NAKAYAMA ALGEBRAS: KUPISCH SERIES AND MORITA TYPE

ROLF FARNSTEINER

Throughout, Λ is assumed to be a finite dimensional k-algebra, defined over an algebraically closed field k. We let J be the (Jacobson) radical of Λ . A Λ -module M of length $\ell(M)$ is called *uniserial* if the following equivalent conditions hold:

- *M* possesses exactly one composition series.
- $(J^i M)_{i>0}$ is a composition series of M.
- For every $i \in \{0, \ldots, \ell(M)\}, J^i M$ is the unique submodule of length $\ell(M) i$.

The algebra Λ is referred to as *pro-uniserial* if all its projective indecomposable modules are uniserial.

Let $\mathcal{S}(\Lambda)$ denote a complete set of representatives of the simple Λ -modules.

Proposition 1 (Thm. 9 of [2]). The following statements are equivalent:

(1) Λ is pro-uniserial

(2) $\sum_{T \in \mathcal{S}(\Lambda)} \dim_k \operatorname{Ext}^1_{\Lambda}(S,T) \leq 1 \text{ for every } S \in \mathcal{S}(\Lambda).$

Proof. (1) \Rightarrow (2). Let S be an element of $\mathcal{S}(\Lambda)$ with projective cover P(S). There results an exact sequence

$$(*) \qquad (0) \longrightarrow JP(S) \longrightarrow P(S) \longrightarrow S \longrightarrow (0)$$

If $T \in \mathcal{S}(\Lambda)$ is another simple Λ -module, then general theory implies that

(**) $\operatorname{Ext}^{1}_{\Lambda}(S,T) \cong \operatorname{Hom}_{\Lambda}(JP(S)/J^{2}P(S),T).$

Since P(S) is uniserial, the module $JP(S)/J^2 P(S)$ is either (0) or simple. Schur's Lemma then yields $\dim_k \operatorname{Ext}^1_{\Lambda}(S,T) = 1$ for at most one $T \in \mathcal{S}(\Lambda)$.

(2) \Rightarrow (1). Let S be an element of $S(\Lambda)$ and consider the exact sequence (*). The module $JP(S)/J^2P(S)$ is semi-simple, and condition (2) in conjunction with (**) shows that $JP(S)/J^2P(S)$ is either zero or simple.

Given n > 1, suppose that $J^{n-1}P(S)/J^nP(S)$ is simple. If Q is a projective cover of $J^{n-1}P(S)$, then it is also a projective cover of $J^{n-1}P(S)/J^nP(S)$, and the above observation ensures that JQ/J^2Q is zero or simple. The surjective map $\pi : Q \longrightarrow J^{n-1}P(S)$ induces a surjection $\hat{\pi} :$ $JQ/J^2Q \longrightarrow J^nP(S)/J^{n+1}P(S)$, so that the latter module is also either zero or simple. It now follows inductively that the Loewy series of $(J^iP(S))_{0 \le i \le \ell(P(S))}$ is a composition series. Consequently, P(S) is uniserial.

Corollary 2. The algebra Λ is pro-uniserial if and only if Λ/J^2 is pro-uniserial.

Proof. Setting $\Lambda' := \Lambda/J^2$, we note that the pullback functor

 $\pi^*: \operatorname{mod} \Lambda' \longrightarrow \operatorname{mod} \Lambda$

induces a bijection between the simple modules. Moreover, $P(S)/J^2P(S)$ is the projective cover of the simple Λ -module S, considered as a Λ' -module. It readily follows from (**), that

$$\operatorname{Ext}^{1}_{\Lambda}(\pi^{*}(S),\pi^{*}(T)) \cong \operatorname{Ext}^{1}_{\Lambda'}(S,T) \qquad \forall \ S,T \in \mathcal{S}(\Lambda').$$

Date: June 7, 2006.

ROLF FARNSTEINER

Our assertion is now a direct consequence of Proposition 1.

Definition. The algebra Λ is a *Nakayama algebra* if every projective indecomposable and every injective indecomposable Λ -module is uniserial.

Remarks. (1) A self-injective algebra is a Nakayama algebra if and only if it is pro-uniserial.

(2) The algebra $\Lambda = k[1 \rightarrow 2 \leftarrow 3]$ is pro-uniserial, but the injective indecomposable Λ -module I_2 belonging to the vertex 2 has a top of length 2, so that Λ is not a Nakayama algebra.

(3) Using duality, we see that Λ is a Nakayama algebra if and only if Λ and Λ^{op} are pro-uniserial. Consequently, Corollary 2 also holds for Nakayama algebras.

(4) An algebra Λ is a Nakayama algebra if and only if Proposition 1 and its dual

$$\sum_{T \in \mathcal{S}(\Lambda)} \dim_k \operatorname{Ext}^1_{\Lambda}(T, S) \le 1 \qquad \forall \ S \in \mathcal{S}(\Lambda)$$

hold.

Proposition 3. Let Λ be a Nakayama algebra. Then every indecomposable Λ -module is uniserial, and Λ has finite representation type.

Proof. We prove the first assertion by induction on the Loewy length $\ell\ell(\Lambda)$ of Λ , the case $\ell\ell(\Lambda) = 1$ being trivial. Assuming $\ell := \ell\ell(\Lambda) \ge 2$, we consider an indecomposable Λ -module M. If $J^{\ell-1}M =$ (0), then M is an indecomposable module for the Nakayama algebra $\Lambda/J^{\ell-1}$, and the inductive hypothesis yields the assertion. Alternatively, there exists a simple left ideal $S \subset J^{\ell-1}$ with $S \cdot M \neq (0)$. We can therefore find $m \in M \setminus \{0\}$ such that

$$\psi_m: S \longrightarrow M \; ; \; s \mapsto s.m$$

is injective. Hence there is a map $\hat{\psi}_m : M \longrightarrow E(S)$ to the injective envelope E(S) of S, whose composite with ψ_m is the canonical inclusion $S \hookrightarrow E(S)$. As E(S) is uniserial, we can find $i \ge 0$ with $\hat{\psi}_m(M) = J^i E(S)$. Consequently, $J^{\ell-i}M \subset \ker \hat{\psi}_m$, while $J^{\ell-1}M \not\subset \ker \hat{\psi}_m$. As a result i = 0, so that $\hat{\psi}_m$ is surjective and $J^{\ell-1}E(S) \neq (0)$. Since the uniserial projective cover $\pi : P \longrightarrow$ E(S) of E(S) satisfies $\ell(P) = \ell\ell(P) \le \ell = \ell\ell(E(S)) = \ell(E(S))$, we have $P \cong E(S)$. As M is indecomposable, it now follows that $\hat{\psi}_m$ is an isomorphism. Thus, M is uniserial.

As an upshot of the above, every indecomposable $\Lambda\text{-module}\;M$ has a simple top and is thus of the form

$$M \cong P(S)/J^i P(S) \quad 0 \le i \le \ell \ell(\Lambda),$$

for some simple module S. Consequently, Λ has finite representation type.

Example. The path algebra $k[\tilde{D}_4]$ of the four subspace quiver \tilde{D}_4 is pro-uniserial, but not of finite representation type. The same holds of course for any subspace quiver involving at least four subspaces.

We let Q_{Λ} be the Gabriel quiver of Λ and denote by A_n and \tilde{A}_n the quivers with vertices $\{1, \ldots, n\}$ and $\mathbb{Z}/(n+1)$, respectively and arrows $i \to i+1$.

An analogue of following result, which is an easy consequence of Proposition 1 and its dual, was established by Kupisch prior to the introduction of quivers.

Theorem 4 (cf. Satz 5 of [3]). Let Λ be a connected Nakayama algebra. Then $Q_{\Lambda} = A_n$, A_n .

Proof. Let p be a directed path of maximal length in Q_{Λ} subject to every vertex of Q_{Λ} occurring at most once. We denote by V(p) the set of vertices of p and claim that $V(p) = (Q_{\Lambda})_0$.

Writing $V(p) = \{p_1, \ldots, p_n\}$ with arrows $p_i \to p_{i+1}$, we suppose there is a vertex $x \in (Q_\Lambda)_0 \setminus V(p)$ which is connected to some vertex $p_i \in V(p)$. If $x \to p_i$, then the dual of Proposition 1 implies i = 1, and the maximality of p gives a contradiction. Alternatively, we have $p_i \to x$, and the above reasoning first shows i = n and then yields a contradiction. Since Q_Λ is connected, our claim follows.

Let $\alpha \in (Q_{\Lambda})_1$ be an arrow. If the starting point of α is p_i , then Proposition 1 shows that α belongs to the path whenever i < n. For i = n, the dual of Proposition 1 implies that α is the unique arrow $p_n \to p_1$. As an upshot of our discussion, we conclude that $Q_{\Lambda} = A_n$ in case there is no arrow originating in p_n , and $Q_{\Lambda} = \tilde{A}_{n-1}$ otherwise.

In view of our Theorem there exists an ordering S_1, \ldots, S_n of the simple Λ -modules such that their projective covers $P_i := P(S_i)$ satisfy

$$JP_i/J^2P_i \cong S_{i+1} \quad 1 \le i \le n-1,$$

with $JP_n/J^2P_n \cong S_1$ if $JP_n \neq (0)$. This ordering is often called the *Kupisch series* of Λ . Note that the foregoing isomorphism also implies

$$\ell(P_{i+1}) \ge \ell(P_i) - 1$$

It follows from the above, that the Morita equivalence class of Λ is determined by the *n*-tuple $(\ell(P_1), \ldots, \ell(P_n)).$

Example. Suppose that Λ is a connected hereditary Nakayama algebra. Then Λ is Morita equivalent to $k[A_n]$, so that $\ell(P_i) = n + 1 - i$. Note that $k[A_n]$ is isomorphic to the algebra of lower triangular $(n \times n)$ -matrices.

We let $k[\tilde{A}_n]^{\dagger}$ be the space generated by all paths of length ≥ 1 .

Corollary 5. Let Λ be a connected Nakayama algebra. Then Λ is self-injective if and only if Λ is Morita equivalent to $k[\tilde{A}_n]/(k[\tilde{A}_n]^{\dagger})^m$ for $n = |S(\Lambda)| - 1$ and $m = \ell \ell(\Lambda)$.

Proof. If Λ is Morita equivalent to $k[\tilde{A}_n]/(k[\tilde{A}_n]^{\dagger})^m$, then we have $\operatorname{Soc}(P_i) \cong S_{i+m-1}$, where the indices are to be taken $\operatorname{mod}(n+1)$. In view of [1, Theorem], the algebra Λ is self-injective.

For the reverse direction, we pick r such that $\ell(P_r)$ is maximal. If $n \neq 0$, then no simple Λ -module is projective and there is a surjection

$$P_{r+1} \longrightarrow JP_r.$$

Since $\ell(P_r) \geq \ell(P_{r+1}) \geq \ell(P_r) - 1$, the assumption $\ell(P_r) \neq \ell(P_{r+1})$ implies that the above map is in fact an isomorphism. Thus, JP_r is injective and hence a direct summand of P_r . Consequently, $JP_r = (0)$, so that S_r is projective, a contradiction. We obtain $\ell(P_{r+1}) = \ell(P_r)$, and repeat the argument to see that $\ell(P_i) = \ell\ell(\Lambda)$ for $i \in \{1, \ldots, n+1\}$.

Since Λ has Loewy length $m = \ell(P_r)$, it follows that Λ is Morita equivalent to $k[\tilde{A}_n]/(k[\tilde{A}_n]^{\dagger})^m$.

ROLF FARNSTEINER

References

- $[1] {\rm \ R.\ Farnsteiner.\ Self-injective\ algebras:\ The\ Nakayama\ permutation.\ Lecture\ Notes,\ available\ at$
- http://www.mathematik.uni-bielefeld.de/~sek/selected.html
- [2] L. Huppert. Homological characteristics of pro-uniserial rings. J. Algebra 161 (1981), 43-66
- [3] H. Kupisch. Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung. J. reine angew. Math. 201 (1959), 100-112