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Given an artin algebra Λ, Zhang’s Theorem (cf. [13, 5]) provides the structure of the regular, tree-
infinite AR-components with small growth numbers. By definition, the growth numbers measure
the exponential growth of the DTr-orbits within the given component. There are many instances,
where Zhang’s bound follows from homological properties, the classical case being the group algebra
of a finite group.

From now on, Λ is assumed to be a finite dimensional algebra over a field k. As usual, mod Λ
denotes the category of finite dimensional left Λ-modules.

Definition ([1]). Given M ∈ modΛ and a minimal projective resolution (Pn)n≥0 of M , we define
the complexity of M via

cxΛ(M) := min{c ≥ 0 ; ∃ λ > 0 with dimk Pn ≤ λnc−1 ∀ n ≥ 1} ∈ N0 ∪ {∞}.

We shall focus henceforth only on self-injective algebras. General theory [2, Chap. IV] then provides
the formula

DTr = ν ◦ Ω2 = Ω2 ◦ ν,

where Ω and ν denote the Heller operator and the Nakayama functor of Λ, respectively. If Λ
is symmetric, then DTr and Ω2 coincide, implying that a module of finite complexity has growth
number 1. If such a module lies in a regular, tree-infinite component of the AR-quiver, then Zhang’s
Theorem applies.

The foregoing observations apply for group algebras of finite groups. They also obtain whenever
the Nakayama functor has finite order, which is the case for cocommutative Hopf algebras. In that
context, the finiteness of the complexities follows from the Friedlander-Suslin Theorem [7], which
asserts the finite generation of the cohomology ring of finite group schemes.

There are important examples, however, for which Zhang’s Theorem provides no information. If

Λ = k[∆] ⋉ k[∆]∗

is the trivial extension of a tame hereditary algebra, then the regular components of the symmetric
algeba Λ are infinite tubes, while the remaining two components are of type Z[∆] (cf. [8, 11]).

In this lecture, we will delineate an approach, which preceded Zhang’s Theorem, and whose
modern version employs subadditive functions defined via Ext-groups. The presence of subaddi-
tive functions was systematically exploited by Happel-Preiser-Ringel, cf. [9]. Shortly thereafter,
Webb [12] implemented this method for group algebras of finite groups. Webb’s fairly complicated
arguments were simplified and refined by Okuyama [10], with subsequent improvements given by
Erdmann-Skowroński, cf. [4].

Webb’s Theorem concerns the components of the stable Auslander-Reiten quiver Γs(Λ) of a self-
injective algebra Λ. By definition, this quiver is obtained from the ordinary AR-quiver by removing
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all projective (injective) vertices. In this fashion, Γs(Λ) has the structure of a stable representation
quiver, whose tree class we would like to determine via subadditive functions.

Theorem (Webb [12]). Let G be a finite group with group algebra kG. Then the tree classes of the

connected components of Γs(kG) are finite or infinite Dynkin diagrams, or Euclidean diagrams.

Given a quiver Q := (V,A) any map ν : V ×V −→ N0×N0 such that ν(a, b) ∈ N×N ⇔ (a, b) ∈ A is
called a valuation of Q. In that case (V,A, ν) is called a valued quiver. Let σ : N0 ×N0 −→ N0×N0

denote the flip.

Definition. A quadruple Q := (V,A, τ, ν) is a valued stable representation quiver if
(a) (V,A, τ) is a stable representation quiver,
(b) (V,A, ν) is a valued quiver,
(c) ν(τ(x), y) = σ(ν(x, y)) ∀ x, y ∈ V .

The quiver Γs(Λ) obtains the structure of a valued stable translation quiver by defining

ν([M ], [N ]) := (dim∆op

M

Irr(M,N),dim∆N
Irr(M,N)).

Here Irr(M,N) is the space of irreducible maps between M and N , and ∆M is the divison algebra
of the local algebra EndΛ(M). By general theory, the valuation (m,n) of an arrow [M ] → [N ] gives
the multiplicities of M and N in the middle terms of the almost split sequences terminating in N
and originating in M , respectively.

If the underlying field k is algebraically closed, then ∆M = k = ∆N , so that the valuation is of
the form (n, n).

Subadditive functions are defined on locally finite quivers. By definition, every vertex of such a
quiver has only finitely many successors and predecessors.

Definition. Let Q = (V,A, τ, ν) be a locally finite valued stable representation quiver. A map
f : V −→ N0 is called subadditive if

f(y) + f(τ(y)) ≥
∑

x∈y−

pr1(ν(x, y)) f(x) ∀ y ∈ V.

In case equality holds, f is referred to as additive.
The subadditive function f is τ -periodic if there exists n ∈ N such that f ◦ τn = f .

Consider the locally finite quiver Γs(Λ). Directly from the definitions we obtain that

[M ] 7→ dimk M

defines a subadditive function of Γs(Λ). However, this function does usually not provide any
information on the tree class of a connected component Θ ⊂ Γs(Λ). The requisite additional
property is that of τ -periodicity:

Theorem 1. Let Q = (V,A, τ, ν) be a connected, locally finite, valued stable representation quiver.

Suppose that f : V −→ N is a τ -periodic, subadditive function.

(1) The tree class T̄Q of Q is a Dynkin diagram, a Euclidean diagram, or A∞, A∞
∞,D∞, B∞, C∞.

(2) If f is not additive, then T̄Q is a Dynkin diagram or A∞.

(3) If f is unbounded, then T̄Q = A∞.
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Proof. The tree class T̄Q obtains the structure of a labelled graph with Cartan matrix C : I×I −→
Z. Since f is τ -periodic, there exists n ∈ N such that the function

ϕ : V −→ N ; v 7→

n−1∑

i=0

f(τ i(v))

defines a subadditive function on V with ϕ ◦ τ = ϕ. Such a function gives rise to a subadditive
function d : I −→ N of the Cartan matrix C. Our result now follows from the work of Happel-
Preiser-Ringel [9]. �

Given M ∈ mod Λ, we define a function

fM : Γs(Λ) −→ N0 ; [N ] 7→ dimk Ext1Λ(M,N).

Suppose there exists a projective module P such that DTr(M)⊕P ∼= M . The formula DTr = Ω2◦ν
then implies that

fM ◦ DTr = fM .

Moreover, we have:

Proposition 2. Let Θ ⊂ Γs(Λ) be a connected component of the stable AR-quiver of Λ. Assume

there exists a Λ-module M such that

(a) DTr(M) ⊕ (proj.) ∼= M , and

(b) there exists [X0] ∈ Θ with Ext1Λ(M,X0) 6= (0).
Then T̄Θ is a finite or infinite Dynkin diagram, or a Euclidean diagram.

Proof. Let [N ] be a vertex in Θ. Then we have an AR-sequence

(0) −→ DTr(N) −→
∑

[X]∈[N ]−

pr1(ν([X], [N ]))X ⊕ (proj.) −→ N −→ (0).

Since projective modules are injective, application of Ext1Λ(M,−) implies that fM is subadditive.
Since Θ is connected, condition (b) ensures that

fM ([X]) ∈ N ∀ [X] ∈ Θ.

Our result now follows from Theorem 1. �

Of course, the utility of Proposition 2 hinges entirely on the validity of the seemingly innocuous
conditions (a) and (b), which require the presence of enough periodic modules in mod Λ. Let us
begin with the case where Λ is a symmetric algebra, so that

DTr = Ω2.

If Λn = k[T ]/(T n) is a truncated polynomial ring, then we have

Ω2
Λn

(k) ∼= k.

Moreover, since Λn is local, the condition Ext1Λn
(k,X) = (0) yields Ext1Λn

(−,X) = (0), so that X
is injective. Consequently, (a) and (b) hold for M = k globally on Γs(Λn).

Now suppose that Λn ⊂ Λ such that Λ is a projective right Λn-module. If Θ ⊂ Γs(Λ) is a
component such that X0|Λn

is not projective for some X0 ∈ Θ, then we define

M := Λ ⊗Λn
k.

The exactness of Λ ⊗Λn
− then yields Ω2

Λ(M) ⊕ (proj.) ∼= M and Frobenius reciprocity implies

Ext1Λ(M,X0) ∼= Ext1Λn
(k,X0) 6= (0).



4 ROLF FARNSTEINER

The foregoing observations lead to the study of rank varieties [3] and flat homomorphisms α : Λn −→
Λ [6]. These considerations ensure the existence of enough periodic modules for cocommutative
Hopf algebras of positive characteristic. (By Cartier’s Theorem, such algebras are semisimple
whenever char(k) = 0.)
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