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Selected topics in representation theory 3
Quadratic algebras and Koszul algebras

WS 2005/06

1 Quadratic algebras

We consider a finite dimensional vector space V over a field k. Let I ⊆ V ⊗ V be a subvector
space and denote by (I) the ideal in the tensor algebra TV generated by I. In this section
we restrict ourself to quotients of the tensor algebra, however similar definitions can be made
for path algebras.

Definition. The algebra A := TV/(I) is called a quadratic algebra. Its quadratic dual is
defined as A! := TV ∗/I⊥, where V ∗ is the dual vector space and

I⊥ := {
∑

aiφ⊗ ψ |
∑

i,j

aibjφi(yj)ψj(yi) = 0 for all
∑

bjxj ⊗ yj ∈ I}.

Note that A and A! are Z–graded algebras.

Example. 1) If I = {0} then A = TV and A! = TV ∗/(V ∗ ⊗ V ∗).
2) If A = SV the symmetric algebra over V , then A! = ΛV ∗ is the exterior algebra over the
dual vector space.
3) If A = k[x, y]/x2 then A! = k〈ξ, η〉/(ξη + ηξ, η2).

Definition. We define the Poincaré polynomial of a quadratic algebra A (it can be defined
for any graded algebra) as PA(t) :=

∑∞
i=0 dimAit

i.

Example. Note that in all examples above we have PA(t)PA!(−t) = 1:
1) PA(t) =

∑∞
i=0 n

iti and PA!(t) = 1 + nt, where n = dimV .
2) PA(t) =

∑∞
i=0

(

n+1+i
i

)

ti and PA!(t) =
∑∞

i=0

(

n
i

)

ti.
3) PA(t) = 1 + 2

∑∞
i=1 t

i.

2 The Koszul complex

We keep the notation from the previous section: A = TV/I is a quadratic algebra and
A! = TV ∗/I⊥ is the quadratic dual algebra. Moreover, let Bi := (A!

i)
∗, B = ⊕∞

i=0Bi the
graded dual of A!, it is a graded coalgebra and an A!–bimodule. Let M be a bimodule: a
right A!–module and a left A–module. Then we can define a k–linear map d : M −→ M
defined by dm :=

∑

ximξi, where {xi} is a basis of V and {ξi} is the dual basis of V ∗. If M
is a graded module, then dMi ⊆Mi+1.

Lemma. 1) Consider the composition of maps

k −→ V ⊗ V −→ (V ⊗ V )/I ⊗ (V ∗ ⊗ V ∗)/I⊥, 1 7→
∑

i

ξixi, φ⊗ v 7→
∑

i

φxi ⊗ ξiv.
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It is the restriction of the differential d to

A0 ⊗A!
0 −→ A1 ⊗A!

1 −→ A2 ⊗A!
2.

Then the composition is zero.
2) For any A! −A bimodule M , the map d : m 7→

∑

i ξimxi is a differential, that is d2 = 0.

Proof. Assertion 2) is a consequence of assertion 1). We consider the composition together
with the adjoint map

k −→ (V ⊗ V )/I ⊗ (V ∗ ⊗ V ∗)/I⊥, ((V ⊗ V )/I)∗ ≃ I −→ (V ∗ ⊗ V ∗)/I⊥.

The second map is obviously the zero map, consequently d2 = 0. The natural isomorphism
((V ∗ ⊗ V ∗)/I⊥)∗ ≃ I is an easy exercise in linear algebra. 2

Definition. Using the differential d defined above we define a bigraded differential A − A!–
bimodule K•, d, with K = A ⊗ B and grading Ki := A ⊗ Bi. Obviously dKi ⊆ Ki−1. This
differential bimodule becomes, with this grading, a complex of free left A–modules, called
Koszul complex. We define A to be a Koszul algebra, if Hi(K•, d) = 0 for all i 6= 0.

Remark. 1) It is obvious that H0(K•, d) = S = A0 ≃ A/A>0 is the natural simple A–
module.
2) If A is Koszul, then K•, d is a minimal projective resolution of S as a graded A–module
and Ext l(S, S) = Ext l

Z
(S, S〈l〉) ≃ B∗

l = A!
l, where the first group denotes the usual extension

group, Ext l
Z

is the goups of extensions in the categry of Z–graded A–modules and 〈l〉 is the
lth shift by the grading.
3) For any quadratic algebra A we obtain H1(K•, d) = 0 and H2(K•, d) = 0.
4) If A is Koszul then we have for the Poincaré polynomials the following equation

PA(t)PA!(−t) = 1.

All claims follow easily from the concrete description of the Koszul complex: we consider
the graded pieces Ki,j = Ai ⊗ Bj ⊆ Kj. Then dKi,j ⊆ Ki+1,j−1, so K(n) := ⊕i+j=nKi,j

is a complex of vector spaces and coincides with the graded part of degree n of the Koszul
complex (consider the Koszul complex as a complex of graded modules). In degree zero there
is just one non-zero vector space A0 ⊗B0. In higher degrees the last map is always surjective,
this shows 1) and also 2). To see 3) we write down the beginning of the Kosul complex and
obtain for the graded parts:

A0 ⊗B0

A0 ⊗B1 −→ A1 ⊗B0

A0 ⊗B2 −→ A1 ⊗B1 −→ A2 ⊗B0

A0 ⊗B3 −→ A1 ⊗B2 −→ A2 ⊗B1 −→ A3 ⊗B0.

The A–module structure is the natural one coming from the action V ⊗ Ai −→ Ai+1 from
the left and shifts the row one step down (note that we used the A–right module structure
to define the differential). A proof of the claim follows in the next lecture. To see 4) we just
notice that PA(t)PA!(−t) = 1 precisly when

∑n
i=0(−1)i dimAi dimBn−i = 0 for all n > 0.
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3 Koszul algebras

Let A be a graded algebra of the form A = TV/I. We denote by E(A) the algebra
⊕lExt l(S, S) (the product is the Yoneda product) where S = A/A>0 is the natural sim-
ple module. The main property of a Koszul algebra is that we can compute the algebra
E(A) very easily as the quadratic dual and obtain E(E(A)) ≃ A is a natural isomorphism of
Z–graded algebras. However, there are several further characterizations of a Koszul algebra,
based on the fact, that E(E(A)) is usually more complicated then A itself (it does always
contain A). In particular, it is usually not generated in degree 1. Surprisingly, an algebra
A is already Koszul, if one of the conditions above is satisfied. This shows, that Koszul is a
very restrictive condition on an algebra and can also be defined without the assumption A to
be quadratic (however this approach is less technical). So the following theorem can also be
considered as a definition of Koszul for algebras not necessarily quadratic, then it is a result,
that from Koszul follows quadratic.

Theorem. Let A be a graded algebra of the form A = TV/J for some homogeneous ideal J
contained in A≥2. Then the following conditions are equivalent:
1) E(A) is generated by Ext 1(S, S),
2) E(E(A)) ≃ A (as an algebra),
3) E(E(A))1 ≃ A1 (as a k–vector space),
4) A is quadratic and Koszul,
5) A is quadratic and A! is Koszul, and
6) A is qudratic and PA(t)PA!(−t) = 1,
7) A is quadratic and E(A) ≃ A!.

Proof (sketch). Let A be a graded algebra and consider the minimal projective resolution
of S, then Ext 2(S, S) is the vector space of relations, that are homogeneous elements in I,
that are not a product of an homogenous element in I with an homogeneous element of A.
Since the Yoneda product is compatible with the grading, E(A) is generated by Ext 1(S, S)
only if A is qudratic. So conditions 1), 2) and 3) are necessary for an algebra to be qudratic
and Koszul. If A is quadratic and Koszul, then 1) and 3) follow, and 2) follows from 5). To
see 4) is equivalent to 6) we refer to the next lecture, one has to check, that there is precisely
one non-vanishing homology group of minimal degree. If A is not Koszul, then the equation
PA(t)PA! = 1 can not be satisfied. Since 4) is equivalent to 6), we also obtain 4) is equivalent
to 5). Using this equivalence, we can also show 2). From 7) follows 1) and conversely 7)
follows from 5) (one has to use the coalgebra structure of B) or from 2) using the argument
above on the structure of E(A) and E(E(A)). So it remains to prove 5) is equivalent to 6),
shown in the next lecture. 2

Remark. The present note only contains a very brief introduction to the subject. We did
not include any result on bounded (quadratic) path algebras, Koszul duality, Kszul algebras
over semisimple rings and the theory of linear resolutions. Also the references select only a
very small list of articles on the subject.
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