
BURNSIDE’S THEOREM: STATEMENT AND APPLICATIONS

ROLF FARNSTEINER

Let k be a field, G a finite group, and denote by modG the category of finite dimensional G-
modules. This category coincides mod kG, the category of finite dimensional modules of the group
algebra kG. Given M ∈ modG, we let xM : M −→ M denote the multiplication effected by the
element x ∈ kG. The linear map

χM : kG −→ k ; x 7→ tr(xM )

is referred to as the character of the G-module M . The linear function χM is determined on the
basis G ⊂ kG. We introduce a multiplication on (kG)∗: Given linear forms ϕ, ψ ∈ (kG)∗, we define
their product ϕ · ψ to be the linear form satisfying

(ϕ · ψ)(g) = ϕ(g)ψ(g) ∀ g ∈ G.

In this fashion (kG)∗ obtains the structure of a commutative k-algebra. We let

AG := k[{χM ; M ∈ modG}]

be the subalgebra of (kG)∗, generated by the characters of G.

Problem. For which characters χM : kG −→ k is

AG = k[{χS ; χS is a summand of χℓ
M for some ℓ ≥ 1}]

the subalgebra of (kG)∗ generated by the summands of powers of χM?

In his book [2] Burnside gave an affirmative answer in case k = C is the field of complex numbers.
Subsequently, his proof was simplified and generalized in several directions [1, 6, 5, 4].

Since characters are given by modules, let us try to understand the above problem in terms of
module theory. Given G-modules M, N the tensor product M ⊗k N obtains the structure of a
G-module via

g.(m ⊗ n) := (g.m) ⊗ (g.n) ∀ g ∈ G, m ∈M, n ∈ N.

We have the following properties:

(1) If (0) −→M ′ −→M −→M ′′ −→ (0) is an exact sequence of G-modules, then

χM = χM ′ + χM ′′ .

(2) If M and N are G-modules, then

χM⊗kN = χM · χN .

In fact, these two properties may be summarized by saying that M 7→ χM induces a homomor-
phism from the Grothendieck algebra onto AG. Moreover, if {S1, . . . , Sn} is a complete set of
representatives of the simple G-modules, then (1) implies

χM =

n∑

i=1

[M :Si]χSi
,
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so that AG is generated by the characters of the simple modules. Accordingly, our problem has
an affirmative answer if we can produce a G-module V such that each simple G-module Si is a
composition factor of some tensor power V ⊗ℓ of V .

If V is a G-module, we let ̺V : G −→ GL(V ) be the representation afforded by V . Since

ker ̺V ⊂ ker ̺V ⊗ℓ ∀ ℓ ≥ 1,

we obtain

ker ̺V ⊂
n⋂

i=1

ker ̺Si

as a necessary condition. If char(k) = 0, then Maschke’s Theorem implies the semisimplicity of
kG, so that the right-hand side is trivial. In that case V has to be a faithful G-module, that is,
ker ̺V = {e}.

Theorem (Burnside). Let G be a finite group, V a faithful, complex G-module. Then each simple

G-module is a direct summand of some tensor power V ⊗ℓ. 2

Ideally, results of this type lead to concrete realizations of simple modules. In the context of
complex Lie algebras the familiar sl(2)-theory provides an example: Every simple sl(2)-module is
a composition factor of some tensor power of the 2-dimensional standard module L(1). In fact, the
simple modules are just the homogeneous parts of the symmetric algebra S(L(1)).

Example. Let G be an abelian group. Then all simple CG-modules are one dimensional, with
each of them corresponding to a group homomorphism λ : G −→ C

× (or, equivalently to an algebra
homomorphism λ : CG −→ C). If one of these modules, kλ say, is faithful, then Burnside’s Theorem
in conjunction with kµ ⊗k kν

∼= kµ·ν implies that every homomorphism µ : G −→ C
× is of the form

µ = λℓ. This corresponds to the fact that the finite subgroups of C
× are cyclic.

Burnside’s Theorem also provides information on McKay quivers. Let G be a finite group. We fix a
complete set {S1, . . . , Sn} of representatives of the complex, simple G-modules. Given a G-module
V , we define an integral (n× n)-matrix A := (aij) via

V ⊗k Sj
∼=

n⊕

i=1

aijSi.

In other words, A is the matrix representing multiplication by V in the Grothendieck ring (relative
to the standard basis).

Definition. The quiver ΨV with underlying set of vertices {1, . . . , n} and aij arrows i→ j is called
the McKay quiver of G relative to V .

Given any quiver Q, we let Q(i, j;m) be the set of paths of length m starting at i and terminating
at j.

Lemma 1. Let V be a complex G-module. Then we have

[V ⊗m ⊗k Sj :Si] = |ΨV (i, j;m)|.



BURNSIDE’S THEOREM: STATEMENT AND APPLICATIONS 3

Proof. Using induction on m, we assume that m ≥ 2. Note that

(∗) ΨV (i, j;m) ∼=

n⊔

ℓ=1

ΨV (ℓ, j;m − 1) × ΨV (i, ℓ; 1).

The inductive hypothesis provides a decomposition

V ⊗(m−1) ⊗k Sj
∼=

n⊕

t=1

btSt,

where bt = |ΨV (t, j;m− 1)|. Consequently,

V ⊗m ⊗k Sj
∼=

n⊕

t=1

bt(V ⊗k St) ∼=

n⊕

r=1

(

n∑

t=1

artbt)Sr,

and (∗) implies

[V ⊗m ⊗k Sj :Si] =
n∑

t=1

aitbt = |ΨV (i, j;m)|,

as desired. �

Corollary 2. If V is a faithful, complex G-module, then the McKay quiver ΨV is connected.

Proof. Let S1 = k be the trivial G-module. Then we have V ⊗m ⊗k S1
∼= V ⊗m ∀ m ≥ 1. Given a

vertex i ∈ {1, . . . , n}, Burnside’s Theorem provides m ∈ N with

0 6= [V ⊗m :Si] = [V ⊗m ⊗k S1 :Si] = |ΨV (i, 1;m)|.

Hence there is a path from i to 1. �

Remarks. (1) The McKay quiver also tells us that the first m with [V ⊗m :Si] 6= 0 is the length of
the shortest path from i to the vertex corresponding to the trivial module.

(2) In many interesting cases, the structure of the McKay quiver is well-understood. If V is a
self-dual, two-dimensional, faithful representation, then the matrix defining ΨV is symmetric, and
the underlying graph is a Euclidean diagram [3].
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