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Minimal infinite cogeneration-closed subcategories.

Claus Michael Ringel

Let Λ be an artin algebra, and modΛ the category of Λ-modules of finite length. The
subcategories to be considered will be full subcategories closed under isomorphisms, direct
sums and dirct summands, we call such subcategories additive subcategories. Let C be
an additive subcategory. We say that C is finite provided it contains only finitely many
isomorphism classes of indecomposable modules, otherwise C is said to be infinite. We say
that C is minimal infinite provided C is infinite, but any proper additive subcategory D ⊂ C
is finite. Finally, C is cogeneration-closed, provided it is also closed under submodules.
Given a class X of modules (or of isomorphism classes of modules), we denote by addX
the smallest additive subcategory containing X .

Theorem. Let C be an infinite cogeneration-closed subcategory of modΛ. Then C
contains a minimal infinite cogeneration-closed subcategory C′.

Proof. We denote by N = N1 the natural numbers starting with 1. Given a Gabriel-
Roiter measure I, let C(I) be the set of isomorphism classes of indecomposable objects in
C with Gabriel-Roiter measure I. An obvious adaption of one of the main results of [R1]
asserts:

There is an infinite sequence of Gabriel-Roiter measures I1 < I2 < · · · such that C(It)
is non-empty for any t ∈ N and such that for any J with C(J) 6= ∅, either J = It for some

t or else J > It for all t. Moreover, all the sets C(It) are finite. (Note that the sequence of
measures It depends on C, thus one should write IC

t = It; the papers [R1,R2] were dealing
only with the case C = modΛ, but the proofs carry over to the more general case of dealing
with a cogeneration-closed subcategory C).

Since add
⋃

t∈N
C(It) is cogeneration-closed, we can assume that C = add

⋃
t∈N

C(It).
In order to construct C′, we will construct a sequence of subcategories

C = C0 ⊇ C1 ⊇ C2 ⊇ · · ·

with the following properties:
(a) Any subcategory Ci is infinite and cogeneration-closed,

(b) Ci(It) = Ct(It) for t ≤ i.

(c) If D ⊆ Ci is infinite and cogeneration-closed, then

D(It) = Ct(It) for t ≤ i.
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We start with C0 = C (the t in conditions (b) and (c) satisfies t ≥ 1, thus nothing has
to be verified). Assume, we have constructed Ci for some i ≥ 0, satisfying the conditions
(a), and the conditions (b), (c) for all pairs (i, t) with t ≤ i. We are going to construct
Ci+1.

Call a subset X of Ci(Ii+1) good, provided there is a subcategory DX of Ci which is
infinite and cogeneration-closed and such that DX (Ii+1) = X . For example Ci(Ii+1) itself
is good (with DX = Ci). Since Ci(Ii+1) is a finite set, we can choose a minimal good
subset X ′ ⊆ X . For X ′, there is an infinite and cogeneration-closed subcategory DX ′ of
Ci such that DX ′(Ii+1) = X ′. (Note that in general neither X ′ nor DX ′ will be uniquely
determined: usually, there may be several possible choices. Also note that X ′ may be
empty.) Let Ci+1 = DX ′ . By assumption, Ci+1 is infinite and cogeneration-closed, thus (a)
is satisfied. In order to show (b) for all pairs (i + 1, t) with t ≤ i + 1, we first consider
some t ≤ i. We can apply (c) for D = Ci+1 ⊆ Ci and see that D(It) = Ct(It), as required.
But for t = i + 1, nothing has to be shown. Finally, let us show (c). Thus let D ⊆ Ci+1

be an infinite cogeneration-closed subcategory. Since D ⊆ Ci, we know by induction that
D(It) = Ct(It) for t ≤ i. It remains to show that D(Ii+1) = Ci+1(Ii+1). Since D ⊆ Ci+1,
we have D(Ii+1) ⊆ Ci+1(Ii+1). But if this would be a proper inclusion, then X = D(Ii+1)
would be a good subset of Ci(Ii+1) which is properly contained in Ci+1(Ii+1) = DX ′(Ii+1),
a contradiction to the minimality of X ′. This completes the inductive construction of the
various Ci.

Now let
C′ =

⋂
i∈N

Ci.

Of course, C′ is cogeneration-closed. Also, we see immediately

(b′) C′(It) = Ct(It) for all t,

since C′(It) =
⋂

i≥t Ci(It) = Ct(It), according to (b).
First, we show that C′ is infinite. Of course, C′(I1) 6= ∅, since I1 = {1} and a good

subset of C0(I1) has to contain at least one simple module. Assume that C′(Is) 6= ∅ for some
s, we want to see that there is t > s with C′(It) 6= ∅. For every Gabriel-Roiter measure I,
let n(I) be the minimal number n with I ⊆ [1, n], thus n(I) is the length of the modules in
C(I). Let n(s) be the maximum of n(Ij) with j ≤ s, thus n(s) is the maximal length of the
modules in

⋃
j≤s C(Ij). Let s′ be a natural number such that n(Ij) > n(s)pq for all j > s′

(such a number exists, since the modules in Ij with j large, have large length); here p is
the maximal length of an indecomposable projective module, q that of an indecomposable
injective module.

We claim that C′(Ij) 6= ∅ for some j with s < j ≤ s′. Assume for the contrary
that C′(Ij) = ∅ for all s < j ≤ s′. We consider Cs′ . Since Cs′ is infinite, there is some
t > s with Cs′(It) 6= ∅, and we choose t minimal. Now for s < j ≤ s′, we know that
Cs′(Ij) = Cj(Ij) = C′(Ij) = ∅, according to (b) and (b′). This shows that t > s′. Let Y be
an indecomposable module with isomorphism class in Cs′(It). Let X be a Gabriel-Roiter
submodule of Y . Then X belongs to Cs′(Ij) with j < t. If j ≤ s, then the length of X
is bounded by n(s), and therefore Y is bounded by n(s)pq (see [R2], 3.1 Corollary), in
contrast to the fact that n(It) > n(s)pq. Thus j > s. Buth then s < j < t and Cs′(Ij) 6= ∅
— this contradicts the minimality of t. This final contradiction shows that C′ is infinite.
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Now, let D be an infinite cogeneration-closed subcategory of C′. We show that D[It] =
C′[It] for all t. Consider some fixed t and choose an i with i ≥ t. Since C′ ⊆ Ci, we see that
D[t] = Ct[t] the given t, according to (b) for Ci. But according to (b′), we also know that
C′[t] = Ct[t]. This completes the proof.

Example 1. Any tame concealed algebras has a unique minimal infinite cogeneration-

closed subcategory C, namely the subcategory of all preprojective modules.

Example 2. Let I be a twosided ideal in Λ. The category of Λ-modules annihilated by
I is obviously cogeneration-closed and of course equivalent (or even equal) to the category
of all Λ/I-modules. If Λ/I is representation-finite, then mod Λ/I will contain a minimal
infinite cogeneration-closed subcategory. Consider for example the generalized Kronecker-
algebra K(3) with three arrows α, β, γ. The one-dimensional ideals of K(3) correspond
bijectively to the elements of the projective plane P

2, say a = (a0 : a1 : a2) ∈ P
2 yields the

ideal Ia = 〈a0α+a1β+a2γ〉. Let Ca be additive subcategory of modK(3) of all preprojecti-
ve K(3)/Ia-modules. Then these are pairwise different minimal infinite cogeneration-closed
subcategories (the intersection of any two of these subcategories is the subcategory of se-
misimple projective modules). In particular, if the base field is finite, there are infinitely

many subcategories in modK(3) which are minimal infinite and cogeneration-closed. (No-
te that the preprojective K(3)-modules provide a further subcategory which is minimal
infinite and cogeneration-closed.)

Example 3. There can be several different take-off categories containing all the inde-
composable projective modules: Take the take-off part, as well as the preprojective com-
ponent of the algebra with 3 vertices a, b, c, two arrows b → a, and two arrows c → b.
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