BURNSIDE'S THEOREM: STATEMENT AND APPLICATIONS

ROLF FARNSTEINER

Let k be a field, G a finite group, and denote by mod G the category of finite dimensional Gmodules. This category coincides mod kG, the category of finite dimensional modules of the group algebra kG. Given $M \in \text{mod } G$, we let $x_M : M \longrightarrow M$ denote the multiplication effected by the element $x \in kG$. The linear map

 $\chi_M : kG \longrightarrow k \; ; \; x \mapsto \operatorname{tr}(x_M)$

is referred to as the *character* of the *G*-module *M*. The linear function χ_M is determined on the basis $G \subset kG$. We introduce a multiplication on $(kG)^*$: Given linear forms $\varphi, \psi \in (kG)^*$, we define their product $\varphi \cdot \psi$ to be the linear form satisfying

$$(\varphi \cdot \psi)(g) = \varphi(g)\psi(g) \quad \forall g \in G.$$

In this fashion $(kG)^*$ obtains the structure of a commutative k-algebra. We let

$$\mathcal{A}_G := k[\{\chi_M ; M \in \operatorname{mod} G\}]$$

be the subalgebra of $(kG)^*$, generated by the characters of G.

Problem. For which characters $\chi_M : kG \longrightarrow k$ is

 $\mathcal{A}_G = k[\{\chi_S \; ; \; \chi_S \text{ is a summand of } \chi_M^{\ell} \text{ for some } \ell \geq 1\}]$

the subalgebra of $(kG)^*$ generated by the summands of powers of χ_M ?

In his book [2] Burnside gave an affirmative answer in case $k = \mathbb{C}$ is the field of complex numbers. Subsequently, his proof was simplified and generalized in several directions [1, 6, 5, 4].

Since characters are given by modules, let us try to understand the above problem in terms of module theory. Given G-modules M, N the tensor product $M \otimes_k N$ obtains the structure of a G-module via

$$g.(m \otimes n) := (g.m) \otimes (g.n) \quad \forall g \in G, m \in M, n \in N.$$

We have the following properties:

(1) If $(0) \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow (0)$ is an exact sequence of G-modules, then

)

$$\chi_M = \chi_{M'} + \chi_{M''}.$$

(2) If M and N are G-modules, then

$$\chi_{M\otimes_k N} = \chi_M \cdot \chi_N.$$

In fact, these two properties may be summarized by saying that $M \mapsto \chi_M$ induces a homomorphism from the *Grothendieck algebra* onto \mathcal{A}_G . Moreover, if $\{S_1, \ldots, S_n\}$ is a complete set of representatives of the simple *G*-modules, then (1) implies

$$\chi_M = \sum_{i=1}^n [M:S_i] \, \chi_{S_i},$$

Date: November 14, 2005.

so that \mathcal{A}_G is generated by the characters of the simple modules. Accordingly, our problem has an affirmative answer if we can produce a *G*-module *V* such that each simple *G*-module S_i is a composition factor of some tensor power $V^{\otimes \ell}$ of *V*.

If V is a G-module, we let $\varrho_V: G \longrightarrow \operatorname{GL}(V)$ be the representation afforded by V. Since

$$\ker \varrho_V \subset \ker \varrho_{V^{\otimes \ell}} \quad \forall \ \ell \ge 1,$$

we obtain

$$\ker \varrho_V \subset \bigcap_{i=1}^n \ker \varrho_{S_i}$$

as a necessary condition. If $\operatorname{char}(k) = 0$, then Maschke's Theorem implies the semisimplicity of kG, so that the right-hand side is trivial. In that case V has to be a *faithful G*-module, that is, $\ker \varrho_V = \{e\}.$

Theorem (Burnside). Let G be a finite group, V a faithful, complex G-module. Then each simple G-module is a direct summand of some tensor power $V^{\otimes \ell}$. \Box

Ideally, results of this type lead to concrete realizations of simple modules. In the context of complex Lie algebras the familiar $\mathfrak{sl}(2)$ -theory provides an example: Every simple $\mathfrak{sl}(2)$ -module is a composition factor of some tensor power of the 2-dimensional standard module L(1). In fact, the simple modules are just the homogeneous parts of the symmetric algebra S(L(1)).

Example. Let G be an abelian group. Then all simple $\mathbb{C}G$ -modules are one dimensional, with each of them corresponding to a group homomorphism $\lambda : G \longrightarrow \mathbb{C}^{\times}$ (or, equivalently to an algebra homomorphism $\lambda : \mathbb{C}G \longrightarrow \mathbb{C}$). If one of these modules, k_{λ} say, is faithful, then Burnside's Theorem in conjunction with $k_{\mu} \otimes_k k_{\nu} \cong k_{\mu \cdot \nu}$ implies that every homomorphism $\mu : G \longrightarrow \mathbb{C}^{\times}$ is of the form $\mu = \lambda^{\ell}$. This corresponds to the fact that the finite subgroups of \mathbb{C}^{\times} are cyclic.

Burnside's Theorem also provides information on McKay quivers. Let G be a finite group. We fix a complete set $\{S_1, \ldots, S_n\}$ of representatives of the complex, simple G-modules. Given a G-module V, we define an integral $(n \times n)$ -matrix $A := (a_{ij})$ via

$$V \otimes_k S_j \cong \bigoplus_{i=1}^n a_{ij} S_i.$$

In other words, A is the matrix representing multiplication by V in the Grothendieck ring (relative to the standard basis).

Definition. The quiver Ψ_V with underlying set of vertices $\{1, \ldots, n\}$ and a_{ij} arrows $i \to j$ is called the *McKay quiver* of *G* relative to *V*.

Given any quiver Q, we let Q(i, j; m) be the set of paths of length m starting at i and terminating at j.

Lemma 1. Let V be a complex G-module. Then we have

$$[V^{\otimes m} \otimes_k S_j : S_i] = |\Psi_V(i, j; m)|.$$

Proof. Using induction on m, we assume that $m \ge 2$. Note that

(*)
$$\Psi_V(i,j;m) \cong \bigsqcup_{\ell=1}^n \Psi_V(\ell,j;m-1) \times \Psi_V(i,\ell;1).$$

The inductive hypothesis provides a decomposition

$$V^{\otimes (m-1)} \otimes_k S_j \cong \bigoplus_{t=1}^n b_t S_t,$$

where $b_t = |\Psi_V(t, j; m - 1)|$. Consequently,

$$V^{\otimes m} \otimes_k S_j \cong \bigoplus_{t=1}^n b_t (V \otimes_k S_t) \cong \bigoplus_{r=1}^n (\sum_{t=1}^n a_{rt} b_t) S_r$$

and (*) implies

$$[V^{\otimes m} \otimes_k S_j : S_i] = \sum_{t=1}^n a_{it} b_t = |\Psi_V(i,j;m)|,$$

as desired.

Corollary 2. If V is a faithful, complex G-module, then the McKay quiver Ψ_V is connected.

Proof. Let $S_1 = k$ be the trivial *G*-module. Then we have $V^{\otimes m} \otimes_k S_1 \cong V^{\otimes m} \quad \forall m \ge 1$. Given a vertex $i \in \{1, \ldots, n\}$, Burnside's Theorem provides $m \in \mathbb{N}$ with

$$0 \neq [V^{\otimes m}:S_i] = [V^{\otimes m} \otimes_k S_1:S_i] = |\Psi_V(i,1;m)|.$$

Hence there is a path from i to 1.

Remarks. (1) The McKay quiver also tells us that the first m with $[V^{\otimes m}:S_i] \neq 0$ is the length of the shortest path from i to the vertex corresponding to the trivial module.

(2) In many interesting cases, the structure of the McKay quiver is well-understood. If V is a self-dual, two-dimensional, faithful representation, then the matrix defining Ψ_V is symmetric, and the underlying graph is a Euclidean diagram [3].

References

- [1] R. Brauer. A note on theorems of Burnside and Blichfeldt. Proc. Amer. Math. Soc. 15 (1964), 31-34
- [2] W. Burnside. Theory of Groups of Finite Order. Cambridge University Press, Cambridge 1911
- [3] D. Happel, U. Preiser and C.M. Ringel. Binary polyhedral groups and Euclidean diagrams. Manuscripta math. 31 (1980), 317-329
- [4] D. Passman and D. Quinn. Burnside's theorem for Hopf algebras. Proc. Amer. Math. Soc. 123 (1995), 327-333
- [5] M. Rieffel. Burnside's theorem for representations of Hopf algebras. J. Algebra 6 (1967), 123-130
- [6] R. Steinberg. Complete sets of representations of algebras. Proc. Amer. Math. Soc. 13 (1962), 746-747