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The real root modules for some quivers.

Claus Michael Ringel

Let Q be a finite quiver with veretx set I and let Λ = kQ be its path algebra. The
quivers we are interested in will contain cyclic paths, but we may assume that there are
no loops. For every vertex i, we denote by S(i) the corresponding simple module, and we
denote by modΛ the category of finite length modules with all composition factors of the
form S(i) (thus the category of all locally nilpotent representations of finite length).

We denote by q on Z
I the quadratic form defined by Q (it only depends on the graph

Q obtained from Q by deleting the orientation of the edges). For any vertex i, we denote by
ei the corresponding base element of Z

I and by σi the reflection of Z
I on the hyperplane

orthogonal to ei. The group W generated by the reflections σi is called the Weyl group
(and the elements σi its generators). An element of Z

I is called a real root provided it
belongs to the W -orbits of some ei. Also, a non-zero element of Z

I is said to be positive if
all its coefficients are non-negative, and negative, if all its coefficients are non-positive. It
is well-known that all real roots are positive or negative.

According to Kac, for any positive real root d, there is an indecomposable module
M(d) in modkQ with dimM(d) = d, and this module is unique up to isomorphism,
we call it a real root module. The problem discussed here is the following: In general, the
existence of these modules is known, but no constructive way in order to obtain them.
Also, one may be interested in special properties of these modules: Are they tree modules?
What is the structure of the endomorphism ring End(M(d))?

The following report is based on investigations of Jensen and Su [JS]. We consider the
following quiver ∆(b, c):
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with b ≥ 1 arrows of the form β and c ≥ 1 arrows of the form γ. The quadratic form is
q(d1, d2, d3) = d2

1 + d2
2 + d2

3 − d1d2 − (b + c)d2d3. (Jensen and Su consider in [JS] only the
case b = 1 = c, however the general case is rather similar.)

1. The Weyl group W . It is generated by σ1, σ2, σ3 with relations σ2
i = 1 for

i = 1, 2, 3, and σ1σ2σ1 = σ2σ1σ2, σ1σ3 = σ3σ1. The length l(w) of an element w ∈ W
is t provided w can be written as a product of t generators, and t is minimal with this
property.

Lemma 1. Any element in W of length t can be written as a product of t generators
such that neither σ2σ1σ2 nor σ1σ3 occurs.
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Proof: Write w = σi1 · · ·σit
with generators σis

for all s and such that the number of
occurances of σ1 is maximal. Then σ2σ1σ2 does not occur. In addition, shift the σ1 to the
right, whenever possible. Then also σ1σ3 does not occur.

2. The real roots. They are obtained from the canonical base vectors e1, e2, e3 by
applying Weyl group elements, the positive real roots are of the form wei0 , with 1 ≤ i0 ≤ 3.
Note that σ2e1 = σ1e2, thus if t ≥ 1, we can assume that i0 is equal to 2 or 3.

Lemma 2. The positive real roots different from e1 are of the form

d = σit
· · ·σi1ei0

with the following properties (here, 1 ≤ s ≤ t):
• i0 = 2, or i0 = 3.
• If is = 1, then is−1 = 2.
• If is = 2, then is−1 = 3.
• If is = 3, then is−1 = 1 or is−1 = 2.

We call d = σit
· · ·σi1ei0 a standard presentation of d provided these conditions are

satisfied.

Proof: Let d be a positive real root different from e1. Write d = wei0 with i0 ∈ {1, 2, 3}.
If w = σit

· · ·σi1 , with generators σis
for 1 ≤ s ≤ t, than we can assume that all the roots

σis
· · ·σi1ei with 1 ≤ s ≤ t are positive. In addition, we can assume that w has smallest

possible length.
Since d 6= e1, we can assume that i0 ∈ {2, 3}. Namely, we cannot have i1 = 3, since

σ3e1 = e1 would contradict the minimal length of w and if i1 = 2, then we replace σ2e1

by σ1e2.
According to Lemma 1, we can assume that w does not include a subword of the form

σ2σ1σ2 or σ1σ3.
The last condition is obvious: if is = 3 = is−1, then either s = 1 and σi1ei0 = σ3e3

is negative, or else s > 1 and there is a cancellation in w, in contrast to the minimality of
the length of w.

Similarly, if is = 1, then is−1 cannot be equal to 1, since otherwise there would be a
cancellation. Also is−1 6= 3: for s > 1 this follows from the fact that w does not contain
σ1σ3 as a subword. For s = 1, we could replace σ1e3 by e3, contrary to the minimal choice
of w.

Finally, assume that is = 2. If s = 1, then clearly i0 = 3. Thus s ≥ 2, and is−1 is
either 1 or 3, since otherwise there is a cancellation. Assume that is−1 = 1, and therefore
is−2 = 2. For s > 2 this is impossible, since w does not contain a subword of the form
σ2σ1σ2. If s = 2, then we deal with σi2σi1ei0 = σ2σ1e2 = e1, this contradicts again that
w is of smallest possible length. This completes the proof.

Remarks: (1) As a consequence, we see: The positive real roots different form e1 are
of the form we2 or we2, where w is a subword of a word of the form

σ1(σ2σ3)
s1σ1(σ2σ3)

s2 · · ·σ1(σ2σ3)
sm ,

2



with all si ≥ 1.

(2) If d = σit
· · ·σi1ei0 is a standard presentation, then the coefficients of the roots

σis
· · ·σi1ei0 with 0 ≤ s ≤ t are increased step by step.

Proof: We apply σ3 to d = (d1, d2, d3) only in case d2 > d3, and then d3 is replaced
by 2d2−d3 > d2 > d3. Similarly, we apply σ2 only in case d2 < d3, and then d2 is replaced
by d1 + 2d3 − d2 > d1 + d3 > d1 + d2 ≥ d2. Finally, if we apply σ1, we either apply it to
e2, or else we have applied just before σ2 to a vector d = (d1, d2, d3) with d2 < d3, thus
σ2d = (d1, d1 + 2d3 − d2, d3) and therefore σ1σ2d = (2d3 − d2, d1 + 2d3− d2, d3). But then
2d3 − d2 > d3 > d2 ≥ d1 (the last inequality is valid for all positive roots).

3. The reflection constructions Σi. For every vertex i we are going to exhibit a
reflection construction Σi which may be defined only on a full subcategoryM(i) of mod Λ
and the values may lie in a module category mod Λ′ where the graphs of Λ and Λ′ (obtained
from the quivers by deleting the orientation) can be (and have been) identified. Always we
want that an indecomposable module M is sent to an indecomposable module ΣiM and
that

(∗) dimΣiM = σi(dimM),

for M in M(i). The problem we are faced with is now visible: The construction process
of the real root modules has to assure that we always are in the domain of applying a
corresponding reflection construction.

Let us start with the vertices 2 and 3, here we use a general procedure as exhibited
in [R1]:

For any vertex i of a quiver Q with no loop at i, there is defined a functor

ρi : M
i
i →M

−i
−i

which induces an equivalence

ρi : M
i
i/〈S(i)〉 → M−i

−i.

It is defined as follows: Given a kQ-module M , let radi M be the intersection of the kernels
of maps M → S(i), thus M/ radi M is the homogeneous component of type i of the top of
M . Similarly, let soci M be the sum of the images of maps S(i) → M , thus soci M is the
homogeneous component of type i of the socle of M . Let ρi(M) = radi M/(soci M∩radi M)
(if M has no direct summand isomorphic to S(i), then ρi(M) = radi M/ soci M ; the
intersection term in the denominator is necessary in order that ρi can be applied also to
the simple module S(i)). For a proof of the asserted equivalence as well as the required
formula (∗), see [R1], Proposition 2.

Since the kernel of the functor ρi is just the ideal 〈S(i)〉 of Mi
i given by all maps

which factor through direct sums of copies of S(i), we see the following: Assume that
M, M ′ belong toMi

i (so that ρi is defined). Then

dim Hom(ρiM, ρiM
′) = dimHom(M, M ′)− (dimM/ radi M) · (dim soci M ′).
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In particular,

dimEnd(ρiM) = dim End(M)− (dim M/ radi M) · (dim soci M).

The reverse construction (forming universal extensions and coextensions) will be de-
noted by ρ−1

a .

In our case of the quiver Q = ∆(b, c), let Σ2 = ρ−1
2 , and Σ3 = ρ−1

3 . Thus

M(2) =M−2
−2 and M(3) =M−3

−3.

Now consider the vertex 1. The reflection construction Σ1 is actually functorial and
defined on all of mod k∆(a, b), but we restrict it to

M(1) = mod k∆(a, b) \ 〈S(1)〉

and it takes values in mod k∆(b, a). We start with the functor

Σ1 : mod k∆(a, b)→ mod k∆(b, a)

which is the composition of the BGP reflection functor at the source 1 (see [BGP]) followed
by k-duality and renaming of arrows. It provides an equivalence

Σ1 : mod k∆(a, b) \ 〈S(1)〉 → mod k∆(b, a) \ 〈S(1)〉.

The following property is of importance:

(a) Σ1(M
−3
−3) ⊆ M

−3
−3.

Namely, Σ1S(3) = S(3), thus a non-zero homomorphism Σ1M → S(3) yields under Σ1

a non-zero homomorphism S(3) = Σ1S(3) → Σ2
1M = M, and similarly, a non-zero ho-

momorphism S(3) → Σ1M yields under Σ1 a non-zero homomorphism M = Σ2
1M →

Σ1S(3) = S(3).

In addition, we also need to know that

M2
2 ⊆ M

−3
−3, and(b)

M3
3 ⊆ M

−2
−2.(c)

This follows from the following general result:

Lemma 3. Assume there are arrows i→ j and j → i. Then

Mi
i ⊆ M

−j
−j .
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For a proof, we may refer to [R1], Lemma 4. Let us show one of the four arguments (the
remaining ones are similar). Let M be a module with Ext1(S(i), M) = 0. We want to show
that Hom(M, S(j)) = 0. Thus assume there is a non-zero homomorphism φ : M → S(j);
note that φ is surjective. This map φ induces a map

Ext1(S(i), φ) : Ext1(S(i), M) −→ Ext1(S(i), S(j)).

Since we are in a hereditary category, an epimorphism such as φ induces an epimorphism
Ext1(S(i), φ). However, we assume that there is an arrow i→ j. Thus Ext1(S(i), S(j)) 6= 0
and therefore Ext1(S(i), M) 6= 0, a contradiction.

4. The real root modules.

Theorem (Jensen-Su). For the quivers ∆(b, c), the real root modules M(d) different
from S(1) are inductively obtained from the simple modules S(2), S(3), using the reflection
constructions Σ1, Σ2, Σ3 (and following a standard presentation of d.)

Proof: We have to show that the modules obtained inductively are contained in a
subcategoryM(i) whenever we have to use the construction Σi. There is no problem with
Σ1, since it is always defined (except for S(1), but this does not matter).

Assume we have to use Σ2. Then either we deal with the root d = σ2e3 or else with a
root d = wb = σ2σ3d

′, for some positive real root d′. By induction, the module M(σ3d
′)

has been constructed using Σ3, thus it belongs to M3
3. Of course, also M(e3) = S(3)

belongs toM3
3. Thus, in both cases we have to apply Σ2 to a module inM3

3. According to
(c), we know that M3

3 ⊆M
−2
−2, thus we can apply the construction Σ2 in order to obtain

M(d) (we obtain either Σ2S(3) or Σ2M(σ3d
′)).

Finally, assume we have to apply Σ3. If we deal with the root d = σ3e2 or with
d = σ3σ2d

′ for some positive real root d′, then we argue as in the previous case, now
using the assertion (b): M2

2 ⊆ M
−3
−3. Thus it remains to consider the case where either

d = σ3σ1e2 or d = σ3σ1σ2d
′′ for some positive real root d′′. In this case, we start with

the module N = M(e2) or with N = M(σ2d
′′), both belonging toM2

2, thus N belongs to
M−3

−3 (this is (b)), and apply to it first Σ1, then Σ3. Now, with N also Σ1N belongs to

M−3
−3, according to (a), thus there is no problem for applying Σ3 to Σ1N. This completes

the proof.

5. Coefficient quivers for A2. Let J = {0, 1, . . . , n} and I ⊂ J with 0 ∈ I and
n /∈ I. For i ∈ I, let i+ = min{i′|i < i′, i′ ∈ I ∪ {n}. We define an (I × J)-matrix A(I, J)
by

aij =

{

1 if i ≤ j ≤ i+

0 otherwise,

This is a matrix of rank |I|.
Simliarly, consider K ⊂ J with 0 /∈ K and n ∈ K. For k ∈ K, let k− = min{k′|k <

k′, k′ ∈ K ∪ {0}. We define an (J ×K)-matrix B(J, K) by

bjk =

{

(−1)k if k− ≤ j ≤ k
0 otherwise.
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This is a matrix of rank |I|.

Lemma 4. Let I ⊂ J = {0, 1, . . . , n} with 0 ∈ I and n /∈ I. Then

A(I, J)B(J, J \ I) = 0.

Example: Let n = 9, let I = {0, 1, 4, 5}. Then

A(I, J) =

[ 1 1

1 1 1 1

1 1

1 1 1 1 1

]

, B(J, J \ I) =





















1

−1

1 1

−1 −1

1

−1

1 1

−1 −1

1 1

−1





















.

For the proof, we need the following observation: Let K = J \ I. For i ∈ I and
k ∈ K, the intervalls [i, i+] and [k−, k] either avoid each other, or else they intersect in
a pair [j − 1, j]. Namely, assume they do not avoid each other, let j be maximal in the
intersection. In particular, i ≤ j ≤ i+ and k− ≤ j ≤ k. Note that j cannot be zero: If
j = 0, then i = 0 and k− = 0. But then also 1 belongs to [i, i+] ∩ [k−, k].

Case 1. Assume that j belongs to I, thus k− < j < k (here we use that j 6= 0).
Note that all the elements {k+ + 1, . . . , k − 1} belong to I. Then j = i+, since otherwise
j + 1 ∈ [i, i+] ∩ [k−, k], contrary to the maximality of j. Thus i < j. If i = j − 1, then
k− < j − 1 and [i, i + 1] = [j − 1, j] ⊂ [k−, k]. If i < j − 1, then i < j − 1 < i+ shows that
j − 1 belongs to K, thus j − 1 = k− and [j − 1, j] = [i, i+] ∩ [k−, k].

Case 2. Now j belongs to K, thus i < j. The only elements in [k−, k] which belong
to K are k− and k. If j = k−, then j + 1 ∈ [k−, k]. Also j < i+, thus j is not maximal
in [i, i+] ∩ [k−, k], a contradiction. This shows that j = k. If k− = j − 1], then [j −
1, j] = [k−, k] ⊂ [i, i+]. If k− < j − 1], then j − 1 belongs to I and j < i+. Thus again
[j − 1, j] = [i, i+] ∩ [k−, k].

Remark: A non-zero intersection [i, i+]∩ [k−, k] arises in different ways: we may have
[i, i+] ⊂ [k−, k] (in the example above, this arises for i = 0 and k = 2), or [k−, k] ⊂ [i, i+]
(in the example: i = 1, k = 3), as [i, i+] ∩ [k−, k] = [k−, i+] (in the example: i = 1, k = 2).
or finally as [i, i+] ∩ [k−, k] = [i, k] (in the example: i = 5, k = 6).

Now we are able to provide the proof of Lemma 4: If we multiply the row of A(I, J)
with index i ∈ I with the column of B(J, K) with index k ∈ K, we obtain

∑

t

aitbtk =
∑

t∈[i,i+]∩[k−,k]

aitbtk

All the summands are zero in case [i, i+]∩ [k−, k] is empty. Otherwise, there is some j with
[i, i+] ∩ [k−, k] = [j − 1, j] and then

∑

t

aitbtk = ai,j−1bj−1,k + aijbjk = (−1)j−1 + (−1)j = 0.
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It is of interest for us, to draw the coefficient quivers both of A(I, J) and B(J, K),
where K = J \ I:
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(the arrows go from right to left).

Definition: We say that a matrix with rank equal to the number of columns is in
standard inclusion form provided it is a direct sum of matrices of the form B(J, K) as well
as of copies of [1] : k → k and of empty matrices 0→ k.

Proposition 1 (Jensen-Su). Let f : U → V be an injective vector space homomor-
phism. Assume there is given a basis U of U and a basis V of V such that the corresponding
matrix representation of f in standard inclusion form. Let g : V → W be a cokernel of f
and consider the dual map g∗ : W ∗ → V ∗. Let V∗ be the dual basis of V. Then there is a
basis of W of W , with dual basis W∗ such that the matrix representation of g∗ with respect
to W∗ and V ∗ is again in standard inclusion form.

The proof of Proposition 1 by Jensen-Su uses induction (see [JS] Proposition 6.2).

Remark. Let us characterize the shape of the coefficient quiver of a matrix of the
form A(I, J): It is a tree obtained from the bipartite A-quiver with vertex set

I × {0} ∪ (I ∪ {n})× {1}

and arrows (i, 0) ← (i, 1) and (i, 0) ← (i+, 1) by adding additional leaves in vertices in
I × {0}. There is a similar description for the coefficient quiver of B(J, K), here the A-
subquiver has the vertex set A-quiver with vertex set

({0} ∪K)× {0} ∪ K × {1},

and the additional leaves are attached to vertices in K × {1}.

In the example above, let us exhibit the bipartite A-quivers for A(I, J) as well as of
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B(J, K) by marking the additional leaves as dotted edges:
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6. The real root representations of ∆(a, b) are tree modules (in the sense of
[R2]; for b = 1 = c, see [JS], Theorem 6.3). This will be shown by induction, using the
reflection constructions Σ1, Σ2, Σ3.

Recipe for Σ1. Here we use Proposition 1 as follows:

Let M be a representation of a quiver Q of the form

• •
1 2

Q′
α

..................................................................................................................................
...............
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Let M(1) = mod kQ \ 〈S(1)〉 and define Σ1 as the composition of the BGP reflection
functor at the source 1 followed by k-duality (note that Σ1M is a representation of the
quiver Q′′ obtained from Q by reversing all the arrows in Q′). A representation M of Q (or
of Q′′) will be said to be a tree module with α in standard inclusion form, provided there
are bases of the vector spaces Mi such that both the corresponding coefficient quiver is a
tree as well as Mα is in standard inclusion form.

Lemma 5. Assume that M in M(1) is a tree module with α in standard inclusion
form. Then also Σ1M is a tree module with α in standard inclusion form.

Proof. For every vertex i of Q, there is given a basis Bi of Mi such that the coefficient
quiver Γ of M with respect to these bases is a tree and such that the matrix for Mα is in
standard inclusion form. For every i 6= 0, let B∗i be the dual basis of M∗

i . Let g : M2 →W
be the cokernel of Mα. According to proposition 1 there is a basis W of W with dual
basis W∗ such that the matrix representation of g with respect to the bases B∗2 and W∗

is in standard inclusion form. It remains to show that the coefficient quiver Γ∗ of Σ1M
with respect to the bases W∗ and B∗i with i 6= 1 is a tree. First we show that the Γ∗ is
connected. By assumption, any two elements of B are connected by a path in Γ. Now we
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have deleted the paths given by the matrix Mα. However, two vertices in B1 are connected
by a path corresponding to the matrix Mα if and only if the corresponding vertices in B∗1
are connected by a path corresponding to g. Second, note that we have not created cycles,
since the new connections which are established are given by unique paths.

Let M be a representation of ∆(b, c). We denote by Kr M the restriction of M to the
full subquiver Q′ given by vertices 2 and 3; it is a submodule of M and the factor module
M/ Kr M can be identified with M1 (considered as a representation of ∆(b, c) extended by
zeros, thus as a direct sum of copies of S(1)).

Recipe for Σ2 and Σ3. Since these reflection constructions are provided by universal
extensions from above and from below, we see as in [R2] that with M a tree module inM(i)
also ΣiM is a tree module (i = 1, 2). (But observe that this argument yields a tree structure
for a given base field and one cannot be sure that the construction is independent of the
characteristic of the field!) In case b = c = 1, Jensen-Su [JS] provide a tree presentation
which works for every field.

The construction Σ3 only depends on the restriction Kr M of M the full subquiver
Q′ with vertices 2, 3. In contrast, the construction Σ2 also takes into account the vector
space at the vertex 1. In order to provide a clear picture for Σ2, we need the following
preliminary result.

Lemma 6.

M3
3 ⊆ {M | Hom(S(2), KrM) = 0 = Hom(Kr M, S(2))}.

Clearly, any homomorphism S(2) → M factors through the submodule Kr M of M,
thus Hom(S(2), KrM) can be identified with Hom(S(2), M). According to Lemma 3, we
know that any module M inM3

3 satisfies Hom(S(2), M) = 0, thus also Hom(S(2), KrM) =
0. On the other hand, the restriction map Hom(M, S(2))→ Hom(Kr M, S(2)) is injective,
thus we see that Lemma 6 is stronger than the assertion obtained from Lemma 3.

Let M be an indecomposable representation of ∆(b, c) with Hom(KrM, S(2)) 6= 0. As
we have seen in the proof of Lemma 3, Ext1(S(3), KrM) 6= 0. Let

0→ Kr M
f
−→ N −→ S(3)→ 0

be a non-split extension. The inclsuion map Kr M →M yields an induced exact sequence

0 −−−−→ Kr M
f

−−−−→ N −−−−→ S(3) −−−−→ 0

u





y





yu′

∥

∥

∥

0 −−−−→ M
f ′

−−−−→ N ′ −−−−→ S(3) −−−−→ 0

Now assume the induced exact sequence splits, thus there is h : N ′ → M with hf ′ = 1M .
This yields a commutative diagram

0 −−−−→ Kr M
f

−−−−→ N −−−−→ S(3) −−−−→ 0
∥

∥

∥ hu′





y





y

0 −−−−→ Kr M
u

−−−−→ M −−−−→ M1 −−−−→ 0
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The map S(3) → M1 has to be zero, since M1 is a direct sum of copies of S(1), thus hu′

factors through u, and this implies that f is a split monomorphism, a contradiction.

Corollary. Let M ∈ M3
3. The exact sequence 0 → Kr M → M → M1 → 0 induces

an exact sequence

0→ Ext1(M1, S(2))→ Ext1(M, S(2))→ Ext1(Kr M, S(2))→ 0.

Proof: This is part of the long exact sequence

Hom(Kr M, S(2))→ Ext1(M1, S(2))→ Ext1(M, S(2))→ Ext1(Kr M, S(2))→ 0,

and Lemma 6 asserts that Hom(Kr M, S(2)) = 0.

For our problem of finding a tree presentation for Σ2M , we see the following: we start
with a tree presentation of M and attach copies of S(2) from above by taking a basis of
Ext1(S(2), M). Then we attach copies of S(2) from below by taking on the one hand a
basis of Ext1(M1, S(2)), on the other hand a basis of Ext1(Kr M, S(2)). The process of
attaching copies of S(2) from below dealing with Ext1(M1, S(2)) is achieved as follows: we
just attach to each base element b of M1 a corresponding leaf at b.

Let us denote by Q′ the full subquiver of ∆(b, c) with vertices 2, 3. Let M belong to
M(2). Then Kr Σ2M = Σ2 Kr M ⊕ (M1, 0). (Here, N = (M1, 0) is the representation of Q′

with N2 = M1 and N3 = 0.)

In case b = c = 1, the reflection constructions Σ2 and Σ3 for representations N = Kr N
are very easy to describe: an indecomposable module N = Kr N is serial and the process
of attaching copies of S(2) or S(3) from above or from below just means that we enlarge
the length of it by 2: we write N as the subfactor N = radN ′/ socN ′, where N ′ is
indecomposable. Of course, such serial modules are tree modules, with coefficient quiver
being linearly ordered of type A (in particular, the coefficient quiver is independent of the
given base field).

7. Some properties of real root modules. Having constructed the real root mo-
dules M(d) for ∆(a, b), one may use the construction in order to study properties of these
modules.

Let M be a real root module, and Kr M its restriction to the full subquiver Q′ of
∆(b, c) with vertices 2, 3. The indecomposable direct summands N of Kr M are real root
modules for Q′, thus of odd Loewy length. if the Loewy length of such a direct summand
N is equal to 2t + 1, then radt M/(soct M ∩ radt M) is a simple module, called the center
of N .

(1) For M = S(1), the module Kr M is 0, otherwise non-zero. If Kr M 6= 0,, then
Kr M has at most one direct summand with center S(3), the remaining direct summands
have center S(2). Write d = wb with w ∈ W and b = e2 or b = e3. The restriction
Kr M(wb) has a direct suammmand with center S(3) if and only if b = e3.
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(2) Either the image of α is contained in radKr M , or else M is generated by the
subspace M1. Note that M is generated by M1 if and only if either M = S(1), or M =
Σ1S(2), or M = Σ1Σ2M

′′ for some real root module M ′′ ∈M(2).

8. Further properties of real root modules. Some other properties of the real
root modules should be considered. In the case b = 1 = c, this is done in [JS].

(a) One can use the indications mentioned above concerning the change of endomor-
phism rings under the reflection constructions in order to describe End(M(d)) at least
partly; in particular one is interested in the growth of dim End(M(wb)) depending on the
length of w (where wb is given by a standard presentation), see [JS], sections 5 and 7.

(b) For any positive real root d, one may compare the module M(d) with the other
modules with dimension vector d, in particular with those with smallest possible endo-
morphism ring dimension, see [JS], section 7 (for the quivers with 2 vertices, see [R1],
Proposition 4).

9. Final remarks. It should be noted that the reflection functors ρi are very special
cases of the reflection functors ρE introduced in [R1]: in general, one considers instead of
S(i) an arbitrary exceptional module E (this means: an indecomposable module without
self-extensions, such modules are always real root modules), and a suitably defined subca-
tegoryME

E . This then provides a partial realization of the reflection σE at the hyperplane
in Z

I orthogonal to dimE.
Note that the special cases ρi allow to construct all the real root modules in case we

deal with a quiver Q with the following property ([R3]): Given an arrow i → j in the
quiver, there are also arrows j → i.
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