.14289, March 2022.

[BN22] Nicolas Berkouk and Luca Nyckees. One Diamond to Rule Them All: Old and new topics
about zigzag, levelsets and extended persistence. arXiv e-prints, October 2022.

[BOO22] Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot. Signed Barcodes for Multi-
Parameter Persistence via Rank Decompositions. In Xavier Goaoc and Michael Kerber, edi-
tors, 38th International Symposium on Computational Geometry (SoCG 2022), volume 224
of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–19:18, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[BOOS22] Magnus Bakke Botnan, Steffen Oppermann, Steve Oudot, and Luis Scoccola. On the bot-
tleneck stability of rank decompositions of multi-parameter persistence modules. arXiv e-
prints, page arXiv:2208.00300, July 2022.

21



[BS14] Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology. Discrete
Comput. Geom., 51(3):600–627, 2014.

[CdM09] Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and real-
valued functions. In Proceedings of the Twenty-fifth Annual Symposium on Computational
Geometry, SCG ’09, pages 247–256, New York, NY, USA, 2009. ACM.

[CdSGO16] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. SpringerBriefs in Mathematics. Springer, [Cham], 2016.

[CdSKM19] Gunnar Carlsson, Vin de Silva, Sara Kališnik, and Dmitriy Morozov. Parametrized homol-
ogy via zigzag persistence. Algebr. Geom. Topol., 19(2):657–700, 2019.

[CGR+22] Wojciech Chacholski, Andrea Guidolin, Isaac Ren, Martina Scolamiero, and Francesca
Tombari. Effective computation of relative homological invariants for functors over posets.
arXiv e-prints, page arXiv:2209.05923, September 2022.

[CO20] Jérémy Cochoy and Steve Oudot. Decomposition of exact pfd persistence bimodules. Dis-
crete Comput. Geom., 63(2):255–293, 2020.

[COSG11] Frédéric Chazal, Steve Oudot, Primoz Skraba, and Leonidas J. Guibas. Persistence-based
clustering in Riemannian manifolds. In Computational geometry (SCG’11), pages 97–106.
ACM, New York, 2011.

[CSEH09] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
Poincaré and Lefschetz duality. Found. Comput. Math., 9(1):79–103, 2009.

[Cur14] Justin Michael Curry. Sheaves, cosheaves and applications. ProQuest LLC, Ann Arbor, MI,
2014. Thesis (Ph.D.)–University of Pennsylvania.

[CZ07] Gunnar E. Carlsson and Afra Zomorodian. The theory of multidimensional persistence.
Discrete & Computational Geometry, 42:71–93, 2007.

[dSMS18] V. de Silva, E. Munch, and A. Stefanou. Theory of interleavings on categories with a flow.
Theory Appl. Categ., 33:Paper No. 21, 583–607, 2018.

[ELZ02] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Comput. Geom., 28(4):511–533, 2002.

[GH21] Robert Ghrist and Gregory Henselman-Petrusek. Saecular persistence. arXiv e-prints, page
arXiv:2112.04927, December 2021.

[Gui16] Stéphane Guillermou. The three cusps conjecture. arXiv e-prints, page arXiv:1603.07876,
March 2016.

[HL81] Michael Höppner and Helmut Lenzing. Projective diagrams over partially ordered sets are
free. J. Pure Appl. Algebra, 20(1):7–12, 1981.

[Höp83] Michael Höppner. A note on the structure of injective diagrams. Manuscripta Math., 44(1-
3):45–50, 1983.

[HR20] Eric J. Hanson and Job D. Rock. Decomposition of Pointwise Finite-Dimensional S1 Per-
sistence Modules. arXiv e-prints, page arXiv:2006.13793, June 2020.
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