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1 Preliminaries

Kac proved in [3] the following theorem:

Theorem. Let d ∈ NQ0. d =
∑

a∈I da is the canonical decomposition of d if and only if
all da, a ∈ I, are Schur roots and there exist representations Ua ∈ rep0(Q,da) such that
Ext(Ua, Ub) = 0 for a 6= b. Moreover,

⊕
a∈I Ua ∈ rep0(Q,d) ∩ repcan(Q,d).

If d =
∑

a∈I da is the canonical decomposition of d, then 〈da,db〉 ≥ 0 for all a 6= b.

In the previous lecture (see [2]), a proof of a theorem due to Schofield was given. The
theorem contained necessary (almost combinatorial) conditions for a decomposition of a di-
mension vector to be the canonical one, (which are stricter than those in the second part of
Kac’s theorem). The aim of this talk is to give also sufficient conditions.

Here is a theorem due to Schofield (see [4]) which will be needed for this:

Theorem. The following assertions are equivalent:

1. Every representation of dimension vector d1 +d2 has a subrepresentation of dimension
vector d1.

2. A general representation of dimension vector d1 +d2 has a subrepresentation of dimen-
sion vector d1.

3. ext(d1,d2) = 0.

2 Characterisation of canonical decompositions

In order to prove the theorem we will first consider a special case for two dimension vectors.

Proposition. Let d1 and d2 be Schur roots, and assume that ext(d1,d2) = 0. Then
hom(d2,d1) = 0 or ext(d2,d1) = 0. If both d1 and d2 are imaginary, then hom(d2,d1) = 0.

Proof. If d1 = d2, then (by assumption) ext(d2,d1) = 0.
Since dim Ext(−,−) is upper semicontinuous and ext(d1,d2) = 0, for any two Schur

representations R and S of dimension vectors d1 and d2, resp., we get Ext(R,S) = 0. If
hom(d1,d2) 6= 0, then Hom(R,S) 6= 0. By the Lemma due to D. Happel and C.M. Ringel
([1], see also previous talk), any non zero homomorphism f : R → S is injective or surjective,
which implies that d1 < d2 or d2 < d1. (Here, < is to be read componentwise.)
Case 1. d2 < d1.

If d2 is a real Schur root, then Ext(S, S) = 0 for each Schur representation S of dimension
vector d2, in particular ext(d2,d2) = 0.

If hom(d2,d1) = 0, we are done. So suppose that hom(d2,d1) 6= 0. Then we get for each
Schur representation R of dimension vector d1 a Schur subrepresentation S of dimension
vector d2. Therefore, ext(d2,d1 − d2) = 0 (by Schofield’s theorem in the first part of this
lecture). But then ext(d2,d1) = 0, since Ext(S, R/S ⊕ S) = 0.
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If d2 is not a real root, then Ext(R, S) = 0 for all Schur representations R and S of
dimension vectors d1 and d2, resp. Assume that hom(d2,d1) 6= 0. Then we get for each
Schur representation R of dimension vector d1 a Schur subrepresentation S of dimension
vector d2. Therefore, there is an injective homomorphism S → R. But Ext(S, S) 6= 0,
because d2 is imaginary, and so Ext(R,S) 6= 0. And this means (by the upper semicontinuity
of dim Ext(−,−)) that ext(d1,d2) 6= 0, a contradiction. So hom(d2,d1) = 0.
Case 2. d1 < d2.

If d1 is a real Schur root, then Ext(R,R) = 0 for each Schur representation R of dimension
vector d1, in particular ext(d1,d1) = 0.

If hom(d2,d1) = 0, we are done. So suppose that hom(d2,d1) 6= 0. Then we get
for each Schur representation S of dimension vector d2 a Schur factor representation R of
dimension vector d1. Taking the kernel of the corresponding map f : S → R, we obtain a
representation R′ = ker f with dimension vector d2 − d1. Therefore, ext(d2 − d1,d1) = 0
(by Schofield’s theorem in the first part of this lecture). But then ext(d2,d1) = 0, since
Ext(R′ ⊕ S/R′, S/R′) = 0.

If d1 is not a real root, then Ext(R,S) = 0 for all Schur representations R and S of
dimension vectors d1 and d2, resp. Assume that hom(d2,d1) 6= 0. Therefore, there is
a surjective homomorphism S → R. But Ext(R, R) 6= 0, because d1 is imaginary, and
so Ext(R,S) 6= 0. And this means (by the upper semicontinuity of dim Ext(−,−)) that
ext(d1,d2) 6= 0, a contradiction. So hom(d2,d1) = 0.

Combining the two results for d1 and d2 imaginary, we obtain that in this case hom(d2,d1) =
0.

Now we can prove the main theorem.

Theorem. Let Q be a quiver, and d =
∑

da be a decomposition of d into Schur roots. This
is the canonical decomposition if and only if 〈da,db〉 ≥ 0 and 〈da,db〉〈db,da〉 = 0 and in
addition ext(da,db) = 0 when 〈da,db〉 = 0.

Proof. The necessity of the conditions was proved in the previous lecture (see [2]).
On the other hand, if 〈da,db〉 = 0, then ext(da,db) = 0. So let us assume that 〈da,db〉 >

0. Then 〈db,da〉 = 0, which implies that ext(db,da) = 0. Applying the proposition, we
obtain that hom(da,db) = 0 or ext(da,db) = 0. The first case (hom(da,db) = 0) cannot
happen, because 〈da,db〉 > 0. So ext(da,db) = 0 for all a 6= b, and Kac’s theorem gives us
that d =

∑
da is the canonical decomposition.
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