
TWO RESULTS ON PROJECTIVE MODULES

ANDREW HUBERY

We wish to present two results.

The first is from the paper

Pavel Př́ıhoda, Projective modules are determined by their radical factors, J.
Pure Applied Algebra 210 (2007) 827–835.

Theorem A. Let Λ be a ring, with Jacobson radical J , and let P and Q be two
projective (right) Λ-modules. Then we can lift any isomorphism f̄ : P/PJ ∼−→ Q/QJ
to an isomorphism f : P ∼−→ Q.

In particular, projective modules are determined by their tops.

Special cases have been known for a long time. For example, we say that Λ is
right perfect if every right Λ-module admits a projective cover. Then P � P/PJ is
a projective cover, so the result follows (Bass 1960). In general, though, P → P/PJ
will not be a projective cover.

Beck (1972) showed that if P/PJ is a free Λ/J-module, then P is free.
Note that if J = 0 then the theorem tells us nothing!

The second result is from the appendix to the paper

Michael Butler and Alastair King, Minimal resolutions of algebras, J. Algebra
212 (1999) 323–362.

Theorem B. Let Λ = TA(M) be an hereditary tensor algebra, where A is semisim-
ple and M is an A-bimodule. Then every projective module is isomorphic to an
induced module, so one of the form X ⊗A Λ; equivalently, every projective module
is gradable.

This is trivial if there are no oriented cycles; that is, if the graded radical Λ+

is nilpotent, so Λ is semiprimary and J(Λ) = Λ+. In general, if there are enough
arrows, then J(Λ) = 0.

Green (2000) has an alternative (and more well-known) proof for path algebras
of quivers using Gröbner bases, but this is actually more involved than the Butler-
King proof.

Bergman’s theory of modules over coproducts of rings (1974) can be used to
reduce the problem to when A is a division ring, in which case Cohn’s work on
firs (free ideal rings) can be used to finish the result. This approach is extremely
complicated, with Bergman’s paper being technically demanding.
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1. Projective modules are determined by their tops

We fix a ring Λ with Jacobson radical J , and write X̄ := X/XJ for a Λ-module
X.

The proof of Theorem A is based around generalising two classical results.

Lemma 1. Let P be a projective module, X ⊂ P a finite subset, and θ ∈ End(P )
such that θ(p)− p ∈ PJ for all p ∈ P . Then there exists φ ∈ End(P ) satisfying

(1) φ(p)− p ∈ PJ for all p ∈ P , and
(2) φθ(x) = x for all x ∈ X.

By taking θ = 0 and any element x ∈ P , this recovers a result of Bass (1960)
showing that PJ = P implies P = 0.

Proof. Assume first that P is free, and take a finitely generated free summand F ,
say of rank n, containing both X and θ(X). Note that End(F ) ∼= Mn(Λ) and
J(End(F ) ∼= Mn(J), so that α ∈ J(End(F )) if and only if Im(α) ⊆ FJ .

Let P F
π

ι
be the natural maps, and set θ′ := πθι ∈ idF + J(End(F )). This

has an inverse of the form idF + φ′ for some φ′ ∈ J(End(F )), and we can take
φ := idP + ιφ′π.

In general, suppose P ⊕Q is free and consider θ̂ := ιP θπP + ιQπQ. This satisfies

θ̂(a) − a ∈ PJ for all a ∈ P ⊕ Q, so we can find φ̂ as above. We then set φ =

πP φ̂ιP . �

This is enough to prove Theorem A for countably generated projectives.

Proposition 2. Let P and Q be countably generated projective modules. Then we
can lift any isomorphism f̄ : P̄ ∼−→ Q̄ to an isomorphism f : P ∼−→ Q.

Proof. Let ḡ be the inverse to f̄ , and choose lifts P Q
f̃

g̃
. Let {x1, x2, . . .} and

{y1, y2, . . .} be generating sets for P and Q respectively.

We will construct recursively homomorphisms P Q
fn

gn
and finite sets Xn ⊂ P

and Yn ⊂ Q as follows. We start by setting X1 := {x1} and f1 := f̃ , and then
apply the constructions β1, α2, β2, . . ., where

(αn) Note that f̃gn−1(q) − q ∈ QJ for all q ∈ Q, so by the lemma there exists
φn ∈ End(Q) such that
(a) φn(q)− q ∈ QJ for all q ∈ Q, and

(b) φnf̃gn−1(y) = y for all y ∈ Yn−1.

Set fn := φnf̃ , which is a lift of f̄ , and Xn := gn−1(Yn−1) ∪ {xn}.
(βn) Note that g̃fn(p) − p ∈ PJ for all p ∈ P , so by the lemma there exists

θn ∈ End(P ) such that
(a) θn(p)− p ∈ PJ for all p ∈ P , and
(b) θng̃fn(x) = x for all x ∈ Xn.
Set gn := θng̃, which is a lift of ḡ, and Yn := fn(Xn) ∪ {yn}.

Now, Xn+1 = gn(Yn)∪{xn} = Xn∪{gn(yn), xn}. Also, if x ∈ Xn, then x = gnfn(x)
and fn(x) ∈ Yn, so fn+1(x) = fn(x). Since

⋃
nXn generates P , we can define

f : P → Q such that f(x) = fn(x) for all x ∈ Xn. Note that f is indeed a lift of f̄ .
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Similarly, we have a lift g : Q → P of ḡ such that g(y) = gn(y) for all y ∈ Yn.
Then gf(xn) = xn and fg(yn) = yn for all n, so that f and g are mutually
inverse. �

Lemma 3. Let M =
⊕

i∈IMi be a direct sum of countably generated modules, and
let Θ := {idM , . . .} be a countable set of endomorphisms of M . Then there exists a
well-ordered increasing sequence of subsets Iα ⊆ I such that

(1) I =
⋃
α Iα,

(2) Iβ =
⋃
α<β Iα for a limit ordinal β,

(3) Iα+1 − Iα is countable, and
(4) Mα :=

⊕
i∈IαMi is Θ-stable.

Proof. We begin by observing that if U ⊆ M is a countable subset, then there
exists a countable subset J ⊆ I such that θ(u) ∈

⊕
j∈JMj for all θ ∈ Θ and u ∈ U .

We set I0 := ∅. Assume that we have constructed Iα, and suppose i ∈ I − Iα.
Let U1 be a countable generating set for Mi. By the observation there exists a
countable subset J1 ⊆ I such that θ(u) ∈

⊕
j∈J1 Mj for all θ ∈ Θ and u ∈ I1. Let

U2 be a countable generating set for this direct sum, and repeat. This yields an
increasing sequence of countable subsets J1 ⊆ J2 ⊆ · · · of I, and we set Iα+1 to be
their union together with Iα.

Now, Mα is Θ-stable by induction. If x ∈ Mα+1, then x ∈ Mα ⊕j∈Jr Mj for
some r, so that θ(x) ∈Mα⊕j ∈ Jr+1Mj for all θ ∈ Θ, and hence Mα+1 is Θ-stable.

For a limit ordinal β we set Iβ :=
⋃
α<β Iβ , so Mβ is clearly Θ-stable. �

By taking Θ = {idm, ε} for an idempotent ε, this recovers a construction of
Kaplansky (1958), which he used to prove the following result.

Proposition 4. Every projective module is isomorphic to a direct sum of countably
generated modules.

Proof. Let P be a direct summand of a free module F , and let ε ∈ End(F ) be
the corresponding idempotent. Since F is a direct sum of cyclic modules, we can
apply the lemma to F and Θ = {idF , e} to obtain a sequence of summands Fα.
Then Pα := ε(Fα) is a summand of Fα, yielding the required decomposition P ∼=⊕

α(Pα+1/Pα). �

Theorem 5. Let P and Q be projective modules. Then we can lift any isomorphism
f̄ : P̄ ∼−→ Q̄ to an isomorphism f : P ∼−→ Q.

Proof. Let ḡ be the inverse to f̄ , and choose lifts P Q
f̃

g̃
. We apply the lemma

to the module P ⊕Q and Θ = {id, ε, φ}, where ε is the idempotent corresponding

to P , and φ :=
( 0 g̃

f̃ 0

)
, yielding the increasing sequence of submodules Pα ⊕Qα.

Note that the isomorphism f̄ restricts to give isomorphism f̄α : P̄α
∼−→ Q̄α for all

α. We construct recursively isomorphisms fα : Pα
∼−→ Qα lifting f̄α.

Choose complements Pα+1 = Pα ⊕ P ′α and Qα+1 = Qα ⊕ Q′α, yielding the

decomposition f̄α+1 =
(
f̄α ξ̄α
0 η̄α

)
. Since P ′α and Q′α are countably generated, we

can apply the earlier proposition to lift the isomorphism η̄α to an isomorphism
ηα : P ′α

∼−→ Q′α. Finally, take any lift ξα of ξ̄α, and set fα+1 :=
(
fα ξα
0 ηα

)
.
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If β is a limit ordinal, then Pβ =
⋃
α<β Pα and the maps fα are all compatible, so

we have an isomorphism fβ lifting f̄β . By induction we thus obtain an isomorphism
f : P → Q lifting f̄ . �

Corollary 6. If Λ is semiperfect, then every projective module is isomorphic to a
direct sum of indecomposable projectives of the form eΛ for primitive idempotents
e, each having local endomorphism ring.

Proof. Let P be projective. We know that Λ̄ is semisimple, so P̄ is a direct sum of
simple modules, each of the form ēΛ̄ for some primitive idempotent ē ∈ Λ̄. We can
lift ē to a primitive idempotent e ∈ Λ, and set Q to be the corresponding direct
sum of the indecomposable projectives eΛ. Then P̄ ∼= Q̄, so P ∼= Q. �
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2. Projective modules for hereditary tensor algebras

First, some history.

Dedekind proved that every subgroup of a free abelian group is again free. This
generalises to the case of free modules over a principal ideal domain.

Schreier (1927) showed that subgroups of free groups are again free. This ex-
tended Nielsen’s result (1921) which covered finitely generated subgroups of free
groups.

Cohn (1964) showed that a free algebra is a free ideal ring (fir), and hence that
all projective modules are free. Lewin (1969) gave a direct proof of this following
techniques developed by Schreier.

Butler and King’s proof can be seen as a further extension of Schreier’s techniques
to hereditary tensor algebras.

Let A be a semisimple algebra, M an A-bimodule, and set Λ := TA(M) to be
the tensor algebra. Thus

Λ =
⊕
n≥0

M⊗n = A⊕M ⊕ (M ⊗AM)⊕ (M ⊗AM ⊗AM)⊕ · · ·

with multiplication given by concatenation of tensors.

Example. All path algebras of quivers are tensor algebras, where A = Kn is
a product of fields, one for each vertex, and M has K-basis given by the arrows.
Thus M⊗n has basis the paths of length n.

Set Λ+ :=
⊕

n≥1M
⊗n. Then Λ+

∼= M ⊗AΛ as right Λ-modules, and every right
Λ-module X has a projective presentation of the form

0→ X ⊗A Λ+ → X ⊗A Λ→ X → 0.

It follows that Λ is an hereditary algebra.

Theorem 7. Every projective Λ-module is isomorphic to a module of the form
X ⊗A Λ for some A-module X.

Proof. We know that every free module is isomorphic to an induced module, so it
is enough to show that every submodule of an induced module is again induced. In
particular, this argument will give an alternative proof that Λ is hereditary.

Let F = F0 ⊗A Λ be an induced module. Note that this has a natural grading
F =

⊕
n Fn, where Fn := F0 ⊗A Mn. The corresponding filtration is given by

F≤n := F0 ⊕ · · · ⊕ Fn.
Let L ≤ F be a submodule, with induced filtration L≤n := L∩F≤n. For each n

we choose an A-module complement Xn to the A-submodule L<n+L<nM of L≤n.
We set X :=

⊕
nXn, and claim that the multipliction map µ : X ⊗A Λ → L is an

isomorphism.
By induction we see that L≤n =

∑
p+q≤nXpM

q. Since L =
⋃
n L≤n, we deduce

that µ is surjective. It remains to show that µ is injective. Equivalently, that each
X ⊗AMn → XMn is an isomorphism, and that the sum

∑
nXM

n is direct.
Observe that − ⊗A M is an exact functor. If now U is an A-submodule of F ,

then the multiplication map U ⊗AM → UM is an isomorphism. For, it is clearly
surjective, and is injective since it equals the composite U⊗AM � F⊗AM

∼−→ FM .
By induction, X ⊗AMn → XMn is an isomorphism for all n.
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It remains to prove that the sum
∑
nXM

n is direct. We do this in three steps.
(a) We have L≤n ∩ LM = L<nM .
For, denote by pn : F � F≥n the natural projection of A-modules. Since F is an

induced module we have F≥nM = F>n, yielding the commutative diagram

L⊗AM F ⊗AM F≥n ⊗M

LM FM F>n.

o

pn⊗idM

o o
pn+1

The composite of the maps in the top row has kernel L<n ⊗AM , whereas for the
bottom row it is L≤n ∩ LM . This shows that L<nM = L≤n ∩ LM as required.

(b) We have XMn ∩ LMn+1 = 0 for all n.
Observe that, if U, V ≤ F are A-submodules, then UM ∩ VM = (U ∩ V )M .

For, the exact functor − ⊗A M preserves pullbacks, so (U ⊗A M) ∩ (V ⊗A M) =
(U ∩ V )⊗AM . Thus XMn ∩ LMn+1 =

(
X ∩ LM)Mn, and it is enough to prove

that X ∩ LM = 0.
Suppose therefore that x = x0 + · · · + xn ∈ X ∩ LM , where xi ∈ Xi. Then

x ∈ L≤n ∩ LM = L<nM and x0 + · · · + xn−1 ∈ L<n, so that xn ∈ Xn ∩
(
L<n +

L<nM
)

= 0. By induction on n we deduce that xi = 0 for all i.
(c) The sum

∑
nXM

n is direct.
Suppose we have yi ∈ XM i such that yr + · · · + ys = 0. Then −yr = yr+1 +

· · ·+ ys ∈ XMr ∩ LMr+1 = 0, so by induction yi = 0 for all i. �

Corollary 8. Assume A is basic and write 1 =
∑
i ei as a sum of primitive orthog-

onal idempotents. Then the Pi := eiΛ are pairwise non-isomorphic indecomposable
projective modules, and every projective module is isomorphic to a direct sum of the
Pi. �


