
Selected Topics: Exact structures on exact categories

summary/aims: We summarize known results on exact structures on exact categories. For the
corespondence to subfunctors of Ext we follow [14] and [4].

Exact categories

We start with the definition of an exact category in the sense of Quillen using Keller’s axioms ([14], Appendix
by Keller or [21], Appendix A). Let A be an additive category. We call a pair of morphism (i, d) in A a
kernel-cokernel pair if i is a kernel of d and d is a cokernel of i. Now, let S be a class of kernel-cokernel
pairs on A which is stable under isomorphisms. If (i, d) is in S we will call i an inflation, d a deflation and
(i, d) an exact sequence. We call S an exact structure on A (and A an exact category) if it fulfills

(Ex0) The identity morphisms of the zero object is a deflation.

(Ex1) The composition of two inflations (resp. deflations) is an inflation (resp. deflation).

(Ex2) Deflations pull back along any morphism to deflations (resp.: Inflations push out along any morphism to
inflations). This means, for each f ∈ HomA(Z ′, Z) and each deflation d ∈ HomA(Y,Z), there is a
cartesian square (also called pullback)

Y ′
d′ //

f ′

��

Z ′

f

��
Y

d // Z

where d′ is a deflation. Inflations push out along any morphism to inflations.

We say an additive category A is weakly idempotent complete if every retraction has a kernel and every
section has a cokernel. In the case that the category A is weakly idempotent complete, these axioms are
equivalent to the set of axioms from [14], Appendix by Keller, first considered by Gabriel and Roiter in [16].

Historical remark: Following Bühler [10], we remark that there is a long list of predecessors to Quillen’s
definition [23] of an exact structure on an additive category. Buchsbaum [9], Butler-Horrocks [11] and
MacLane [22], XII.4, had earlier definitions using so-called proper classes of morphisms (in abelian categories),
for a survey of this theory one can consult [17]. In their definition the important pullback/pushout axiom is
missing. On the other hand Heller [18] and Yoneda [25] already had foreseen Quillen’s definition of an exact
category if the additive category is idempotent complete.

In [10], Prop. 2.9, Cor. 2.18 it is shown: If (A,S) is an exact category, then S is closed under direct sums and
summands of short exact sequences.
Let (A,S) be an exact category and X,Y in A. We will write Ext1

S(X,Y ) for the class of exact sequences
Y → E → X in S modulo the usual equivalence relation of short exact sequences. Assuming that Ext1

S(X,Y )
is a set for all objects X and Y , using Baer sum this defines an additive bifunctor

Ext1
S : Aop ×A → Ab

where Ab denotes the category of abelian groups. It seems common in the literature to ignore the
set-theoretic issue that Ext1

S(X,Y ) is only a class and not a set.
A morphism is called strict if it factors as a deflation followed by an inflation. A sequence of strict morphisms
is called exact, if at every object, it induces a short exact sequence in S.
Similarly, the usual definition of higher Extension groups (with Yoneda products) as equivalence classes of
longer exact sequences can be given as for abelian categories. Every short exact sequence in S gives rise to
long exact sequences (of abelian groups if the Extension groups are sets) of Extension groups (with
Ext0 = Hom). For a detailed account of this, see e.g. [15], chapter 6.



The lattice of exact structures

Here we consider the class Ex(A) of all exact structures on an additive category A. If A is svelte (i.e.
skelletary small) then Ex(A) is a set. By abuse of language we will call it a poset with respect to inclusion
even if it is not a set.
This is only a short discussion of the poset structure, for more details see [7]. In loc. cit Lemma 5.2, they
prove that the intersection of a family of exact structures gives an exact structure. This poset is a lattice, cf.
[7], Theorem 5.3. The join of two exact structures is the intersection of them and the meet is the intersection
of all exact structures which contain both.
It always has a unique minimum given by the so-called split exact structure [10], Lemma 2.7. This is the exact
structure given by split exact sequences.
There also exists a unique maximal exact structure on A (cf. [24], Corollary 2) but in general an explicit
description is not known. If A has an exact structure which is abelian (or more generally quasi-abelian), then
this is the unique maximal exact structure. If A is weakly idempotent complete, then the maximal exact
structure can be described by the so-called stable exact structure, cf. [13].

Enough projectives in an exact category

Let now A be an exact category (with respect to an exact structure S). An object P in A is called
projective (or S-projective) if HomA(P, d) is surjective for every deflation d (resp. an object I is called
injective (or S-injective) if HomA(i, I) is injective for every inflation i. We denote by P(S) (resp. I(S)) the
full subcategory of projectives (resp. injectives) in (A,S). The exact category A has enough projectives if

for every object X there is an exact sequence 0→ Y
i−→ P

d−→ X → 0 with P projective. (resp. A has enough

injectives if for every object Y there is an exact sequence 0→ Y
i−→ I

d−→ X → 0 with I injective).

Remark: If (A,S) has enough projectives or injectives or if it is essentially small, then ExtnS(X,Y ) is a set
for all objects X,Y in A, n ≥ 1.

1 Exact structures and subfunctors of Ext

Lemma 1.1 ([14], Section 1.2) Let (A,S) be an exact categeory. We have an obvious bijection between the
following two sets

(a) (additive) subfunctors F ⊂ Ext1
S

(b) subclasses S ′ of S closed under isomorphisms (and direct sums of short exact sequences), pullback and
pushout of short exact sequences, i.e. (Ex2) holds for S ′.

given by F 7→ SF where SF consists of all exact pairs Y → E → X in S such that its equivalence class is in
F (X,Y ). Conversely, S ′ 7→ F ′ with F ′(X,Y ) consists of all equivalence classes of exact sequences in S ′.

As indicated by the brackets, the property of being an additive subfunctor translates into the property that
the short exact sequences are closed under direct sums. To study the structures corresponding to additive
sub(bi)functors the notion of weakly exact structure (i.e. those classes of kernel-cokernel pairs which fulfill
(b) in the previous theorem) has been introduced and studied by [6].

Since exact structures are always closed under direct sums of short exact sequences, we will restrict to
consider additive functors.

Definition 1.2 Given an exact category (A,S) and a sub(-bi)functors F ⊂ Ext1
S . We call F closed if it is

additive and F (X,−) and F (−, Y ) are half exact for all objects X and Y in A ( here: A functor is half exact
if applied to a short exact sequence it gives a sequence which is exact in the middle).



Definition 1.3 We say an exact sequence 0→ X
i−→ E

d−→ Y → 0 is F-exact if the equivalence class of (i, d)
in Ext1

S(Y,X) lies in F (Y,X). So SF in Lemma 1.1 consists of F -exact sequences.

Then we have

Theorem 1.4 ([14, Prop.1.4]) Let (A,S) be an exact category. The assignment F 7→ SF from Lemma 1.1 is a
bijective map from

(1) closed sub(bi)functors of Ext1
S to

(2) exact structures S ′ on the additive category A with S ′ ⊂ S.

Remark 1.5 Theorem 1.4 has been generalized to n-exangulated categories in [19], section 3.2. One can also
assume that it was part of the inspiration to the definition of an extriangulated category.

Corollary 1.6 If A is an additive category. Let Smax be its maximal exact structure. Then, the bijection of
the Theorem 1.4 gives a 1− 1 correspondence between

(1) closed sub(bi)functors of Ext1
Smax

and

(2) exact structures on A.

Definition 1.7 Let F be an additive closed sub(bi)functor F of Ext1
S . We write P(F ) (resp. I(F )) for the

category of projectives (resp. injectives) in (A,SF ) We will say that a closed sub(bi)functor F of Ext1
S has

enough projectives (resp. has enough injectives) whenever SF has. Instead of the index SF we write just
F , e.g. Ext1

F := Ext1
SF etc.

Lemma 1.8 Let (A,S) be an exact category. If F ⊂ Ext1
S is closed and has enough projectives, then an exact

sequence (i, d) is F -exact if and only if HomA(P,−) applied to it gives a short exact sequence in abelian groups
for every P ∈ P(F ).

For a proof, look at [4], Prop. 1.5, which also works for exact categories.

Subfunctors from subcategories

We continue to look at an exact category (A,S). Let X ⊆ A be a full subcategory of A. We define two
subfunctors FX and FX of Ext1

S for X,Z in A

FX (Y, Z) := {0→ Z → E → Y → 0 in Ext1
S(Y,Z) | HomA(X,−) exact on it for all X in X}

FX (Y,Z) := {0→ Z → E → Y → 0 in Ext1
S(Y,Z) | HomA(−, X) exact on it for all X in X}

These are (the standard examples of) closed sub(bi)functors (closedness is proven in [14, Prop. 1.7]).
The generalization of these functors to n-exangulated categories can be found in [19], Def. 3.16.

Definition 1.9 For two additive subcategories C and D of A we write C ∨ D for the smallest additive
subcategory containing C and D. We call this the join of C and D.

Remark 1.10 We remark that we have the obvious inclusions: X ∨ P(S) ⊂ P(FX ) (resp. dually
X ∨ I(S) ⊂ I(FX )). Furthermore, it is clear that FX = FX∨P(S) (resp. FX = FX∨I(S)). Also, one can see

easily that any sub(bi)functor F of Ext1
S is also a sub(bi)functor of FP(F ) (resp. of F I(F )) since an F -exact

sequence η fulfills that HomA(P, η) is exact for any P ∈ P(F ).



Remark 1.11 Let (A,S) be an exact category. It is obvious that the inclusion of two additive subcategories
X ⊂ X ′ of A implies FX ⊃ FX ′ and FX ⊃ FX ′

.

In [8], section 5 one can find an example of an exact structure on category of finite-dimensional modules over
the Kronecker algebra which is not of the form SX for any subcategory X .

Exact structures with enough projectives

Definition 1.12 Let A be an additive category. We call a subcategory M contravariantly finite in A if
every object X in A admits a right M-approximation, that is a morphism α : M → X with M ∈M such
that every f : M ′ → X with M ′ in M factors over α. Dually, one defined covariantly finite subcategory.

We remark that intersections of two contravariantly finite subcategories do not necessarily have this property.
Also, let A be an additive category and B, C two additive subcategories. If B and C are contravariantly finite,
then B ∨ C too.

For later we need to understand what it means that right approximations of a contravariantly finite
subcategory are deflations. So we look at this special situation.

Lemma 1.13 Let (A,S) be an exact category with enough projectives (resp. enough injectives). Let X be a
contravariantly finite (resp. covariantly finite) additive subcategory. Then the following are equivalent:

(a) Any right (resp. left) X -approximation is a deflation (resp. inflation).

(b) P(S) ⊂ X (resp. I(S) ⊂ X )

Remark 1.14 If A is weakly idempotent complete and (A,S) an exact category. Then P(S) is closed under
direct sums and summands (cf. [10], Rem 11.5, Cor 11.6).

Theorem 1.15 Let A be weakly idempotent complete additive category and (A,S) be an exact category. The
assignments X 7→ SFX =: SX gives a bijections between

(1) additive contravariantly finite subcategories X of A, closed under direct summands and whose right
approximations are deflations and

(2) exact structures S ′ ⊂ S which have enough projectives.

We consider the dual statement of the previous Proposition as obvious and leave it to the reader.

A classical situation

Let ϕ : A → B be an exact functor between exact categories (A,S) and (B, T ). Then we have maps natural in
X and Y

ϕX,Y : Ext1
S(X,Y )→ Ext1

T (ϕ(X), ϕ(Y )).

This gives an additive sub(bi)functor F := kerϕ∗,∗ ⊂ Ext1
S . It is closed by [14], Prop. 1.10. The F -exact

sequences are the exact sequences in (A,S) which are split exact once we apply ϕ.

Remark 1.16 If λ is a left adjoint functor to ϕ, then the counit λϕ(X)→ X for an object X in A provides a
right λ(B)-approximation of X. In particular, λ(B) is contravariantly finite in A.

Lemma 1.17 If the functor ϕ has a left adjoint λ then



(1) F = Fλ(B) = Fλ(B)∨P(S).

(2) If all counits λϕ(X)→ X are deflations in (A,S), then F has enough projectives and furthermore, P(F )
consists of all direct summands of objects in λ(B).

(3) If A is weakly idempotent complete and (A,S) has enough projectives, then F has enough projectives and
P(F ) consists of direct summands of λ(B) ∨ P(S).

There is a dual version if the functor ϕ has a right adjoint.

Example 1.18 Let f : B → A a ring homomorphism and ϕ : A-Mod→ B-Mod, X 7→ BX the functor given by
restriction of scalars along f .
Then, there is a left adjoint given by the following tensor functor λ(X) := A⊗B X called the induced module
and a right adjoint given by the following Hom-functor ρ(X) := HomB(A,X) called the co-induced module.
The counits λϕ(X) = A⊗B X → X are epimorphisms since their restrictions of scalars are surjective maps by
the triangle identity. The units X → HomB(A,BX) are monomorphisms since their restrictions of scalars are
injective maps by the triangle identity. Therefore, by the previous lemma we have for F = kerϕ∗,∗ the following

(1) F = FA⊗BB-Mod = FHomB(A,B-Mod)

(2) F has enough projectives and enough injectives. The F -projectives are the direct summands of
A⊗B B-Mod, the F -injectives are the direct summands of HomB(A,B-Mod).

This exact structure on A-Mod has been introduced by Hochschild in [20] in 1956. In loc. cit. this has been
used to define relative Hochschild homology, a Tor and Ext functor have been defined for this setup. A very
nice application of the classical situation is the finite representation type classification for group algebras, cf.
[5], chapter III, section 3. A recent application to Han’s conjecture can be found in [12].

Example 1.19 Let Γ be a ring and e ∈ Γ an idempotent, we define Λ := eΓe. Then, the restriction functor
e : Γ-Mod→ Λ-Mod, X 7→ eX has a left adjoint ` = Γe⊗Λ (−) and right adjoint r = HomΛ(eΓ,−). Therefore,
we have for F = ker e∗,∗ the following description (numbered by the parts of the lemma 1.17 that are used)

(1) F = FΓe⊗ΛΛ-Mod = FHomΛ(eΓ,Λ-Mod).

(3) Since Γ-Mod is abelian, it is weakly idempotent complete. It has enough projectives and enough
injectives. So, it follows that F has enough projectives and enough injectives. We have P(F ) consists of
direct summands of (Γe⊗Λ Λ-Mod) ∨Add(Γ) and I(F ) consists of direct summands of
HomΛ(eΓ,Λ-Mod) ∨ I(Γ-Mod).
If we take a noetherian ring Γ and consider the abelian Γ-mod category given by finitely generated
Γ-modules, then this category has not in general enough injectives but it has enough projectives given by
add(Γ). Assume that Λ = eΓe is again noetherian, then the restriction functor e : Γ-mod→ Λ-mod has
a well-defined left adjoint functor ` = Γe⊗Λ (−). We conclude that in this case F has enough projectives
given by the direct summands of (Γe⊗Λ Λ-Mod) ∨ add(Γ).

2 Literature

For the basics of exact categories one should consult [10]. It is a very good source for diagram chasing in exact
categories analogously as it is known in abelian categories. Nevertheless, it does not treat the higher extension
groups and their long exact sequences, for this consult [15], chapter 6. For the lattice of exact structures, see
[7], section 5. The correspondence between closed subfunctors of Ext and exact structures is explained in [14].
The functors of the form FX for a subcategory X are defined by Auslander and Solberg [4], [2], [3], [1] if the
underlying exact category is the module category of an artin algebra and more generally in [14].
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