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1. Monday

1.1. Reminders on Abelian Categories. Talk 1.1 will be a reminder on Grothendieck
categories, the ind-completion, and decomposition properties in locally finite abelian
categories. A brief summary of many of the notions can be found in [Kra22, Glossary].

(1) Abelian Categories
• Recall the notions of abelian/Grothendieck categories [EGNO15, 1.2.1, 1.3.1],

and of left/right exact functors [EGNO15, 1.4.1, 1.6.1].
• Recall the definitions of projective objects [EGNO15, 1.6.5], of projective

covers [EGNO15, 1.6.6], and of enough projectives [EGNO15, 1.8.6(iii)].
• Recall the construction of derived functors in an abelian category, in partic-

ular, define the Ext functor; see stacks.math.columbia.edu/tag/05TA.
(2) Ind-completion

• Define the ind -completion of an additive category as the category of filtered
colimits of representable contravatiant functors [Kra, 1.4].

• State (without proof) that the ind-completion of an essentially small abelian
coincides with category of left exact functors [Kra22, 11.1.8, 11.1.14].

• State (without proof) that the category of left exact additive functors to
abelian groups is Grothendieck [Par70, p. 234, Theorem 2].

(3) Locally finite Abelian Categories
• Define what it means for an object of an abelian category to be (semi)simple

[EGNO15, 1.5.1] and recall Schur’s lemma [EGNO15, 1.5.2].
• Define what it means for an object to be of finite length [EGNO15, 1.5.3],

and recall the Jordan-Hölder Theorem [EGNO15, 1.5.4].
• Define what it means for an object to be indecomposable [EGNO15, 1.5.6],

and recall the Krull-Schmidt Theorem [EGNO15, 1.5.7].
• Define locally finite abelian categories [EGNO15, 1.8.1], and define finite

abelian categories to be the locally finite categories with finitely many iso-
classes of simple objects and enough projectives [EGNO15, 1.6.5, 1.6.6, 1.8.6].
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1.2. Algebras and Coalgebras. Main resource: CFG Notes [GP25]. We want intro-
duce the notions of algebras, the their dual notion of a coalgebra. k will always be a ring
in the following:

(1) Algebras and Modules
• Rewrite the definition of an associative unital k-algebra via commutative

diagrams [EGNO15, 7.8.1] (take C = Vec). Likewise define modules over
such an algebra [EGNO15, 7.8.5], algebra and module homomorphisms, and
the category of modules over an algebra [EGNO15, 7.8.6(ii)].

(2) Coalgebras and Comodules - Following [GP25, §2] and [EGNO15, §1.9].
• Define an associative unital k-coalgebra via the dual commutative diagrams

[EGNO15, 1.9.1], comodules over coalgebras [EGNO15, 1.9.2], coalgebra and
comodule morphisms, and the category of comodules [GP25, Definitions 2.1,
2.3, 2.7, 2.9].

• Show that the tensor product of comodule can be given the structure of a
comodule [GP25, Example 2.6].

• Show or state that for C a k-coalgebra, and W a k-module, that W ⊗k C

has a natural C-comodule structure, moreover show that Homk(V,W ) ≃
HomC(V,W ⊗k C) for V a C-comodule [GP25, Theorem 2.11].

• Show that for C a flat k-coalgebra, the category of comodules over C is
abelian [GP25, Proposition 2.13 and Theorem 2.14 ].

• Show that for C a flat k-coalgebra, the category of comodules over C has
enough injectives [GP25, Theorem 2.15].

(3) Duality
• Let C be a k-coalgebra and A be a k-algebra. Show that Homk(C,A) has

a natural unital k-algebra structure defined via the convolution product ∗.
In particular, the dual of a k-coalgebra is naturally a k-algebra [GP25, Ex-
ample 2.4].

• State (without proof) that the dual of an k-algebra A can be given a coalgebra
structure only the case that A is finitely generated and projective as a k-
module [GP25, Remark 2.5].

• Show that a C-comodule can always be made into a C∗-module, in particular,
that coModC is always a subcategory of C∗Mod. In the case where C is
fintely generated and projective over k, show that theses two categories are
equivalent. See [GP25, Remark 2.17 and Theorem 2.18].
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1.3. Hopf Algebras. Main resource: [GP25]. We cover the basics of Hopf algebras, as
well as the overflow from the last talk on coalgebras.

(1) Bialgebras
• Define a bialgebra as a k-module that is simultaneously both an algebra and

a coalgebra such that the comultiplication and counit are algebra homo-
morphisms, and the unit and multiplication are coalgebra homomorphisms
[EGNO15, 5.2.1, 5.2.2].

• Define what it means for a bialgebra to have an antipode [EGNO15, 5.3.2].
(2) Hopf Algebras

• Define a Hopf algebra as a bialgebra with an antipode S, via commutat-
ive diagrams. Explain that S is a left and right convolution inverse to the
identity, [GP25, Definition 3.1], [EGNO15, 5.3.10].

• Define a morphism of Hopf algebras and the category of Hopf algebras over
k [GP25, Definition 3.1]. State (without proof) that any map of bialgebras
f : H → H ′ is a map of Hopf algebras automatically [GP25, Lemma 3.3].

• When H is finitely generated and projective explain that H∗ is also a Hopf
algebra, using the duality section above [GP25, Remark 3.4].

• Define RepH := coModH . For Hopf algebras which are finitely generated
and projective over k, use the duality section from the previous talk to show
this is equivalent to H∗Mod [GP25, Remark 3.9].

(3) Examples - The speaker can choose from the following examples, or include
examples of their own.

• Group schemes : Define a group scheme over k as a group object in the cat-
egory of affine schemes over k, and show that the category of group schemes
over k is antiequivalent to the category of commutative Hopf algebras over
k. Explicitly name a few of your favourite group schemes, e.g., the bialgebra
of functions from a finite group G to k, see [EGNO15, Exercise 5.2.6].

• Enveloping algebras and quantum groups, see [EGNO15, Example 5.5.1 and
Sections 5.6 and 5.7].
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1.4. Monoidal Categories. In Talk 1.4 we will cover the basic definitions and results
on monoidal categories, properties of the unit object, examples, rigid monoidal categories,
dualizable objects, group actions on a category, and group objects internal to a category.

(1) Monoidal categories and functors
• Define monoidal categories [EGNO15, 2.1.1 2.1.2] and monoidal subcategories

[EGNO15, 2.1.4], and describe some basic properties of the unit object, such
as [EGNO15, 2.2.2, 2.2.3, 2.2.4, 2.2.5].

• Provide some examples of monoidal categories, such as: the category of sets
[EGNO15, 2.3.1]; any additive category [EGNO15, 2.3.2]; the category of
all modules over a commutative ring [EGNO15, 2.3.3]; the category of A-A-
bimodules for a ring A, and monoidal subcategories (quasicoherent sheaves)
[EGNO15, 2.3.13]; representations of a group [EGNO15, 2.3.6]; and endo-
morphisms of a category [EGNO15, 2.3.12].

• Define monoidal functors [EGNO15, 2.4.1] and the morphisms (natural trans-
formations) between them [EGNO15, 2.4.8], and provide examples of mon-
oidal functors, such as: forgetful functors [EGNO15, 2.5.1]; or those given by
of a map of rings; see stacks.math.columbia.edu/tag/0GP2.

• Define the action of a group on a monoidal category [EGNO15, 2.7.1].
(2) Dual objects and rigidity

• Define the meaning of a left (or right) dual of an object, and discuss the
evaluation and coevaluation maps [EGNO15, 2.10.1/2].

• Provide examples of cases where the left and right duals are understood,
such as: the category of finitely generated projective modules over an algebra
[EGNO15, 2.10.16]; and the category of finite dimensional representations of
a group [EGNO15, 2.10.13].

• State (without proof) that left duals give rise to adjunctions [EGNO15,
2.10.8], and show that duals are unique [EGNO15, 2.10.5].

• Example: left duals in End(C) are precisely left adjoints [EGNO15, 2.10.4].
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1.5. Tensor and Multitensor Categories. In Talk 1.5 we will cover the basic defin-
itions and properties of tensor categories and multitensor categories, and give several
examples considered in later talks.

(1) Multitensor Categories
• Define rigid monoidal categories [EGNO15, 2.10.11], and define multitensor

categories [EGNO15, 4.1.1] and tensor categories as certain rigid locally finite
k-linear monoidal categories.

• Give examples of multitensor categories, such as the category of finite di-
mensional modules over a commutative k-algebra [EGNO15, 2.3.3], and give
examples of tensor categories, such as the category of finite-dimensional rep-
resentations of a group G [EGNO15, 4.1.2].

• State and prove the biexactness of the tensor product [EGNO15, 4.2.1].
• State (without proof) that duality preserves projectives, and so projectives

are injective, in multitensor categories [EGNO15, 6.1.3].
(2) Multiring categories and finite tensor categories

• Define multiring and ring categories [EGNO15, 4.2.3], and state (without
proof) that for any multiring category with left duals, the left dualisation
functor is exact [EGNO15, 4.2.9].

• Define (quasi)tensor functors [EGNO15, 4.2.5].
• Consider examples of finite tensor categories (tensor categories that are fi-

nite abelian categories) such as: finite-dimensional representations of a finite
group [EGNO15, 4.1.2]; or finite-dimensional modules over a commutative
semilocal k-algebra.

• Define quasi-Frobenius categories. Using that duals of projectives are project-
ive, prove that multitensor categories are quasi-Frobenius [EGNO15, 6.1.4].

5



2. Tuesday

2.1. Module Categories. In Talk 2.1 we will recall module categories over monoidal,
multitensor, quasi-Frobenius and finite tensor categories, and what it means when such
a module category is exact.

(1) Module categories over monoidal categories
• Define a (left/right) module category over a monoidal category, and submod-

ule categories. Point out that a (muliti)tensor category is a module category
over itself [EGNO15, 7.4.1].

• Consider a finite group G with a subgroup L and the restriction functor
Rep(G) → Rep(L), this makes Rep(L) into a Rep(G)-module. Show that
VecG-modules are just abelian categories with a G action [EGNO15, 7.4.9].

• Show that an action of a monoidal cateogry C on a C-module category M is
the same as a monoidal functor functor C → End(M) [EGNO15, 7.1.3].

• Define module functors and equivalences [EGNO15, 7.2.1], direct sums [EGNO15,
7.3.4, 7.3.5] and indecomposables [EGNO15, 7.3.6].

(2) Exact module categories over multitensor categories
• Define module categories over multitensor categories [EGNO15, 7.3.1], and

note that the (bilinear) actions for (locally finite) C-module categories over
mutlitensor categories are the same as tensor (so monoidal) functors to a
category of left-exact endofunctors [EGNO15, 7.3.3].

• Define exact module categories (over a multitensor category with enough
projectives) [EGNO15, 7.5.1]. Consider the case over Vec [EGNO15, 7.5.4].

• Consider the example of group-graded vector spaces. Note that representa-
tions of the group are the same as morphisms between endofunctors of Vec
[EGNO15, 7.12.19].

(3) Projectives, injectives and decompositions
• Show that exact module categories over multitensor categories have enough

projectives [EGNO15, 7.6.1] and are quasi-Frobenius [EGNO15, 7.6.3, 7.6.4]
• Relating a pair of simple objects in an exact module category provided one

is a subquotient of the image of the other under a tensor functor, prove this
relations is reflexive, symmetric and transitive [EGNO15, 7.6.6].

• Show that the partition induced by this equivalence relation gives a decom-
position of any exact module category into indecomposable module subcat-
egories [EGNO15, 7.6.7].
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2.2. Coends, Takeuchi’s theorem and Deligne’s tensor product. In Talk 2.2 we
will recall coends, and then define Deligne’s tensor product, using a theorem of Takeuchi.

(1) Coends
• Recall the definition of the coend of a functor, and explicitly define (using a

formula) the comultiplication and counit that give a coalgebra structure on
the coend [EGNO15, p. 14].

• State (without proof) that every exact faithful functor F from a k-linear
abelian category to k-vector spaces defines an equivalence to the category of
right comodules over the coend of F [EGNO15, 1.10.1].

(2) Takeuchi’s theorem
• Define pointed coalgebras [EGNO15, 1.19.13] and give some examples.
• State and sketch the proof of the following theorem of Takeuchi: That any

essentially small, locally finite, abelian category is the category of pointed
comodules over a unique pointed coalgebra [EGNO15, 1.19.15, p. 15].

(3) Deligne’s tensor product
• Define Deligne’s tensor product using Takeuchi’s theorem [EGNO15, 1.11.1],

and discuss how it satisfies a universal property [EGNO15, 1.11.2].
• Show that if C and D are (multi)ring categories then so is C ⊠D [EGNO15,

4.6.1]. Mention, in particular, that the Deligne tensor product of tensor
categories is again a tensor category [EGNO15, 4.6.2].

• Define bimodule categories [EGNO15, 7.1.7], and state (without proof) that
any tensor category C is a module category over C ⊠ Cop [EGNO15, 7.4.2],
and that a (C,D)-bimodule category is the same thing as a C ⊠Dop-module
category [EGNO15, 7.4.3].
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2.3. Reconstruction Theory. In Talk 2.3 we will cover an important result known as
the reconstruction theorem for Hopf algebras.

(1) Fiber Functors
• Define (quasi) fiber functors [EGNO15, 5.1.1], and note how forgetful functors

are examples [EGNO15, 5.1.2]. Explain how a fiber functor C → Vec is the
same as a C-module action on Vec [EGNO15, 7.4.6].

• For a finite ring category equipped with a fiber functor F , use Deligne’s tensor
product to define the biagebra structure on End(F ) [EGNO15, 1.11.1, 5.2.1].

• Prove that there is a mutually inverse bijection between finite ring categories
with a fiber functor and finite dimensional bialgebras [EGNO15, 5.2.3].

• If the finite ring category has left duals, mention the extra structure on
End(F ), given by a morphism S : End(F ) → End(F ). Prove this morphism
satisfies the antipode map diagram [EGNO15, 5.3.1].

• Prove the reconstruction theorem: There is a mutually inverse bijection
between finite tensor categories with a fiber functor and finite dimensional
Hopf algebras [EGNO15, 5.3.12].

(2) Quasi-fiber functors
• Define normalized quasi-fiber functors [EGNO15, 5.12.1].
• Discuss how, given a normalized quasi-fiber functor (F, J), the comultiplic-

ation defined for the algebra End(F ) (as for the case of fiber functors) need
not satisfy the coassociativity axioms to be a bialgebra [EGNO15, p. 110].

• Define quasi-bialgebras [EGNO15, 5.12.4, 5.12.5], and state (without proof)
the reconstruction theorem in this setting [EGNO15, 5.12.6, 5.12.7].

• Define quasi-Hopf algebras [EGNO15, 5.13.2], and state (without proof) the
reconstruction theorem: a bijection from finite tensor categories with a quasi-
fiber functor to finite-dimensional quasi-Hopf algebras [EGNO15, 5.3.17].
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2.4. Z+-rings. In Talk 2.4 we will cover the definition of the Frobenius-Perron dimension
and some related results which will be of interest later.

(1) Z+-rings
• Define Z+-bases and Z+-rings [EGNO15, 3.1.1, 3.1.3], and provide examples,

such as: the ring of n× n matrices over Z; the group algebra ZG for a finite
group G, and its centre C(ZG); and the ring of complex representations of
G [EGNO15, 3.1.9].

• State (without proof) the Brouwer fixed point theorem for simplexes, see for
example [Iva09] (there are many references).

• State the Frobenius-Perron theorem [EGNO15, 3.2.1], and prove the first
part [EGNO15, 3.2.1(1)].

(2) Frobenius-Perron Dimension
• Define transitive Z+-rings [EGNO15, 3.3.1], and decide which of the examples

of Z+-rings (previously considered above) are transitive.
• Introduce the Frobenius-Perron dimension FPdim : A → C for A a unital

transitive Z+-ring of finite rank [EGNO15, 3.3.3].
• Consider the transitive Z+-based ring whose basis is given by a finite group

equipped with a generator following [ENO05, Example 8.19], and mention
the value of FPdim in this case.

(3) Image and invariance of the FP dimension
• Show there exists a regular element R ∈ A ⊗ C which is unique with the

property that XR = FPdim(X)R and RY = FPdim(Y )R, and use this to
prove that, under mild conditions, FPdim(X) is the largest eigenvalue for a
matrix corresponding to X [EGNO15, 3.3.6(2,4)].

• Prove that FPdim is invariant under basis change [EGNO15, 3.3.9].
• Prove that FPdim takes values in the algebraic integers [EGNO15, 3.3.4].
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2.5. FP dimension for Finite Tensor Categories. In Talk 2.5 we will cover the
Frobenius-Perron dimension of a mutlitensor category by means of the regular object in
a module over its Grothendieck ring, and discuss how integral finite-tensor categories are
the same as representation categories of finite-dimensional quasi-Hopf algebras.

(1) Grothendieck groups and rings
• Define the Grothendieck group Gr(C) of a locally finite abelian category C

by isoclasses of simple objects [EGNO15, 1.5.8]. Provide some examples of
when the Grothendieck group is known [EGNO15, 1.5.9, 1.5.10].

• State (without proof) that for a multiring category C the tensor product
induces a multiplication on the Grothendieck group Gr(C) [EGNO15, 4.5.1],
turning it into a Z+-ring [EGNO15, 4.5.5].

• Show that if the module category is indecomposable, then its Grothendieck
group is irreducible [EGNO15, 7.7.2].

(2) FP-dimension of a category
• For a finite abelian category C define K0(C) like the Grothendieck group

[EGNO15, p. 11], but where simples are replaced by projective indecompos-
ables, and define the Cartan matrix [EGNO15, 1.5.8, 1.8.14].

• Prove that, for a multitensor category C, the group K0(C) is a module over
the ring Gr(C) [EGNO15, 6.1.1].

• For a finite tensor category C define the regular object RC ∈ K0(C) and the
Frobenius-Perron dimension FPdim(C) = FPdim(RC) [EGNO15, 6.1.6, 6.1.7].

• Consider examples of where this dimension is known, such as for semisimple
multitensor categories [EGNO15, 6.1.8], or the category of representations of
a finite-dimensional quasi-Hopf algebra [EGNO15, 6.1.9].

(3) Main Theorem
• Define fusion rings [EGNO15, 3.1.7], integral fusion rings [EGNO15, 3.5.5],

and integral finite tensor categories [EGNO15, 6.1.13].
• Use the reconstruction theory, developed in Talk 2.3, to prove that a finite

tensor category is integral if and only if it is the representation category of a
finite-dimensional quasi-Hopf algebra [EGNO15, 6.1.14].
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3. Wednesday

3.1. Morita equivalence and some constructions. In this talk, we will recall an
equivalence relation on tensor categories known as categorical Morita equivalence; we also
review some basic constructions with module categories that are of particular interest.
This talk covers Chapter 7.11-7.14 in [EGNO15]. See also [Ost03].

(1) Morita equivalence
• Define the category of right exact C-module functors between module categor-

ies over a multitensor category C [EGNO15, p. 154]. In particular, discuss
on [EGNO15, Proposition 7.11.1].

• For an exact module category M over a multitensor category C, define the
dual category of C with respect to M [EO03, Definition 7.12.2].

• Explain why the dual category is a finite multitensor category and when it
is indeed a tensor category [EGNO15, 7.12.6].

• Define Morita equivalence for tensor categories [EGNO15, 7.12.17] and give
an sketch of the proof that it is actually an equivalence relation [EGNO15,
7.12.18].

(2) The center
• Define the center of a monoidal category [EGNO15, Definition 7.13.1].
• Explain why the center of a finite multitensor category is finite [EGNO15,

Proposition 7.13.8].
(3) The Quantum Double

• Let H a finite dimensional Hopf algebra, and F : RepH → Vec the associ-
ated fiber functor such that H = End(F ) (which we have proven exists via
reconstruction theory in Talk 2.3). Then the composition F ◦i = F ′ where i is
the inclusion of the center, gives us a new fiber functor F ′. Put D = EndF ′.
This is called the quantum double D(H) of H [EGNO15, 7.14.1].

• Describe the structure of D(H) very explicitly as the quotient of the free
product H ∗H∗cop [EGNO15, p. 164]

• From this show that Z(RepH) is equivalent to the category of finite dimen-
sional D(H)-modules [EGNO15, 7.14.6].

• Let G be a finite group and H be the Hopf algebra of k valued functions on
G. So the dual of H, with opposite comultiplication, is kG. Describe the
quantum double D(H). This is done explicitly in [DPR92].
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4. Thursday

4.1. Braided Categories. In this talk we will cover the basic definitions of a braided
category, as well as some first properties and examples of braided categories coming from
Hopf algebras.

(1) Basic Definitions
• Define a braiding on a monoidal category as a natural isomorphism cX,Y : X⊗
Y

∼−→ Y ⊗X satisfying some commutative diagrams. Then define a braided
monoidal category as a monoidal category equipped with such a braiding.
[EGNO15, Definitions 8.1.1 and 8.1.2].

• Define what it means for a monoidal functor between braided monoidal cat-
egories to be braided [EGNO15, Definition 8.1.7]. Define a symmetric mon-
oidal category as a braided monoidal category satisfying the condition that
cY,X ◦ cX,Y = 1X⊗Y [EGNO15, Definition 8.1.12].

• Give some basic examples of braided monoidal categories, such as: the cat-
egory of sets; modules over a commutative ring; the category of representa-
tions of a Hopf algebra; graded modules over a ring R, which has as many
braidings as there are units u in R, and one of these braidings is symmetric
if and only if u2 = 1 [EGNO15, Section 8.2].

• Explain why the center Z(C) of a monoidal category C (as defined in the
previous talk) is a braided monoidal category [EGNO15, 8.5.1].

(2) Quasitriangular Hopf Algebras
• Motivate and define a quasitriangular Hopf algebra as a Hopf algebra H such

that there exists an invertible element R ∈ H ⊗ H satisfying some special
equations [EGNO15, Definition 8.3.1].

• Explain how H being quasitriangular is equivalent to the condition that the
category of representations of H is braided monoidal category. In particular,
that there is a bijection between braidings on Rep(H) and quasitriangular
structures on H.

• Define a triangular Hopf algebra as in [EGNO15, 8.3.3], and explain how
the above bijection restricts to a bijection between symmetric braidings on
Rep(H) and triangular structures on H.

(3) Examples and computations
• Explain why a cocommmutative Hopf algebra H is quasitriangular by con-

sidering R = 1⊗ 1 [EGNO15, Example 8.3.4].
• State, without proof, that the quantum double D(H) of any finite-dimensional

Hopf algebra H is quasi-triangular [EGNO15, 8.3.8].
Let G be a finite group and H be the Hopf algebra of k valued functions on G.

• Explain why, if G is noncommutative, then Rep(H) does not admit a braid-
ing, and hence H does not have a quasi-triangular structure [EGNO15, 8.3.5].

• Describe the universal R-matrix of D(H). See [DPR92].
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4.2. Fusion Categories. For this talk, points (3) and (4) are interchangeable and just
one of them might be presented.

(1) Definitions and Examples
• Recall the definition of a simple and semisimple object, and then the defini-

tion of a semisimple category [EGNO15, Definition 1.5.1].
• Define a multifusion category as a finite semisimple multitensor category,

and similarly define a fusion category as a finite semisimple tensor category.
Make explicit the conditions on the ground field k [EGNO15, 4.1.1].

• Give some basic examples of (multi)fusion categories, such as: finite dimen-
sional vector spaces; finite dimensional representations of a Hopf algebra;
finite dimensional representations of a Lie algebra; bimodules over a finite
dimensional semisimple algebra [EGNO15, Section 4.1].

(2) Ocneanu Rigidity
• Explain why a fusion category have no non-trivial deformations. Instead of

a proof, an example would be great. For instance, mention the case of a
separable algebra, see [EGNO15, Section 9.1].

• Conclude that there are countably many fusion categories over k up to tensor
equivalence [EGNO15, 9.1.6].

(3) Group Theoretical Fusion Categories
• Define a group theoretical fusion category [EGNO15, 5.11.1, 9.7.1].
• In order to give examples, recall the monoidal category of G–graded vector

spaces and its twisted version by a cocycle of ω ∈ H3(G, k×), see [EGNO15,
Example 2.3.8], the latter is denoted by VecωG.

• Explain the structure of a module category over VecωG, see [EGNO15, Example
9.7.2].

• Discuss on the dual fusion category of a group theoretic one, and mention
why group theoretic fusion categories have integral FP-dimension [EGNO15,
4.5.9, 7.16.7, 9.4.2, 9.6.2, 9.8.2, 9.9.11].

(4) Tannakian Fusion Categories
• Recall the definition of a symmetric braided fusion category [EGNO15, 8.1.12].
• Define a Tannakian fusion category as a symmetric fusion category that

admits a braided tensor functor to the monoidal category of vector spaces
[EGNO15, 9.9.16].

• Discuss [EGNO15, Theorem 9.9.22], and sketch a proof that any symmetric
braided category is equivalent (as braided categories) to one of the form
Rep(G, z), where the latter denotes the category of representation of a finite
group G with a braiding induced from a central element z in G (see [EGNO15,
Example 9.9.1]).
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4.3. Cohomological Finite Generation for Finite Group Schemes*. This talk
could take two different directions: (a) One could cover some of the history of the co-
homological finite generation conjecture for finite tensor and mention some of the cases
where it is known, without mathematical details aside from the relevant definitions; (b)
one could specialize to the case of cohomology of finite group schemes. Some relevant
points to cover during the talk:

(1) Basic definitions: This part makes sense independently of the direction chosen.
• Quick remainder on extension groups in an abelian category and the Yoneda

product, see [Kra22, Section 4.2] and [SA04].
• For a finite tensor category define is graded cohomology ring. See for instance

[EO03].
• State the cohomological finite generation (CFG) conjecture.

(2) For direction (a): There are many classes of finite tensor categories for which
the CFG conjecture is known, so it is hard to give a full account on those; here
are some references that might be useful:

• The introduction of [FN18].
• Cohomology of finite group schemes [Pev13].
• Pointed finite tensor categories [LL24].
• Duals and Drinfeld centers of finite tensor categories which satisfy the CFG

conjecture [NP22], also see Corollary 4.8 in loc. cit.
(3) For direction (b): CFG for finite groups schemes over a field was proved in

[FS97] and generalized to finite group schemes over a commutative Noetherian
base in [vdK23]. While the proof is quite involved, one can highlight the following
ideas which are essentially following the introduction in [GP25].

• CFG for finite group schemes over a Noetherian base can be translated to
cohomological finite generation of GLn via the so-called embedding lemma
together with finite generation of invariants for GLn.

• van der Kallen proved that for CFG for GLn reduces to bounded torsion
of the cohomology ring. This relays on the existence of universal classes in
cohomology [TvdK10], [FS97] and the existence of certain filtration of GLn-
algebras called good-Grosshans filtrations.

• The cohomology of a finite group scheme over an arbitrary Noetherian base
has bounded torsion, this is the content of [vdK23].
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4.4. Support Varieties*. Main resource for this talk is [BKSS20], and the goal is to
define support varieties for triangulated categories with an action of a monoidal triangu-
lated category. This is an approach that unifies several constructions of support varieties
and it applies in great generality, hence its relevance. The main ideas to cover during the
talk are:

(1) Preliminaries: One should briefly recall the notion of monoidal triangulated
category (not necessary symmetric), and then cover the following points.

• Define a tensor action of a monoidal triangulated category on a triangulated
category. See also [Ste13].

• Explain how a monoidal triangulated category acts on itself.
• Define the graded center of a monoidal triangulated category and central

actions by graded rings on a triangulated category.
• Explain why the graded endomorphism ring of the monoidal unit always acts

centrally on the category.
(2) Support varieties: For this part, one can follow [BKSS20, Section 3].

• Introduce the restrictions placed in Assumption 3.1 in [BKSS20].
• Briefly recall the homogeneous spectrum of a commutative graded ring.
• Define the support of pair of objects with respect to the homogeneous spec-

trum of a ring acting centrally on the category, and discus on the properties
it has.

• Define Koszul objects and point out and describe their support.
(3) Complexity: Fix a central ring action on a triangulated category as before. Then

• Define the complexity of an object. Also define perfect objects.
• Explain why objects with trivial complexity are perfect and why the converse

also holds (see [BKSS20, Proposition 4.4]).
(4) Examples: Consider a finite dimensional algebra A over an algebraic closed

field, and its bounded derived category on finitely generated A-modules Db(A).
Specialize the discussion above to central action on Db(A) by the Hochschild
cohomology ring HH∗(A) (see also [EHS+03]). In particular, explain Proposition
9.6 in [BKSS20].
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5. Friday

5.1. Complexes with small homology*. The content of talk is strongly related with
a conjecture of G. Carlsson in [Car86] which says that for an elementary abelian p-group
G, any finite dimensional complex of free FpG-modules the sum of the dimensions of the
homology groups of the complex is at least 2r. There is also a topological version of this
conjecture. The algebraic version is known to be false by work of Iyengar and Walker.
In [Ber24], Bergh extends the study of complexes with small homology to the context of
finite tensor categories, and the goal of this talk is to introduce basic terminology and
ideas to understand the what it means for a complex of projective objects in a finite
tensor category to have small homology. The main ideas to cover during the talk are:

(1) Preliminaries: One should have for granted that at this point we all know about
the CFG conjecture for finite tensor categories, but it might be worth recalling:

• The category of complexes over an additive category.
• The homology of a complex and recall the definition of quasi-isomorphism.
• The homotopy category, and its bounded version. In particular, explain

that whenever we consider the bounded homotopy category of projective
objects in an abelian category, the homotopy equivalences are simply quasi-
isomorphisms.

(2) Complexes over finite tensor categories: we need first to place some restric-
tions on our finite tensor categories, e.g., we assume that the satisfy the CFG
conjecture. Then:

• Define additive functions on finite tensor categories, and highlight examples
such as the FP dimension and the length of objects.

• Recall support varieties for objects in a finite tensor category in terms of the
homogeneous spectrum of the cohomology ring.

• Highlight Construction 3.1 in [Ber24] and explain why it is a complex of
projective objects.

(3) Examples: Explain why we recover the examples of Carlson and Iyengar-Walker
when considering the group algebra FpG. Also, discuss on the case that the finite
tensor category is the category of representations of a finite dimensional Hopf
algebra.

16



5.2. tt-geometry of the stable module category of a finite group (scheme)*.
The goal of this talk is to cover the basic notions of tt-geometry which will serve as a
reference/comparison for the non-commutative setting. In particular, the main example
to keep in mind for this part is the stable module category of a finite group (scheme) over
a field of positive characteristic. Points to cover during the talk:

(1) Recollections on tt-geometry: Briefly recall basic terminology from [Bal05],
[Bal10b]:

• Include the definition of an essentially small tensor triangulated category.
• Explain the tt-structure on the stable module category of a finite group.
• Define the Balmer spectrum via prime ideals, its topology using the support,

and discuss on the universal property of this construction.
(2) Functoriality of the Balmer spectrum: Explain why the construction of the

Balmer spectrum is functorial with respect to tt-functors. Moreover, include the
following properties:

• The Balmer spectrum of the idempotent completion of a tt-category.
• A essentially surjective functor induces an inclusion on Balmer spectra.
• When a tt-functor induces a surjection on Balmer spectra? see [Bal18].

(3) Ordinary vs modular characteristic: Explain why the tt-geometry of the
stable module category in the ordinary characteristic is not so interesting. In
fact, using the above tools, one can check that is also not very interesting for
Db(kG), with the monoidal structure induced by ⊗k.

(4) Examples: The idea is to explain the Balmer spectrum of the stable module
category of a finite group in the modular case. This was proved in [BCR97].
Also compare with the approach in [Bal10a, Section 8] using the comparison map
to Zariski spectra. Note that this uses the identification of the stable module
category with the Verdier quotient Db(kG)/Perf(kG).
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5.3. Non-commutative tt-geometry*. The main reference for this subsection is [NVY22].
The general idea for this talk is to define the non-commutative Balmer spectrum, explain
its relevance, and point out the main differences with its counterpart in the commutative
setting. If time permits, one should try to give an example. The relevant ideas to cover
during the talk are: (note that point (1) is only relevant if the talk 5.2 is omitted.)

(1) Recollections on tt-geometry: Briefly recall basic terminology from [Bal05],
[Bal10b]:

• Definition of an essentially small tensor triangulated category.
• Examples: For instance, the stable category of finitely generated representa-

tions of a group scheme over a field.
• Prime ideals, and support of objects in order to define the topology in the

Balmer spectrum.
(2) Monoidal tensor categories: Set up terminology from [NVY22, Section 2] in

order to include the following points:
• The different notions of primes that one could consider.
• The non-commutative Balmer spectrum.

(3) Comparison with the commutative case
• In the commutative setting there are two very important properties of the

Balmer spectrum: first, it is not empty as soon as the category is not trivial;
second, the construction is functorial with respect to tensor triangulated func-
tors. Discuss these two properties for the two constructions in part (2). One
way to motivate this is from ordinary commutative and non-commutative
algebra.

(4) Support datum
• The relevant part here is to define the notion of a support datum on the non-

commutative Balmer spectrum and explain the universal property it has.
This is covered in [NVY22, Section 4].

(5) Examples: While diving in full detail into examples is complicated, it would be
useful to include an a discussion on one of the following examples.

• The stable module categories of small quantum groups for Borel subalgebras
[NVY22, Section 8].

• The stable module categories of the Benson–Witherspoon Hopf algebras [NVY22,
Section 9].
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5.4. The spectrum of a finite tensor category*. The main reference for this talk
is [NVY24]. The goal is to introduce the necessary terminology to present Conjecture E
in loc. cit., discuss on the consequences of its validity, and present examples where it is
known. One should try to cover the following points:

(1) Recollections: Briefly recall the construction of the stable category of a finite
tensor category, in particular:

• The triangulated structure. In fact, this construction makes sense for any
Frobenius exact category, so one can present it in this generality.

• The monoidal structure. In particular, explain why it is compatible with the
triangulated structure.

(2) Graded center and categorical center: This part will allow us to introduce
different support data on a monoidal triangulated category.

• Cohomological support for the cohomology ring and for the Tate cohomology
ring of a monoidal triangulated category.

• Define the categorical center of the (Tate) cohomology ring and the central
cohomological support, and include examples.

• The finite generation and the weak finite generation conjectures.
(3) Comparison map and Conjectures: This part focus on comparing the support

data introduced in the previous point.
• Define the comparison map from the Balmer spectrum to the homogeneous

spectrum of the categorical center of the (Tate) cohomology ring.
• Spell out some of the properties of this map, in particular those included in

[NVY24, Theorem B].
• Mention that for some Hopf algebras this comparison map lands in the pro-

jectivization of the homogeneous spectrum of the cohomology ring of the
Hopf algebra.

• Include [NVY24, Conjecture E], and its relation to the (weak) finite genera-
tion for finite tensor categories.

(4) Examples: Include one of the examples where the conjecture has been verified.
See Section 9 in [NVY24].
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