
Symmetries of flat manifolds

Let An
∼= GLn(R) n Rn be the group of affine maps from Rn onto itself, and let En

∼= On(R) n Rn

be the group of isometries from Rn onto itself. Both An and En will be considered as topological
groups with their natural topologies.

Definition 1
(i) A n-dimensional crystallographic group 0 is a discrete, cocompact (i.e. the orbit space Rn/0

is compact) subgroup of En .

(ii) A Bieberbach group is a torsionfree crystallographic group.

(iii) A n-dimensional (compact) flat (Riemannian) manifold is the orbit space of a n-dimensional
Bieberbach group. �

Of course, this is not the usual definition of a flat manifold. Usually, one takes a compact Rie-
mannian manifold with curvature zero. However, every such manifold has universal cover Rn , and
the corresponding group of Deck transformations is a Bieberbach group. Thus one could define
Bieberbach groups to be the fundamental groups of flat manifolds.

Examples: Obviously, 0 := Zn is a Bieberbach group. The corresponding flat manifold is Rn/Zn ,
a flat torus.

Now consider

0 := 〈 (

(
1 0
0 −1

)
,

( 1
2
0

)
), (

(
1 0
0 1

)
,

(
0
1

)
) 〉 ≤ E2.

This is easily seen to be Bieberbach group. Its orbit space is the Klein bottle. 0 and Z2 are the only
2-dimensional Bieberbach groups.

Definition 2
Let 01, 02 ≤ En be Bieberbach groups with orbit spaces X i := Rn/0i . A diffeomorphism
α : X1 → X2 is called affine, if there exists α̃ ∈ An such that the diagram

Rn α̃ //

��

Rn

��
X1

α // x2

commutes. Aff(X1) := {α : X1 → X1 | αaffine} is called the group of affinites of X1. �

Once again, there is some geometry hidden. A Riemannian manifolds possesses a unique connec-
tion, called the Levi-Civita connection, that is compatible with the Riemannian structure. An affine
diffeomorphism of two Riemannian manifolds is one that respects the Levi-Civita connection.

Conjecture 3 (Malfait, 1998)
If X is flat manifold with dim(X) > 0, then Aff(X) is not torsionfree. �

The task for my diploma thesis was to prove or disprove this conjecture. Fortunately, I found a
counterexample, which will be presented at the end of this notes.

We now state Bieberbach’s fundamental theorem on the structure of crystallographic groups. The
third part is the solution to (half of) Hilbert’s 18th problem.
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Theorem 4 (Bieberbach, 1911-1912)
Let 0 ≤ En be a crystallographic group.

(i) The translational part L := 0 ∩ Rn is a full lattice in Rn , i.e. L ∼= Zn , and L contains a basis
of Rn . The holonomy group G := 0/L of 0 is finite.

(ii) Let 0′
≤ En be a crystallographic group, and let f : 0 → 0′ be an isomorphism. Then there

exists α ∈ An such that f (γ ) = αγα−1 for all γ ∈ 0, i.e. f is induced by conjugation with
α.

(iii) Up to conjugation with an element of An , there are only finitely many n-dimensional crystal-
lographic groups. �

The corresponding theorem for flat manifolds is:

Theorem 5
(i) Every flat manifold is covered by a flat torus and has finite holonomy group.

(ii) If two flat manifolds have isomorphic fundamental groups, they are isomorphic.

(iii) Up to affine equivalence, there are only finitely many flat manifolds of a given dimension. �

The name holonomy group for the quotient 0/L comes from differential geometry: a connection
on a manifold X yields a linear map of tangent spaces Tx X → Ty X for a given path from x to y,
called parallel transport along this path. Doing this for loops, one obtains a subgroup of GL(Tx X)

for each x ∈ X , called the holonomy group at x . If X is path connected, all holonomy groups
are isomorphic. One can show that the holonomy group of Rn/0 (with respect to the Levi-Civita
connection) is 0/L .

From now on, let 0 ≤ En be a crystallographic group with translation subgroup L and holonomy
group G. By the first part of Bieberbach’s theorem, 0 satisfies an exact sequence

0 → L → 0 → G → 1.

Obviously, G acts faithfully on L , so we may assume that G is a subgroup of Aut(L).1 Conversely,
any extension as above, where L is a free Abelian group of rank n, and G is a finite subgroup
of Aut(L), gives rise to an n-dimensional crystallographic group. The extensions of L by G are
parametrized by the elements of H 2(G, L) = Ext2ZG(Z, L), and the extension corresponding to
η ∈ H 2(G, L) is torsionfree if and only if resG

Uη 6= 0 for all 1 6= U ≤ G.

As a consequence of the second part of Bieberbach’s theorem, the group of affinites of a flat
manifold is closely related to the automorphism group of the corresponding Bieberbach group. First
of all, Aut(0) ∼= NAn (0)/CAn (0). An easy computation gives:

Proposition 6
Z(0) = LG

:= {v ∈ L | gv = v ∀g ∈ G} and CAn (0) = (Rn)G
= 〈LG

〉R. �

1This sequence allows one to prove the third part of Bieberbach’s theorem. By the second part, one only needs to
consider crystallographic groups up to isomorphism. By a theorem of Jordan, there are only finitely many conjugacy
classes of finite subgroups of GLn(Z). Also, for each finite subgroup G there are only finitely many extensions.
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Thus NAn (0)/0 has an Abelian normal subgroup, CAn (0)0/0 ∼= (R/Z)rank(Z(0)), and the quotient
by this subgroup is isomorphic to Out(0), the group of outer automorphism of 0.

If 0 is a Bieberbach group, Aff(Rn/0) ∼= NAn (0)/0. The subgroup CAn (0)0/0 is the identity
component of the group of affinities. It is a torus whose dimension is equal to the rank of Z(0) by the
above discussion. It is known from algebraic topology that H1(Rn/0) is isomorphic to 0/[0, 0].2

It is not to hard to show that the torsionfree part of 0/[0, 0] is isomorphic to Z(0). Thus, the rank
of Z(0), which is the dimension of Aff0(Rn/0), happens to be the first Betti number of Rn/0.

To understand the group of affinities of a flat manifold, it remains to understand the outer auto-
morphism group of its fundamental group. We will now look at Out(0) for a crystallographic group
0, since it makes no difference for the description of the outer automorphism group whether 0 is
torsionfree or not. Pick f ∈ Aut(0). By Bieberbach’s second theorem, there exists α = (x, u) ∈ An

such that f is just conjugation by α. Thus

f (g, l) = (x, u)(g, l)(x−1, −x−1u) = (xgx−1, u + xl − xgx−1u)

for any (g, l) ∈ 0. This implies x ∈ N := NAut(L)(G). But N acts on H 2(G, L) in a natural way,
and one sees easily that x must fix the element η ∈ H 2(G, L) which corresponds to 0. Altogether,
one gets a homomorphism r : Aut(0) → Nη, where Nη denotes the stabilizer of η in N . It is rather
straightforward to check the following properties of r .

Proposition 7
(i) r is onto.

(ii) The kernel of r consists of those automorphisms of 0 that induce automorphisms of the ex-
tension

0 → L → 0 → G → 1.

(iii) The kernel of r , intersected with the group of inner automorphisms of 0, is isomorphic to
L/LG

= L/Z(0).

(iv) ker(r)/ ker(r) ∩ Inn(0) ∼= H 1(G, L) �

Here, Inn(0) ∼= 0/Z(0) denotes the group of inner automorphisms of 0.

Theorem 8
The outer automorphism group of 0 satisfies the following exact sequence:

0 → H 1(G, L) → Out(0) → Nη/G → 1

2It is easy to compute the commutator subgroup for the fundamental group of the Klein bottle. It is Z(0, 2)t . Hence the
first homology group of the Klein bottle is Z ⊕ (Z/2Z).
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Proof: The properties of r mentioned above yield the following commutative diagram:

0

��

1

��

1

��
0 // L/LG //

��

Inn(0)
r //

��

G //

��

1

1 // ker(r) //

��

Aut(0)
r //

��

Nη
//

��

1

H 1(G, L)

��

Out(0)

��

Nη/G

��
0 1 1

An easy diagram chase shows that one can complete the bottom row. �

The cohomology groups H i (G, L) are finite for i > 0, so one gets:

Corollary 9
Out(0) is finite if and only if N is finite. �

Since the quotient N/CAut(L)(G) . Aut(G) is finite, N is finite if and only if CAut(L)(G) is finite.
This is the unit group of EndZG(L), which is a Z-order in EndQG(L). Analyzing unit groups of
orders, one can show:

Theorem 10 (Brown-Neubüser-Zassenhaus, 1973)
Out(0) is finite if and only if Q ⊗Z L is multiplicity free (as a QG-module), and for each simple
submodule V of Q ⊗Z L , the RG-module R ⊗Q V is simple. �

Let M be a ZG lattice, i.e. a ZG-module which is free of finite rank as a Z-module. Suppose
that R ⊗Z M is simple. Then two cases occur: either C ⊗Z M is simple, or C ⊗Z M = V ⊕ V ,
where the character of G afforded by V is the complex conjugate of the character afforded by
V . In the first case, EndZG(M) ∼= Z is as small as it can possibly be. In the second case,
EndQG(Q ⊗Z M) ∼= Q(χV ) is an imaginary quadratic number field (χV denotes the character af-
forded by V ). The ring of algebraic integers in Q(χV ) is the unique maximal order, and its unit
group is {±1}, unless Q(χV ) = Q(i) or Q(χV ) = Q( 1+i

√
3

2 ).

Example: Let G := M11 be the Mathieu group on eleven letters. This has no outer automor-
phisms, so it suffices to consider the centralizer. Using trial and error – and a computer –, I have
constructed four ZG-lattices L1, . . . , L4 as follows:

(i) The character afforded by L1 is the sum of the two complex conjugate characters of G of
degree ten, the character field is Q(i

√
2), and H 2(G, L1) ∼= C6.

(ii) The character afforded by L2 is the sum of the two characters of G of degree 16, the character
field is Q(i

√
11), and H 2(G, L2) ∼= C5.

(iii) The character afforded by L3 is the irreducible character of G of degree 44 and H 2(G, L3) is
cyclic of order six.
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(iv) The character afforded by L4 is the irreducible character of G of degree 45 and H 2(G, L4) is
cyclic of order eleven.

Let L := L1 ⊕ · · · ⊕ L4. Since the trivial character is no constituent of the character afforded by
L , the space LG of fixed points is zero. This implies, using the long exact sequence of cohomology,
that H 1(G, L) is isomorphic to H 0(G, Q⊗Z L/L) = (Q⊗Z L/L)G . A prime p divides the order of
this group of fixed points if and only if (L/pL)G is non-zero. One can easily check – again using a
computer –, that (L i/pL i )

G
= 0 for all i and all primes dividing |G| = 7920 = 24

·32
·5 ·11. Thus,

H 1(G, L) = 0. By the above discussion, C := CAut(L)(G) ∼= {±1}
4. Let η := η1 + · · · + η4, where

each ηi is a generator of H 2(G, L i ). None of the ηi has order two, so Cη := StabC(η) = 1. By 8,
the outer automorphism group of 0 is trivial, where 0 is the extension corresponding to η. Also,
Z(0) = LG

= 0, so 0 gives a counterexample to Malfait’s conjecture, provided it is torsionfree.
However, using once more a computer rather then the brain, one checks that resG

Uη 6= 0 for each
1 6= U ≤ G. Note that it suffices to this for representatives of the subgroups of prime order, since
restriction is transitive (and "invariant" an conjugacy classes of subgroups). Also, there is nothing to
be done for subgroups of order five or eleven, since those are Sylow subgroups (for P ≤ G a Sylow
p-subgroup, resG

P : H i (G, L)p → H i (P, L) is injective for i > 0).
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