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Throughout, A denotes a finite dimensional algebra over a field k. We let Rad(A) be the Jacobson
(nilpotent) radical of A. Wedderburn’s classical result [7, Thm.17,Thm.22] tells us that the semi-
simple factor algebra A/Rad(A) is a direct sum of matrix algebras

A/Rad(A) ∼=

m⊕

i=1

Matni
(∆i),

where each ∆i is a division algebra over k.
To understand the structure of A, two problems remain, namely,

• the determination of the structure of Rad(A), and
• the interaction of the constituents A/Rad(A) and Rad(A).

The former usually is a hopeless endeavor, the latter was answered by Wedderburn [7, Thm.24,Thm.28]
and extended by Malcev [6].

Theorem. The following statements hold:

(1) If the algebra A/Rad(A) is separable, then there exists a subalgebra S ⊂ A such that

A = S ⊕ Rad(A) (Wedderburn).
(2) Let T ⊂ A be any separable subalgebra of A, then there exists n ∈ Rad(A) such that

(1 + n)T (1 + n)−1 ⊂ S. (Malcev)

Remarks. Part (1) of the foregoing result is often referred to as Wedderburn’s Principal Theorem.
In [7, p.109] the result is stated without assuming separability. In a later paper [8], Wedderburn
“amplifies” his earlier result by proving it for commutative algebras in case A/Rad(A) is separable.
Referring to [7] he writes [8, p.854]: “Inseparable extensions were not considered in that paper.”
In [7] Wedderburn also states that the semi-simple summand is not unique, but determined up to
isomorphism.

The entire result is now sometimes called the Theorem of Wedderburn-Malcev.

In these lectures we present Hochschild’s cohomological proof (cf. [2]) (initially only for fields of
char(k) = 0 and extended to arbitrary fields in [3]) of this result, which appears to have been his
motivation for the development of associative cohomology [3, 4]. The methods involved can be
transferred mutatis mutandis to prove similar results for finite groups (Schur-Zassenhaus Theorem
(cf. [1])) and Lie algebras (Theorems of Levi and Malcev-Harish-Chandra (cf. [5])). In fact, in
[2] Hochschild transfers the Whitehead Lemmas for Lie algebras to the associative setting. In his
introduction to [2] he thanks C. Chevalley (his advisor) for supplying the proofs of Whitehead’s
results, which were apparently not recorded in the literature.
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We recall the bar resolution A of the (A,A)-bimodule A. We put An := A⊗(n+2) for n ≥ −1 and
define differentials

dn : An −→ An−1 ; a0 ⊗ · · · ⊗ an+1 7→

n∑

i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1

for n ≥ 0. Then A := (An, dn)n≥0 is a projective resolution of the module A over the enveloping
algebra Ae := A⊗kA

op. Using this resolution, one obtains the familiar formular for the Hochschild

cohomology groups

Hn(A,M) := ExtnAe(A,M) ∀ n ≥ 0.

with coefficients in the Ae-module M . In this lecture we shall only require the case where n = 2.
A k-bilinear map f : A×A −→M is a 2-cocycle if

a.f(b, c) − f(ab, c) + f(a, bc) − f(a, b).c = 0 ∀ a, b, c ∈ A.

If there exists a k-linear map g : A −→ A with

f(a, b) = a.g(b) − g(ab) + g(a).b ∀ a, b ∈ A,

then f is a 2-coboundary. From the bar resolution we obtain that

H2(A,M) = Z2(A,M)/B2(A,M)

is the factor space of 2-cocycles by 2-coboundaries.
We shall use the cohomology groups H2(A,M) to describe extensions

(0) −→M −→ E −→ A −→ (0)

of A by kernels M satisfying M2 = (0). In this case the ideal structure of M ⊂ E is determined by
its induced structure of an Ae-module.

As a vector space, E = A⊕M , and the multiplication is given via

(a,m) · (b, n) := (ab, a.n +m.b+ f(a, b)) ∀ a, b ∈ A, m,n ∈M.

The associativity of E implies that f is a 2-cocycle. Conversely, every 2-cocycle f defines a square
zero extension

Ef : (0) −→M −→ A⋉f M −→ A −→ (0)

of A by M .

Lemma 1. (1) If f is a coboundary, then the extension Ef of algebras splits.

(2) Let A be an algebra such that H2(A/Rad(A),M) = (0) for every A/Rad(A)-bimodule M .

Then there exists a subalgebra S ⊂ A with A = S ⊕ Rad(A).

Proof. (1) Suppose that f is a coboundary. Then there exists a k-linear map g : A −→ A such that

f(a, b) = a.g(b) − g(ab) + g(a).b.

Consider the map
ϕ : A −→ A⋉f M ; a 7→ (a,−g(a)).

Then ϕ is a k-linear splitting of the sequence Ef such that

ϕ(ab) = (ab,−g(ab)) = (ab,−a.g(b) + −g(a).b+ f(a, b)) = (a,−g(a)) · (b,−g(b)).

(2) Since Rad(A) is nilpotent, there exists a minimal n ∈ N with Rad(A)n = (0). We proceed
by induction on n, the case n = 1 being trivial.

Let n ≥ 2, and consider the algebra A′ := A/Rad(A)n−1. Then Rad(A′)n−1 = (0) and
A′/Rad(A′) ∼= A/Rad(A), so that the inductive hypothesis provides a subalgebra S′ ⊂ A′ with

A′ = S′ ⊕ Rad(A′).
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Let π : A −→ A′ be the canonical projection. Then M := ker π is an ideal of S′′ := π−1(S′) such
that M2 = (0). Thus, M is an S′e-module and S′ ∼= A′/Rad(A′) ∼= A/Rad(A). Consequently,

H2(S′,M) ∼= H2(A/Rad(A),M) = (0),

and part (1) provides a subalgebra S ⊂ S′′ with S′′ = S ⊕ M . This readily implies A = S ⊕

Rad(A). �

Remarks. The second part of the Lemma can be found in [2, p.688] for char(k) = 0 and in general
in [3]. On page 687 of [2] Hochschild notes: “J.H.C. Whitehead has communicated a proof of this
result to N. Jacobson, which utilizes the same ideas as the proof given here.”

It remains to see when the vanishing condition of Lemma 1(2) obtains. Algebras R withH2(R,M) =
(0) for every Re-module M can be characterized by a lifting property for homomorphisms which,
in the context of finitely generated commutative algebras, amounts to smoothness.

Definition. The k-algebra R is smooth if for every algebra S, every ideal I �S with I2 = (0), and
every homomorhism ϕ : R −→ S/I of k-algebras, there exists a homomorphism ψ : R −→ S such
that ϕ = π ◦ ψ. (Here π : S −→ S/I denotes the canonical projection.)

The vanishing condition certainly holds if the enveloping algebra of A is semi-simple.

Definition. The k-algebra A is separable if for every field extension K :k, the algebra A ⊗k K is
semi-simple.

Lemma 2. If A is separable, then Ae is semi-simple.

Proof. Let K be an algebraic closure of k. By Wedderburn’s Theorem we have

Aop ⊗k K ∼=

m⊕

i=1

Matni
(K),

whence

Ae ⊗k K ∼=

m⊕

i=1

A⊗k Matni
(K) ∼=

m⊕

i=1

Matni
(A⊗k K).

As A⊗kK is semisimple, each matrix ring Matni
(A⊗kK) also enjoys this property. Consequently,

Ae ⊗k K is semisimple, thereby implying the desired result. �

Examples. (1) Suppose that char(k) = p > 0 and let E = k(α) be a purely inseparable extension
of k of exponent one. Then a := αp ∈ k while α 6= k. Hence n := α⊗1−1⊗α is a nonzero element
of E ⊗k E, while

np = αp ⊗ 1 − 1 ⊗ αp = a(1 ⊗ 1 − 1 ⊗ 1) = 0.

As a result, the k-algebra E is not separable.
(2) If E = k(α) is an extension field of k with minimal polynomial fα ∈ k[X], then E is a

separable k-algebra if and only if fα is separable, that is fα has no multiple roots in its splitting
field. This follows directly from the Chinese Remainder Theorem.

(3) Let G be a finite group. According to Maschke’s Theorem, the group algebra kG is semi-
simple if and only if char(k) does not divide the order of G. Since the latter property is invariant
under base field extensions, every semi-simple group algebra is separable.
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