ALGEBRAS OF FINITE GLOBAL DIMENSION: ACYCLIC QUIVERS

ROLF FARNSTEINER

Let Λ be an artinian ring. The category of finitely generated left Λ -modules will be denoted by mod Λ . A module M belonging to mod Λ is artinian and noetherian and hence of finite length $\ell(M)$. We let $\mathcal{S}(\Lambda)$ be the set of isoclasses of simple Λ -modules.

By definition, the Gabriel quiver Q_{Λ} has $\mathcal{S}(\Lambda)$ as its set of vertices. There is an arrow $S \to T$ if $\operatorname{Ext}^{1}_{\Lambda}(S,T) \neq (0)$. The quiver Q_{Λ} is referred as *acyclic* if it contains no oriented cycles.

Let $(P_n)_{n\geq 0}$ be a minimal projective resolution of $M \in \text{mod } \Lambda$. Setting $P_{-1} := M$, we write

$$\Omega^n(M) := \ker(P_{n-1} \longrightarrow P_{n-2})$$

for all $n \geq 1$. By general theory, the module $\Omega^n(M) \in \text{mod } \Lambda$ is unique up to isomorphism.

Definition. Let $(0) \neq M \in \text{mod } \Lambda$. Then

$$pd(M) := \sup\{n \ge 0 ; \ \Omega^n(M) \ne (0)\} \in \mathbb{N}_0 \cup \{\infty\}$$

is called the *projective dimension* of M. We put pd(0) = 0.

Note that the modules of projective dimension 0 are the projective modules. Thus, pd(M) measures the degree of departure from projectivity.

Recall that

*)
$$\operatorname{Ext}^{n}_{\Lambda}(M,S) \cong \operatorname{Hom}_{\Lambda}(\Omega^{n}(M),S)$$

for every simple Λ -module S. Consequently, we have

$$pd(M) = \sup\{n \ge 0 ; \operatorname{Ext}^n_{\Lambda}(M, -) \neq (0)\}.$$

Given $M \in \text{mod } \Lambda$ and a simple Λ -module S, we let [M:S] be the multiplicity of S in a composition series of M. The long exact cohomology sequence now shows that

$$pd(M) \le \max\{pd(S) ; [M:S] \ne 0\}.$$

Hence the maximum projective dimension is that of a simple module. This number has turned out to be an important invariant of Λ .

Definition. The number

gldim $\Lambda := \max\{ pd(S) ; S simple \} \in \mathbb{N}_0 \cup \{\infty\}$

is called the global dimension of Λ .

Note that Λ is semi-simple if and only if gldim $\Lambda = 0$. The purpose of this lecture is to prove the following basic result:

Theorem. If Q_{Λ} is acyclic, then $\operatorname{gldim} \Lambda \leq |\mathcal{S}(\Lambda)| - 1$.

Date: October 25, 2007.

ROLF FARNSTEINER

Let J denote the Jacobson radical of Λ . If S is a simple Λ -module with projective cover P(S), then (*) specializes to

**)
$$\operatorname{Ext}_{\Lambda}^{1}(S,T) \cong \operatorname{Hom}_{\Lambda}(JP(S)/J^{2}P(S),T)$$

for every simple Λ -module T.

Lemma 1. Let S and T be simple Λ -modules. If $[JP(S):T] \neq 0$, then there exists a path in Q_{Λ} of length ≥ 1 that starts at S and ends at T.

Proof. Let X be a factor module of P(S) of maximal length, subject to all composition factors of JX being endpoints of paths of lengths ≥ 1 that originate in S. If P(S) is simple, then there is nothing to be shown. Alternatively, formula (**) implies that $\ell(X) \geq 2$. There results a short exact sequence

$$(0) \longrightarrow Y \longrightarrow P(S) \longrightarrow X \longrightarrow (0).$$

Assuming $X \neq P(S)$, we pick a maximal submodule $N \subsetneq Y$ and consider the induced exact sequence

$$(0) \longrightarrow Y/N \longrightarrow P(S)/N \longrightarrow X \longrightarrow (0).$$

Since $P(S)/JP(S) \cong S$ is simple, the middle term is indecomposable, so that the sequence does not split. Writing $T_2 := Y/N$, we thus have $\operatorname{Ext}^1_{\Lambda}(X, T_2) \neq (0)$ and standard homological algebra provides a composition factor T_1 of X with $\operatorname{Ext}^1_{\Lambda}(T_1, T_2) \neq (0)$. If $T_1 \cong S$, then there is a path from S to T_2 of length 1. Alternatively, $[JX:T_1] \neq 0$, so that there is a path from S to T_1 , and hence one from S to T_2 . Consequently, all composition factors of J(P(S)/N) are endpoints of paths originating in S. Since $\ell(P(S)/N) = \ell(X) + 1$, this contradicts the maximality of $\ell(X)$. As a result, X = P(S), as desired.

Lemma 2. Let S be a simple Λ -module, $(P_n)_{n\geq 0}$ be a minimal projective resolution of S. If P(T) is a direct summand of P_n , then there exists a path of length $\geq n$ originating in S and terminating in T.

Proof. We use induction on n, the case n = 0 being trivial.

Let $n \ge 1$ and note that P_n is the projective cover of $K_n := \ker(P_{n-1} \longrightarrow P_{n-2}) \subseteq JP_{n-1}$ (Here we set $P_{-1} := S$). Consequently, $P_n/JP_n \cong K_n/JK_n$, so that P(T) being a summand of P_n implies $[JP_{n-1}:T] \ne 0$. Hence there exists a summand P(T') of P_{n-1} with $[JP(T'):T] \ne 0$. Lemma 1 provides a path $T' \to T$ of length ≥ 1 . By inductive hypothesis, there is a path $S \to T'$ of length $\ge n-1$, and concatenation yields the desired path from S to T. \Box

Proof of the Theorem. Let S be a simple Λ -module with minimal projective resolution $(P_n)_{n\geq 0}$. Since Q_{Λ} is acyclic, a path in Q_{Λ} has length $\leq |\mathcal{S}(\Lambda)| - 1 =: n$. By virtue of Lemma 2, we obtain $P_{n+1} = (0)$, whence $\Omega^{n+1}(S) \cong \operatorname{im}(P_{n+1} \longrightarrow P_n) = (0)$. Thus, $\operatorname{pd}(S) \leq n$, so that $\operatorname{gldim} \Lambda \leq n$. \Box

The proof actually shows that the projective dimension pd(S) of the simple Λ -module S is bounded by the maximum length of all paths originating in S.

The following example shows that algebras of finite global dimension also occur for quivers admitting oriented cycles.

Example. Let k be a field and consider the bound quiver algebra $\Lambda := k[Q]/\langle \beta \alpha \rangle$ with quiver Q given by

$$\bullet_1 \xrightarrow{\alpha} \bullet_2$$

We denote the simple modules S_1 and S_2 . Then we have $\Omega(S_1) = S_2$ and $\Omega(S_2) = P(S_1)$, so that $pd(S_2) = 1$ and $pd(S_1) = 2$, whence gldim $\Lambda = 2$.

Our formula (**) readily yields $Q_{\Lambda} = Q_{\Lambda/J^2}$. Hence we can hope to get more infomation for algebras satisfying $J^2 = (0)$. We record the following basic observation:

Corollary 3. Suppose that $J^2 = (0)$. Then the following statements hold:

- (1) If gldim $\Lambda < \infty$, then Q_{Λ} has no oriented cycles.
- (2) If Λ has only one simple module, then Λ is simple.

Proof. (1) Let S be a simple Λ -module. Since $J^2 = (0)$, the module $\Omega(S) = JP(S) = \bigoplus n_{S'}S'$ is semi-simple and formula (**) implies

$$n_T \operatorname{Hom}_{\Lambda}(T,T) \cong \operatorname{Hom}_{\Lambda}(JP(S),T) \cong \operatorname{Ext}^1_{\Lambda}(S,T).$$

Hence $n_T \neq 0$ whenever there is an arrow $S \rightarrow T$, and in that case our Ext-criterion yields

 $pd(T) \le max\{pd(S'); n_{S'} \ne 0\} = pd(JP(S)) < pd(S).$

Consequently, Q_{Λ} has no oriented cycles.

(2) Part (1) implies that Q_{Λ} has no arrows. Hence Λ is semi-simple and has only one simple module. By Wedderburn's Theorem, Λ is simple.

Recall that an arrow starting and terminating at the same vertex is called a *loop*. There are two conjectures relating the structure of the quiver Q_{Λ} to the various dimensions introduced before.

No loops conjecture. If gldim $\Lambda < \infty$, then Q_{Λ} has no loops.

Strong no loops conjecture. If S is a simple Λ -module with $pd(S) < \infty$, then Q_{Λ} does not possess a loop at the vertex corresponding to S.

It is of course tempting to verify the first conjecture by comparing the global dimension of Λ with that of a factor algebra $\Lambda/\Lambda e\Lambda$, where e is a suitable idempotent of Λ . The following example illustrates that this approach will in general not be of much avail:

Example. Let Λ be given by the quiver

$$\bullet_{1} \xrightarrow{\alpha} \bullet_{2} \xrightarrow{\gamma} \bullet_{3}$$

subject to the relations $\beta \alpha = 0$ and $\alpha \beta = \delta \gamma$. Letting S_i and P_i be the simple and principal indecomposable modules corresponding to the vertex *i*, we obtain $\Omega^2(S_1) \cong P(S_1)$ and $\Omega^2(S_2) \cong$ $P_2 \cong \Omega(S_3)$, so that gldim $\Lambda = 2$. On the other hand, if *e* is the idempotent corresponding to the vertex 3, then $\Lambda' := \Lambda/\Lambda e \Lambda$ has quiver the full subquiver with vertices 1 and 2, while the relations are $\alpha \beta = 0 = \beta \alpha$. Being a self-injective algebra which is not semi-simple, Λ' has infinite global dimension.