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The aim of this lecture is to define a volume for a tilting module. There are several natural
applications of such a construction. First of all we want to realize the simplicial complex
of tilting modules as a fan in the Grothendieck group. Secondly, each simplex should have
a volume, so that we can measure the “density” of the tilting modules in the Grothendieck
group. The construction works very well for hereditary algebras (section 4) and for tilting
modules of projective dimension less or equal to one for all algebras (section 5). In case the
complex of all tilting modules is finite (or at least tame), we can check for a given list of tilting
modules whether it is already complete. This might be very useful, since one can iteratively
construct tilting modules (e. g. via mutations) starting with the projective or injective tilting
module. Moreover, we note that the volume is nothing natural, we can, depending on some
choices, define many different notions of a volume. It turns out that at least two of them
are easily to compute and very useful with respect to the applications mentioned above: the
lattice invariant volume volZ and the ∆–volume vol∆.

1 The cone of a module

Let A be a finite dimensional algebra k–algebra. We denote by K0 the Grothendieck group
of finite dimensional A–modules. Given a finite dimensional module X we associate to X a
cone C(X) in the R–vector space KR := K0 ⊗ R. Note that we only get useful results if we
consider a module X with Ext1(X,X) = 0. Let v1, . . . , vr be elements in KR. The cone C
generated by these elements (as a cone) is the set

C := cone{v1, . . . , vr} := {

r∑

i=1

aivi | ai ∈ R≥0 for all i = 1, . . . , r}.

Similarly, we define the convex hull of the elements v1, . . . , vr

conv{v1, . . . , vr} := {

r∑

i=1

aivi | ai ∈ R≥0 for all i = 1, . . . , r;

r∑

i=1

ai = 1}.

We consider KR with the standard basis ei = [S(i)] = dim S(i), where {S(i)}t
i=1 is a complete

set of representatives of the indecomposable simple A–modules.

Definition. The cone C(X) is defined as the cone generated (as a cone) by the ele-
ments dim Xi = [Xi] in KR, where X = ⊕Xi is a decomposition into indecomposable direct
summands.

Lemma. For each finite dimensional module X the cone C(X) is a rational, convex, strictly
convex, polyhedral cone in KR.
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The lemma itself is obvious, we only need to explain the terminology in detail (the reader
should compare the result with the notion of a cone in toric geometry, see e. g. [2, 6]). A
cone C is rational if it is generated by lattice elements that is by elements in K0. It is convex
if for any two elements u and v in C also the line segment between u and v is contained in
C: (1 − t)u + tv ∈ C for all t ∈ [0, 1]. A cone is strictly convex if it does not contain a line
(affine or linear, both conditions are equivalent). This follows, since C(X) is contained in the
positive quadrant. Finally, a cone is polyhedral if it is the intersection of finitely many half
spaces. If the cone is already rational, then this condition is equivalent to the following: the
cone is generated by a finite number of lattice points.

Definition. For the rest of the note a cone is always a rational, convex, strictly convex,
polyhedral cone in KR. A cone C is called smooth if it is generated by a part of a Z–basis of K0

(the notion comes from toric geometry: a smooth cone defines a smooth affine toric variety, see
[6, 2]). A cone is called simplicial if it is generated by a linearly independent set of elements.
An R–linear function f on KR defines a half space H+

f := {v ∈ KR | f(v) ≥ 0} ⊂ KR (we
allow f = 0 here!). The space Hf is called supporting if f(v) ≥ 0 for all v ∈ C. For such a
cone C we define a face of C to be the intersection of C with a supporting half space C ∩Hf .
Note that C itself is a face of C (take f = 0) and also 0 is a face (take f generic). A set of
cones Σ = {Ci | i ∈ I} is called a fan, if the following conditions are satisfied:

1) each face of a cone in Σ is in Σ and

2) the intersection of two cones in Σ is a face of both.

Note that we do not assume Σ to be finite, as done in toric geometry. We will show later that
we can associate to any finite dimensional algebra a fan associated to the set of tilting modules
of projective dimension at most one. Moreover, if we intersect the fan with a sphere S ⊂ KR

(chose any euclidean metric here to define S, e. g. take the standard scalar product) then
we obtain a simplicial complex. Under certain additional assumptions (e. g. A is hereditary)
we obtain the simplicial complex of tilting modules in this way. Using this approach there
are several additional structures on the simplicial complex: a lattice geometric structure, a
natural volume form, and a convex geometric structure.

2 The volume of a module

To define a volume for a tilting module T we have to intersect the cone C(T ) with a set V , so
that we can define a volume on C(T ) ∩ V for each cone C(T ). The best definition would be
to define the volume invariant under lattice automorphisms, in particular, we would like to
have the definition invariant under tilting or even derived equivalences. Then we obtain the
Z–volume volZ. It turns out that we can measure only the number of tilting modules with
this volume, it is useful only if there is only a finite number of tilting modules. An approach
that works well also in the infinite case can be obtained as follows: consider the standard
euclidean metric on KR and consider any bounded measurable subset V in KR. Then define
the volume as the intersection of the cone with this subset V . The simplest set V might be
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the standard simplex

∆ := {

t∑

i=1

aiei |
∑

ai = 1, ai ≥ 0}.

To keep computations easier we normalize the euclidean metric (just multiply it by a constant)
so that vol ∆ = 1.

Lemma. Assume A is a finite dimensional algebra of finite global dimension and T is a partial
tilting module. Then C(T ) is a smooth cone. If T has t indecomposable direct summands and
det(dim Ti)

t
i=1 is non-zero, then C(T ) is simplicial.

Proof. If B is the endomorphism algebra of a tilting module, then the Cartan matrices of
A, respectively B, are conjugate over Z. Indead, if T is a tilting module, then {dim Ti}

t
i=1 is

Z–basis of K0 ⊂ KR, where T = ⊕T ci

i is a decomposition into indecomposable non-isomorphic
direct summands. Consequently, for a partial tilting module the set dimTi is a part of a Z–
basis. The second claim is obvious, since dim Ti are an R–basis of KR. 2

Definition. Let T be an A–module and let T = ⊕r
i=1T

ci

i be the decomposition into
indecomposable non-isomorphic direct summands. We define

volZ(T ) := vol(conv{0,dim T1, . . . ,dim Tr}),

where vol is just the natural lattice invariant volume form normalized so that the volume of
the t-dimensional standard simplex {

∑
aiei |

∑
ai ≤ 1, ai ≥ 0} is one. Moreover, we define

vol∆(T ) := vol(C(T ) ∩ ∆).

Lemma. Assume A is of finite global dimension and T is a tilting module (with decomposition
as above) then
1) volZ(T ) = 1 and
2) vol∆(T ) = 1/

∏t
i=1 dim Ti.

Proof. We first show 1). Since dim Ti form a Z–basis, we have |det(dim Ti)| = 1. Conse-
quently, the volume of the simplex conv{0,dim T1, . . . ,dim Tt} coincides with the volume of
conv{0, e1, . . . , et}, that is one by our assumption. Both assertions are equivalent since

volZ(T ) =

t∏

i=1

dim(Ti) vol∆(T )

follows from C(T ) ∩ ∆ = conv{0,dim T1/dim T1, . . . ,dim Tt/dim Tt}. 2

3 The fan of an algebra

Theorem. Let A be a finite dimensional algebra. Assume for each dimension vector d there
is at most one isomorphism class of an A–module T with Ext1(T, T ) = 0. Then the set
{C(T ) | T ∈ A − mod,Ext1(T, T ) = 0} is a fan. If A is even of finite global dimension then
the fan is also smooth (that is each cone is smooth).
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The assumption in the theorem is rather strong, it is satisfied for hereditary algebras and only
a few others. So it might be more useful to consider a smaller class of modules: in fact for
modules of projective dimension at most one we get a similar result. We prove both results
together.

Theorem. Let A be any finite dimensional algebra A with invertible Cartan matrix. Then
the set

Σ(A) := {C(T ) | T ∈ A − mod,pd(T ) ≤ 1,Ext1(T, T ) = 0}

is a fan. If A is of finite global dimension then Σ(A) is a smooth fan. In particular, if A is
hereditary then the simplicial complex of tilting modules is the intersection of the fan Σ(A)
with the unit sphere in KR.

Proof. We first need to show that for each dimension vector d there is at most one module
T satisfying dimT = d, pd(T ) ≤ 1, and Ext1(T, T ) = 0. For we show that the subset

R(A; d)1 := {M ∈ R(A; d) | pd(M) ≤ 1}

of the representation space R(A; d) of representations of A with dimension vector d is an
irreducible subvariety. Take a module M with dim M = d and consider an exact sequence
with P 1 projective and minimal

P 1 −→ P 0 := ⊕iP (i) ⊗ dim Mi −→ M.

If pd(M) ≤ 1 then the map P 1 −→ P 0 is injective and dimP 1 is determined by dim P 1 =
dim P 0 − dimM . By our assumption on the Cartan matrix the isomorphism class of P 1 is
determined by dimP 1, so it is independent of M . The space of injective A–module homo-
morphisms Hominj

A (P 1, P 0) is obviously irreducible (it is open in an affine space). Standard
arguments show that then also R(A; d)1 is irreducible (see Section 5, proof of the theorem).
Now we know that for each dimension vector d there is at most one module T with dimT = d,
pd(T ) ≤ 1, and Ext1(T, T ) = 0 (since such a module has an open dense orbit in R(A; d), thus
also in R(A; d)1). The following arguments also work if we use the assumption in the first
theorem und omit the condition on the projective dimension. Now we prove the assertion
about the fan: assume we have two modules T and R with Ext1(T, T ) = 0 = Ext1(R,R).
Assume C(T )∩C(R) 6= 0 and take 0 6= u ∈ C(T )∩C(R). Since both cones are rational we can
assume u ∈ K0. Since u ∈ C(T ) we obtain au =

∑
dim T ai

i for some positive integer a and

non-negative integers ai. Similarly, bu =
∑

dim Rbi

i . Thus, abu =
∑

dim T aib
i =

∑
dim Rabi

i .
Since for the dimension vector abu there exists at most one module X with this dimension
vector, projective dimension less or equal one and no selfextensions (note that both modules
⊕T aib

i and ⊕Rabi

i satisfy this conditions) we conclude ⊕T aib
i ≃ ⊕Rabi

i . Comparing indecom-
posable direct summands and renumber, if necessary, we finally obtain Ti ≃ Ri for some
indices i. We conclude that C(T ) must be simplicial, each face is of the form C(T ′) for some
direct summand T ′ of T (in particular T ′ satisfies the condition), and the intersection of two
cones C(T ) and C(R) is also of the form C(T ′), where T ′ is a direct summand of both T and
R.
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4 Hereditary algebras

Assume in this section A is hereditary and

Σ(A) = {C(T ) | T ∈ A − mod,Ext1(T, T ) = 0}

is the smooth fan for A, consisting of the cones C(T ) for the various isomorphism classes of
basic partial tilting modules T . We define

volZ(A) :=
∑

T

volZ(T ) and vol∆(A) :=
∑

T

vol∆(T ),

where the sums run over all isomorphism classes of basic partial tilting modules T .

Theorem. 1) The fan Σ(A) is finite precisely when A is representation finite.
2) Condition 1) is equivalent to volZ(A) < ∞.
3) For the ∆–volume we find vol∆(A) ≤ 1 and vol∆(A) = 1 if and only if A is tame.

Example. Consider the n–arrow Kronecker quiver.
n = 1: There are two tilting modules with dimension vector (2, 1) = (1, 0) + (1, 1) and
(1, 2) = (1, 1) + (0, 1), both have volume 1/2.
n = 2: There are infinitely many tilting modules. Each is determined by its dimension vector
(2a−1, 2a+1) = (a−1, a)+(a, a+1) (the preprojective ones) with volume 1/((2a−1)(2a+1))
and (2a + 1, 2a − 1) = (a, a − 1) + (a + 1, a) (the preinjective ones) with volume 1/((2a −
1)(2a + 1)). Consequently

2
∞∑

a=1

1/((2a − 1)(2a + 1)) = 1.

n ≥ 3: There are also infinitely many tilting modules (each one is either preprojective or
preinjective) and vol∆(A) < 1.

Proof. A tame hereditary algebra has already infinitely many isomorphism classes of prepro-
jective tilting modules, in particular, infinitely many isomorphism classes of tilting modules.
Thus volZ(A) = ∞ for A tame or wild (second lemma in section 2). For A representation
finite we obviously get volZ(A) < ∞. Thus we have proven 1) and 2).
The inequality in 3) is also obvious, since vol∆(A) ≤ vol(∆). If A is tame then for each
dimension vector d that is not a multiple of the imaginary root there exists a module M with
dim M = d and Ext1(M,M) = 0. Consequently, the subset ∪C(T ) has the same volume
as ∆. If A wild then the subset of all d where the quadratic from q satisfies q(d) ≤ 0 has
a positive volume, whereas q(dim(T )) > 0 for each tilting modules T . Thus ∪C(T ) has a
volume smaller than 1. 2

5 Modules of projective dimension at most 1

Assume A is finite dimensional with invertible Cartan matrix (we only need to assume
dim P (i) for i = 1, . . . , t is an R–basis). We consider the fan

Σ(A) := {C(T ) | T ∈ A − mod,pdT ≤ 1,Ext1(T, T ) = 0}.
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We consider the open subvariety in the representation space consisting of modules of projective
dimension at most one

R1(A; d) ⊂ R(A; d) = {φ ∈ ⊕α Hom(kd(s(α)), kd(t(α)) | M(φ) is an A − module}.

Theorem. The variety R1(A; d) is irreducible and reduced. In particular, there exists at most
one dense orbit and if M is in a dense orbit then Ext1(M,M) = 0.

Proof. We only sketch the proof here. We define P 1 and P 0 as in the proof in Section 3.
Then we need to define a morphism

Hominj
A (P 1, P 0) −→ R1(A; d), f 7→ M(f).

Note that Coker(f) comes equipped with a basis, just take the image of a fixed basis in the
top of P 0. Thus M(f) := Coker(f) is a module together with a basis, thus an element in
the representation space. Consequently, we have a well–defined map. It is not hard to check
that this map is a morphism, it is dominant and a morphism between affine schemes. Since
Hominj

A (P 1, P 0) is a variety, its coordinate ring is integral and since the morphism is dominant,
the coordinate ring of R1(A; d) is a subring. Consequently, it is also integral and R1(A; d) is
irreducible and reduced. 2

Now we can state a similar result, as the theorem in the previous section, for arbitrary
algebras. In this case we need to define the cone C1 as the cone of all dimension vectors d,
so that there exists a module M with dim M = d and pdM ≤ 1. Moreover, we define

volZ(A) :=
∑

volZ(T ), and vol∆(A) :=
∑

vol∆(T ),

where the sums run over all isomorphism classes of basic modules with pdT ≤ 1 and
Ext1(T, T ) = 0. Note that this definition generalizes the definition in the previous section.

Theorem. 1) The fan Σ(A) is finite precisely when A admits only a finite number of tilting
modules with pdT ≤ 1.
2) Condition 1) is equivalent to volZ(A) < ∞.
3) For the ∆–volume we find vol∆(A) ≤ vol∆(C1). If in addition for each dimension vector
d, except for some set of volume zero, there exists a module T with pdT ≤ 1 and the orbit
of T is dense in R1(A; d) (thus Ext1(T, T ) = 0) then vol∆(A) = vol∆(C1). If there are only
finitely many isomorphism classes of indecomposable modules with pd ≤ 1 then the previous
condition is satisfied.

Proof. The proof of the theorem in Section 4 also works here. 2

Remark. One can not expect a characterisation of the equality vol∆(A) = vol∆(C1) in
terms of the representation type of the set of modules with pd ≤ 1. There exist examples of
algebras, where the category of modules with projective dimension at most 1 is wild, however
the set of isomorphism classes of basic tilting modules with projective dimension at most one
is finite (see e. g. [3]).
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