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We fix a finite group G. Our goal is to explain Quillen’s result how the maximal ideal
spectrum of the group cohomology ring of G over an algebraically closed field of characteristic
p > 0 can be glued together from group cohomology of its elementary abelian p-subgroups.

Quillen wrote four papers about the structure of the group cohomology ring. The first two
[Qui71bQui71b] are more general as they treat compact Lie groups and use equivariant cohomology.
In [Qui71aQui71a], Quillen developed an algebraic approach, but still used equivariant cohomology for
some key step. Finally, he provided an algebraic proof for this step in collaboration with Venkov
[QV72QV72]. In this short exposition, we follow the algebraic approach. More details can be found
in the very readable master’s thesis of Amalie Høgenhaven [Høg13Høg13].

Quillen’s stratification theorem arose as a continuation of establishing the Atiyah-Swan con-
jecture which states that the Krull dimension of the mod-p cohomology ring of G equals its
p-rank. We will encounter the stratification theorem as a crucial input in Henning Krause’s
forthcoming talk. He will provide an exposition of his work [BIK11BIK11] with Dave Benson and
Srikanth Iyengar. For further developments motivated by Quillen’s work, we refer to Eric Fried-
lander’s discussion [Fri13Fri13].

1. Basics of group cohomology

Let R be a commutative ring, G and G′ finite groups, H ⊂ G a subgroup, and M an RG-
module.

The group cohomology of G with coefficients in M is the graded R-module given in degree
n by Hn(G,M) = ExtnRG(R,M). If M = R, then H∗(G,R) is a graded commutative ring. The
multiplication can be defined via Yoneda splicing if the Ext-groups are defined via extensions
or with the help of a diagonal approximation P∗ → P∗ ⊗R P∗ if the Ext-groups are defined as
the cohomology groups of the cochain complex HomRG(P∗, R) for a projective resolution P∗ of
R over RG.

Group cohomology is functorial. If φ : G→ G′ is a group homomorphism, M ′ an RG′-module
and f : M ′ →M a homomorphism of RG-modules, then we obtain an induced map

(φ, f)∗ : H∗(G′,M ′)→ H∗(G,M).

In particular, the inclusion H → G induces a natural restriction map

resG,H : H∗(G,M)→ H∗(H,M).

It is induced on cochain level by HomRG(P∗,M) → HomRH(P∗,M) using that any projective
resolution P∗ over RG is also a projective resolution over RH and that RG-module homor-
mophisms are in particular RH-module homomorphisms.

There is also a natural map in the other direction, called corestriction (or transfer)

corH,G : H∗(H,M)→ H∗(G,M).

We will only need the fact that corH,G ◦ resG,H is multiplication by the index |G : H|.
For any g ∈ G, conjugation induces a natural homomorphism

g∗ : H∗(H,M)→ H∗(gHg−1,M)

given on cochain level by HomRH(Pn,M)→ HomR(gHg−1)(Pn,M), f 7→ (x 7→ gfg−1(x)).
If H is normal in G, then we obtain a G/H-action on H∗(H,M) since elements of H act as

the identity by construction.
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The Bockstein homomorphism β : Hn(G,Fp) → Hn+1(G,Fp) is the connecting homomor-
phism in the long exact sequence arising from the short exact sequence

0→ Z/p ·p−→ Z/p2 −→ Z/p→ 0.

Finally, we recall the group cohomology of an elementary abelian p-group E = (Z/p)n of rank
n with coefficients in a field k of characteristic p. It is a polynomial algebra for p = 2 and a
tensor product of a polynomial algebra with an exterior algebra for odd p:

H∗(E, k) ∼=

{
k[x1, . . . , xn], with |xi| = 1, p = 2,

k[x1, . . . , xn]⊗k Λ(y1, . . . , yn), with |xi| = 2, |yi| = 1, p odd.

There is a canonical choice of generators such that β(yi) = xi for k = Fp and odd p.

2. Quillen-Venkov Lemma

The following theorem is the Quillen-Venkov Lemma.

Theorem 2.1. If u ∈ H∗(G,Fp) restricts to 0 ∈ H∗(E,Fp) for all elementary abelian subgroups
E of G, then u is nilpotent.

It holds more generally over any field k of charcteristic p since H∗(G, k) ∼= H∗(G,Fp)⊗Fp k.
We will use Serre’s Theorem.

Theorem 2.2 ([Ser65Ser65]). Suppose that G is a finite p-group. If G is not elementary abelian,
then there exist cohomology classes α1, . . . , αr ∈ H1(G,Fp) \ {0} such that

β(α1) . . . β(αr) = 0.

Example 2.3. The group cohomology of the dihedral group D8 of order 8 is

H∗(D8,F2) ∼=
F2[x, e, y]

(xe)

with |x| = |e| = 1 and |y| = 2. For p = 2, the Bockstein of a degree 1 cohomology class is just
its square. Thus we can take α1 = x, α2 = e which multiply to zero even before squaring.

This is no coincidence. Ergün Yalçin proved in [Yal08Yal08] that there exist nonzero 1-dimensional
cohomology classes with trivial product for any nonabelian 2-group.

In addition to Serre’s Theorem we will need the following result whose proof is an application
of the Lyndon-Hochschild-Serre spectral sequence. Its statement uses the identification of group
cohomology classes of degree one with group homomorphisms.

Lemma 2.4. Let v 6= 0 in H1(G,Fp) ∼= Hom(G,Fp) and G′ = ker v. If u ∈ H∗(G,Fp) restricts
to zero on G′, then u2 ∈ H∗(G,Fp) · β(v).

We are ready to prove the Quillen-Venkov Lemma.

Proof of Theorem 2.12.1. By induction on the order of G. Let u ∈ H∗(G,Fp) such that resG,E(u) =
0 for all elementary abelian p-subgroups E ⊂ G. By induction hypothesis we assume that
resG,H(u) is nilpotent for all proper subgroups H ⊂ G, and after replacing u by a power, that
resG,H(u) = 0 for all such H.

If G is not a p-group, let H ⊂ G be a p-Sylow subgroup. Then resG,H is injective since p
does not divide the index |G : H|, and hence u = 0.

If G is a p-group, we may assume that G is not elementary abelian as otherwise u = 0 by
assumption. Choose α1, . . . , αr as in Serre’s Theorem 2.22.2. By Lemma 2.42.4, the square u2 is
divisible by β(αi) for all 1 ≤ i ≤ r. So u2r is divisible by β(α1) . . . β(αr) = 0. Hence u is
nilpotent. �
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3. Krull dimension

Let k be a field of characteristic p > 0. Instead of working with graded-commutative algebras,
Quillen restricts to the commutative part of even-degree classes when p is odd.

Notation 3.1.

H(G, k) =

{
H∗(G, k), p = 2,⊕

i≥0H
2i(G, k), p odd.

Example 3.2. For an elementary abelian p-group E of rank n, we obtain

H(E, k) ∼= k[x1, . . . , xn], with |xi| = 1,

when p = 2, and
H(E, k) ∼= k[x1, . . . , xn]⊕ J, with |xi| = 2,

as graded k[x1, . . . , xn]-modules, where J ⊂ H(E, k) is the nilpotent ideal generated byH1(E, k)·
H1(E, k), when p is odd.

Quillen’s starting point was the following theorem of Evens-Venkov.

Theorem 3.3 ([Ven59Ven59, Eve61Eve61]). The group cohomology H∗(G, k) is a finitely generated algebra
over k. If M is a finitely generated kG-module, then H∗(G,M) is a finitely generated module
over H∗(G, k).

Since H∗(H, k) ∼= H∗(G, kG⊗kH k) by the Eckmann-Shapiro Lemma, we obtain the following
consequence.

Corollary 3.4. For any subgroup H ⊂ G, the group cohomology H∗(H, k) is a finitely generated
module over H∗(G, k) via the restriction map.

Recall that the Krull dimension of a commutative ring is the longest length l of proper
inclusions p0 ⊂ p1 ⊂ . . . ⊂ pl of prime ideals. In particular the Krull dimension of a polynomial
ring over a field is the number of indeterminates. The following result of Quillen establishes a
conjecture of Atiyah and Swan.

Theorem 3.5. The Krull dimension of H(G, k) is the p-rank of G, i.e., the maximal rank of
its elementary abelian p-subgroups.

Proof. The restriction maps resG,E for the elementary abelian p-subgroups E ⊂ G induce a ring
homomorphism

φ : H(G, k)→
∏
E⊂G

H(E, k).

It factors over its image

H(G, k) −→ φ(H(G, k)) −→
∏
E⊂G

H(E, k)

as a surjection whose kernel is nilpotent by the Quillen-Venkov Lemma, followed by an integral
extension since

∏
E⊂GH(E, k) is finitely generated as a module over φ(H(G, k)) by Corollary 3.43.4.

Since nilpotent elements are contained in any prime ideal and integral extensions have the
same Krull dimension, we obtain

dimH(G, k) = dimφ(H(G, k)) = dim
∏
E

H(E, k) = max
E

dimH(E, k) = p-rank of G.

�

4. Basics of commutative algebra

Let k be an algebraically closed field. We will work with finitely generated commutative
algebras A over k. By Hilbert’s Basis Theorem, the ring A is noetherian and we may think of
A as a quotient

A ∼=
k[x1, . . . , xn]

(f1, . . . , fm)

as in affine algebraic geometry.
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The maximal ideal spectrum is the set

max(A) = {m | m ⊂ A maximal ideal}
equipped with the Zariski topology given by the closed sets

V (I) = {m ∈ max(A)|I ⊂ m}
for the ideals I of A.

Any homomorphism of finitely generated commutative algebras φ : A→ B induces a contin-
uous map

φ∗ : max(B)→ max(A), m 7→ φ−1(m),

thus max is a contravariant functor to topological spaces.

Fact 4.1. Let A,B be finitely generated commutative algebras.

(1) If φ : A→ B is surjective, then φ∗ is a closed embedding with image V (kerφ).
(2) If i : A→ B is an integral extension, then the map i∗ : max(B)→ max(A) is surjective and

closed.

We will use the following consequence.

Corollary 4.2. If φ : A → B is a homomorphism such that B is integral over φ(A), then
φ∗ : max(B)→ max(A) is a closed map with image V (kerφ).

5. Quillen stratification

Let k be an algebraically closed field of characteristic p > 0. For a finite group G, the
group cohomology H∗(G, k) is finitely generated by the Evens-Venkov Theorem. Hence so is its
”commutative part” H(G, k) ⊂ H∗(G, k) which we defined in Notation 3.13.1. Let

VG = max(H(G, k))

be the maximal ideal spectrum of H(G, k).
If H ⊂ G is a subgroup, then the restriction resG,H : H(G, k)→ H(H, k) induces a map

res∗G,H : VH → VG.

Theorem 5.1. The topological space VG is the union

VG =
⋃
E⊂G

res∗G,E(VE)

over all elementary abelian p-subgroups E ⊂ G.

Proof. As in the proof of Theorem 3.53.5, let φ : H(G, k) →
∏
E⊂GH(E, k) be the map induced

by the restrictions resG,E . It suffices to show that∐
E⊂G

VE ∼= max(
∏
E⊂G

H(E, k))
φ∗−→ max(H(G, k)) ∼= VG

is surjective. This follows from Corollary 4.24.2 since φ factors over its image φ(H(G, k)) as a
surjection with nilpotent kernel followed by an integral extension as explained in the proof of
Theorem 3.53.5. �

Remark 5.2. The subspaces res∗G,E(VE) in the stratification are closed and are identical for
conjugate elementary abelian p-subgroups. Indeed, Corollary 4.24.2 applied to resG,E yields

res∗G,E(VE) = V (ker(resG,E)) ⊂ VG.
Moreover, since the conjugation action by an element g ∈ G induces a commutative diagram

H(E, k)
g∗

∼=
// H(gEg−1, k)

H(G, k)

resG,E

OO

g∗=id // H(G, k),

resG,gEg−1

OO

it follows that res∗G,E(VE) = res∗G,gEg−1(VgEg−1).
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With a more detailed analysis of the pieces, Quillen established the following refined stratifi-
cation theorem.

Theorem 5.3. The restriction maps resG,E induce a homeomorphism

colim
E

VE ∼= VG,

where the colimit is taken over the category with objects the elementary abelian p-subgroups of
G and morphisms E → E′ the group homomorphisms of the form x 7→ gxg−1 for some g ∈ G.

Instead of providing a proof, we illustrate it in an example.

Example 5.4. Let p = 2 and thus k of characteristic 2, and G the dihedral group of order 8

D8 = 〈a, b | a4 = 1, b2 = 1, bab−1 = a−1〉.
The elementary abelian 2-subgroups of D8 together with inclusions and conjugations are

{1, a2, b, ba2} {1, a2}oo // {1, a2, ba, ba3}

{1, ba2} oo //

::

{1, b}

cc

{1, ba} oo //

::

{1, ba3}.

ee

The subgroups E1 = {1, a2, b, ba2} and E2 = {1, a2, ba, ba3} are normal in D8. Their in-
tersection Z = {1, a2} is the center of D8. For any elementary abelian p-group E and sub-
group E′, the restriction homomorphism resE,E′ : H

∗(E, k) → H∗(E′, k) is surjective. Hence
res∗E,E′ : VE′ → VE is a closed embedding. It follows that the colimit VG simplifies to a pushout
of two planes glued together along a line

VG ∼= colimE VE ∼= VE1

∐
VZ

VE2
.
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